Janoschek, R. Chirality: From Weak Bosons to the A-Helix 1st edn (Springer Verlag, 1991).
Yashima, E. et al. Supramolecular helical methods: helical assemblies of small molecules, foldamers, and polymers with chiral amplification and their features. Chem. Rev. 116, 13752–13990 (2011).
Kim, J. Y. & Kotov, N. A. Origin of chiroptical exercise in nanorod assemblies. Science 365, 1378–1379 (2019).
Levin, A. et al. Biomimetic peptide self-assembly for practical supplies. Nat. Rev. Chem. 4, 615–634 (2020).
Forgan, R. S., Sauvage, J. P. & Stoddart, J. F. Chemical topology: advanced molecular knots, hyperlinks, and entanglements. Chem. Rev. 111, 5434–5464 (2011).
Yagai, S., Kitamoto, Y., Datta, S. & Adhikari, B. Supramolecular polymers able to controlling their topology. Acc. Chem. Res. 52, 1325–1335 (2019).
Zhang, W., Jin, W., Fukushima, T., Mori, T. & Aida, T. Helix sense-selective supramolecular polymerization seeded by a one-handed helical polymeric meeting. J. Am. Chem. Soc. 137, 13792–13795 (2015).
Palmer, L. C. & Stupp, S. I. Molecular self-assembly into one-dimensional nanostructures. Acc. Chem. Res. 41, 1674–1684 (2008).
Morrow, S. M., Bissette, A. J. & Fletcher, S. P. Transmission of chirality by way of house and throughout size scales. Nat. Nanotechnol. 12, 410–419 (2017).
Cantekin, S., Balkenede, D. W. R., Smulders, M. M. J., Palmans, A. R. A. & Meijer, E. W. The impact of isotopic substitution on the chirality of a self-assembled helix. Nat. Chem. 3, 42–46 (2011).
Jones, C. D. et al. Braiding, branching and chiral amplification of nanofibres in supramolecular gels. Nat. Chem. 11, 375–381 (2019).
De, S. et al. Designing cooperatively folded abiotic uni- and multimolecular helix bundles. Nat. Chem. 10, 51–57 (2018).
Ma, W. et al. Chiral inorganic nanostructures. Chem. Rev. 117, 8041–8093 (2017).
Datta, S. et al. Self-assembled poly-catenanes from supramolecular toroidal constructing blocks. Nature 583, 400–405 (2020).
McDermott, G. et al. Crystal construction of an integral membrane light-harvesting advanced from photosynthetic micro organism. Nature 314, 517–521 (1995).
Avrahami, E. M., Houben, L., Aram, L. & Gal, A. Complicated morphologies of biogenic crystals emerge from anisotropic progress of symmetry-related aspects. Science 376, 312–316 (2022).
Geng, Z. et al. Moebius strips of chiral block copolymers. Nat. Commun. 10, 4090 (2019).
Sasaki, N. et al. Supramolecular double-stranded Archimedean spirals and concentric toroids. Nat. Commun. 11, 3578 (2020).
Chow, H. Y., Zhang, Y., Matheson, E. & Li, X. Ligation applied sciences for the synthesis of cyclic peptides. Chem. Rev. 119, 9971–10001 (2019).
Laurent, B. A. & Grayson, S. M. Artificial approaches for the preparation of cyclic polymers. Chem. Soc. Rev. 38, 2202–2213 (2009).
Pochan, D. J. et al. Toroidal triblock copolymer assemblies. Science 306, 94–97 (2004).
Lee, J. et al. Hole nanotubular toroidal polymer microrings. Nat. Chem. 6, 97–103 (2014).
Frederix, P. W. J. M. et al. Structural and spectroscopic properties of assemblies of self-replicating peptide macrocycles. ACS Nano 11, 7858–7868 (2017).
Gagnon, C. et al. Biocatalytic synthesis of planar chiral macrocycles. Science 367, 917–921 (2020).
Huang, Z. et al. Pulsating tubules from noncovalent macrocycles. Science 337, 1521–1526 (2012).
Chen, J. et al. Synthetic muscle-like operate from hierarchical supramolecular meeting of photoresponsive molecular motors. Nat. Chem. 10, 132–138 (2018).
Dong, A., Chen, J., Vora, P. M., Kikkawa, J. M. & Murray, C. B. Binary nanocrystal superlattice membranes self-assembled on the liquid–air interface. Nature 466, 474–477 (2010).
Solar, L. et al. Double-shelled hole rods assembled from nitrogen/sulfur-codoped carbon coated indium oxide nanoparticles as wonderful photocatalysts. Nat. Commun. 10, 2270 (2019).
Xia, Y. et al. Self-assembly of self-limiting monodisperse supraparticles from polydisperse nanoparticles. Nat. Nanotechnol. 6, 580–587 (2011).
Zheng, Y. et al. Interfacial meeting of dendritic microcapsules with host–visitor chemistry. Nat. Commun. 5, 5572 (2014).
Walker, D. A., Hedrick, J. L. & Mirkin, C. A. Speedy, large-volume, thermally managed 3D printing utilizing a cellular liquid interface. Science 366, 360–364 (2019).
Gibaud, T. et al. Reconfigurable self-assembly by way of chiral management of interfacial pressure. Nature 481, 348–351 (2012).
Solar, M. & Lee, M. Switchable fragrant nanopore buildings: features and purposes. Acc. Chem. Res. 54, 2959–2968 (2021).
Xu, P. et al. Polymeric toroidal self-assemblies: various formation mechanisms and features. Adv. Func. Mater. 32, 2106036 (2022).
Ouyang, G., Ji, L., Jiang, Y., Würthner, F. & Liu, M. Self-assembled Möbius strips with managed helicity. Nat. Commun. 11, 5910 (2020).
Tune, S. et al. The position of cooling price in crystallization-driven block copolymer self-assembly. Chem. Sci. 13, 396–409 (2022).
Ruiz-Carretero, A. et al. Stepwise self-assembly to enhance photo voltaic cell morphology. J. Mater. Chem. A 1, 11674 (2013).
Parenti, F., Tassinari, F., Libertini, E., Lanzi, M. & Mucci, A. Π-stacking signature in NMR resolution spectra of thiophene-based conjugated polymers. ACS Omega 2, 5775–5784 (2017).
Aida, T., Meijer, E. W. & Stupp, S. I. Useful supramolecular polymers. Science 335, 813–817 (2012).
Wehner, M. et al. Supramolecular polymorphism in one-dimensional self-assembly by kinetic pathway management. J. Am. Chem. Soc. 141, 6092–6107 (2019).
Babu, S. S., Praveen, V. Okay. & Ajayaghosh, A. Useful π‑gelators and their purposes. Chem. Rev. 114, 1973–2129 (2014).
Harada, N. & Nakanishi, Okay. A technique for figuring out the chirality of two fragrant chromophores and absolutely the configurations of chromomycin A3 and associated antibiotics. J. Am. Chem. Soc. 91, 5896–5898 (1969).
Liu, M., Zhang, L. & Wang, T. Supramolecular chirality in self-assembled methods. Chem. Rev. 115, 7304–7397 (2015).
Ang, T. P., Wee, T. S. A. & Chin, W. S. Three-dimensional self-assembled monolayer (3D SAM) of n-alkanethiols on copper nanoclusters. J. Phy. Chem. B. 108, 11001–11010 (2004).
Scholes, G. D., Fleming, G. R., Olaya-Castro, A. & van Grondelle, R. Classes from nature about photo voltaic gentle harvesting. Nat. Chem. 3, 763–774 (2011).
Ajayaghosh, A., Praveen, V. Okay. & Vijayakumar, C. Organogels as scaffolds for excitation vitality switch and light-weight harvesting. Chem. Soc. Rev. 37, 109–122 (2008).
Wasielewski, M. R. Self-assembly methods for integrating gentle harvesting and cost separation in synthetic photosynthetic methods. Acc. Chem. Res. 42, 1910–1921 (2009).
Corridor, J., Renger, T., Picorel, R. & Krausz, E. Circularly polarized luminescence spectroscopy reveals low-energy excited states and dynamic localization of vibronic transitions in CP43. Biochim. Biophys. Acta Bioenerg. 1857, 115–128 (2016).
Frisch, M. J. et al. Gaussian 09, revision D.01 (Gaussian, 2013).