Wednesday, February 8, 2023
HomeNanotechnologyGraphene-nanopocket-encaged PtCo nanocatalysts for extremely sturdy gasoline cell operation beneath demanding ultralow-Pt-loading...

Graphene-nanopocket-encaged PtCo nanocatalysts for extremely sturdy gasoline cell operation beneath demanding ultralow-Pt-loading situations


  • Debe, M. Ok. Electrocatalyst approaches and challenges for automotive gasoline cells. Nature 486, 43–51 (2012).

    CAS 
    Article 

    Google Scholar
     

  • Yarlagadda, V. et al. Boosting gasoline cell efficiency with accessible carbon mesopores. ACS Vitality Lett. 3, 618–621 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Tollefson, J. Price its weight in platinum. Nature 450, 334–335 (2007).

    CAS 
    Article 

    Google Scholar
     

  • Bossi, T. & Gediga, J. The environmental profile of platinum group metals. Johnson Matthey Technol. Rev. 61, 111–121 (2017).

    CAS 
    Article 

    Google Scholar
     

  • James, B. D., Huya-Kouadio, J. M., Houchins, C. & DeSantis, D. A. Mass Manufacturing Value Estimation of Direct H2 PEM Gasoline Cell Techniques for Transportation Functions: 2018 Replace (US DOE, 2018).

  • Pollet, B. G., Kocha, S. S. & Staffell, I. Present standing of automotive gasoline cells for sustainable transport. Curr. Opin. Electrochem. 16, 90–95 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Gröger, O., Gasteiger, H. A. & Suchsland, J.-P. Electromobility: batteries or gasoline cells? J. Electrochem. Soc. 162, A2605–A2622 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Hao, H. et al. Securing platinum-group metals for transport low-carbon transition. One Earth 1, 117–125 (2019).

    Article 

    Google Scholar
     

  • Kongkanand, A. & Mathias, M. F. The precedence and problem of high-power efficiency of low-platinum proton-exchange membrane gasoline cells. J. Phys. Chem. Lett. 7, 1127–1137 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Li, M. et al. Ultrafine jagged platinum nanowires allow ultrahigh mass exercise for the oxygen discount response. Science 354, 1414–1419 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Escudero-Escribano, M. et al. Tuning the exercise of Pt alloy electrocatalysts by way of the lanthanide contraction. Science 352, 73–76 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Chen, C. et al. Extremely crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 343, 1339–1343 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Greeley, J. et al. Alloys of platinum and early transition metals as oxygen discount electrocatalysts. Nat. Chem. 1, 552–556 (2009).

    CAS 
    Article 

    Google Scholar
     

  • Zhang, L. et al. Platinum-based nanocages with subnanometer-thick partitions and well-defined, controllable aspects. Science 349, 412–416 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Cui, C., Gan, L., Heggen, M., Rudi, S. & Strasser, P. Compositional segregation in formed Pt alloy nanoparticles and their structural behaviour throughout electrocatalysis. Nat. Mater. 12, 765–771 (2013).

    CAS 
    Article 

    Google Scholar
     

  • Seh, Z. W. et al. Combining idea and experiment in electrocatalysis: insights into supplies design. Science 355, eaad4998 (2017).

    Article 

    Google Scholar
     

  • Li, W., Chen, Z., Xu, L. & Yan, Y. An answer-phase synthesis technique to extremely lively Pt-Co/C electrocatalysts for proton trade membrane gasoline cell. J. Energy Sources 195, 2534–2540 (2010).

    CAS 
    Article 

    Google Scholar
     

  • Zhang, Z. et al. One-pot synthesis of extremely anisotropic five-fold-twinned PtCu nanoframes used as a bifunctional electrocatalyst for oxygen discount and methanol oxidation. Adv. Mater. 28, 8712–8717 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Wang, X. X. et al. Ordered Pt3Co intermetallic nanoparticles derived from steel–natural frameworks for oxygen discount. Nano Lett. 18, 4163–4171 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Huang, L., Zheng, C. Y., Shen, B. & Mirkin, C. A. Excessive-index-facet steel–alloy nanoparticles as gasoline cell electrocatalysts. Adv. Mater. 32, 2002849 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Ott, S. et al. Ionomer distribution management in porous carbon-supported catalyst layers for high-power and low Pt-loaded proton trade membrane gasoline cells. Nat. Mater. 19, 77–85 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Qiao, Z. et al. 3D porous graphitic nanocarbon for enhancing the efficiency and sturdiness of Pt catalysts: a stability between graphitization and hierarchical porosity. Vitality Environ. Sci. 12, 2830–2841 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Wang, L. et al. Tunable intrinsic pressure in two-dimensional transition steel electrocatalysts. Science 363, 870–874 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Wang, C. et al. Synthesis of homogeneous Pt-bimetallic nanoparticles as extremely environment friendly electrocatalysts. ACS Catal. 1, 1355–1359 (2011).

    CAS 
    Article 

    Google Scholar
     

  • He, D. S. et al. Ultrathin icosahedral Pt-enriched nanocage with wonderful oxygen discount response exercise. J. Am. Chem. Soc. 138, 1494–1497 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Pizzutilo, E. et al. The house confinement strategy utilizing hole graphitic spheres to unveil exercise and stability of Pt–Co nanocatalysts for PEMFC. Adv. Vitality Mater. 7, 1700835 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Mezzavilla, S. et al. Construction–exercise–stability relationships for space-confined PtxNiy nanoparticles within the oxygen discount response. ACS Catal. 6, 8058–8068 (2016).

    CAS 
    Article 

    Google Scholar
     

  • DOE Technical Targets for Polymer Electrolyte Membrane Gasoline Cell Elements https://power.gov/eere/fuelcells/doe-technical-targets-polymer-electrolyte-membrane-fuel-cell-components (US DOE, 2016).

  • Kodama, Ok., Nagai, T., Kuwaki, A., Jinnouchi, R. & Morimoto, Y. Challenges in making use of extremely lively Pt-based nanostructured catalysts for oxygen discount reactions to gasoline cell automobiles. Nat. Nanotechnol. 16, 140–147 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Weber, A. Z. & Kusoglu, A. Unexplained transport resistances for low-loaded fuel-cell catalyst layers. J. Mater. Chem. A 2, 17207–17211 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Holby, E. F., Sheng, W., Shao-Horn, Y. & Morgan, D. Pt nanoparticle stability in PEM gasoline cells: affect of particle dimension distribution and crossover hydrogen. Vitality Environ. Sci. 2, 865–871 (2009).

    CAS 
    Article 

    Google Scholar
     

  • Borup, R. L. et al. Latest developments in catalyst-related PEM gasoline cell sturdiness. Curr. Opin. Electrochem. 21, 192–200 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Tang, L., Li, X., Cammarata, R. C., Friesen, C. & Sieradzki, Ok. Electrochemical stability of elemental steel nanoparticles. J. Am. Chem. Soc. 132, 11722–11726 (2010).

    CAS 
    Article 

    Google Scholar
     

  • Tang, L. et al. Electrochemical stability of nanometer-scale Pt particles in acidic environments. J. Am. Chem. Soc. 132, 596–600 (2010).

    CAS 
    Article 

    Google Scholar
     

  • Du, L. et al. Low-PGM and PGM-free catalysts for proton trade membrane gasoline cells: stability challenges and materials options. Adv. Mater. 33, 1908232 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Han, B. et al. Document exercise and stability of dealloyed bimetallic catalysts for proton trade membrane gasoline cells. Vitality Environ. Sci. 8, 258–266 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Braaten, J. P., Xu, X., Cai, Y., Kongkanand, A. & Litster, S. Contaminant cation impact on oxygen transport by way of the ionomers of polymer electrolyte membrane gasoline cells. J. Electrochem. Soc. 166, F1337–F1343 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Sulek, M., Adams, J., Kaberline, S., Ricketts, M. & Waldecker, J. R. In situ steel ion contamination and the results on proton trade membrane gasoline cell efficiency. J. Energy Sources 196, 8967–8972 (2011).

    CAS 
    Article 

    Google Scholar
     

  • Hoene, J. V., Charles, R. G. & Hickam, W. M. Thermal decomposition of steel acetylacetonates: mass spectrometer research. J. Phys. Chem. 62, 1098–1101 (1958).

    Article 

    Google Scholar
     

  • Grimm, S. et al. Fuel-phase aluminium acetylacetonate decomposition: revision of the present mechanism by VUV synchrotron radiation. Phys. Chem. Chem. Phys. 23, 15059–15075 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Fei, L.-f et al. Direct statement of carbon nanostructure progress at liquid–stable interfaces. Chem. Commun. 50, 826–828 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Picher, M., Lin, P. A., Gomez-Ballesteros, J. L., Balbuena, P. B. & Sharma, R. Nucleation of graphene and its conversion to single-walled carbon nanotubes. Nano Lett. 14, 6104–6108 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Fan, H. et al. Dynamic state and lively construction of Ni–Co catalyst in carbon nanofiber progress revealed by in situ transmission electron microscopy. ACS Nano 15, 17895–17906 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Zhao, Z. et al. Tailoring a three-phase microenvironment for high-performance oxygen discount response in proton trade membrane gasoline cells. Matter 3, 1774–1790 (2020).

    Article 

    Google Scholar
     

  • Cullen, D. A. et al. New roads and challenges for gasoline cells in heavy-duty transportation. Nat. Vitality 6, 462–474 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Chong, L. et al. Ultralow-loading platinum–cobalt gasoline cell catalysts derived from imidazolate frameworks. Science 362, 1276–1281 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Jia, Q. et al. Improved oxygen discount exercise and sturdiness of dealloyed PtCox catalysts for proton trade membrane gasoline cells: pressure, ligand, and particle dimension results. ACS Catal. 5, 176–186 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Li, J. et al. Onerous-magnet L10-CoPt nanoparticles advance gasoline cell catalysis. Joule 3, 124–135 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Papadias, D. D. et al. Sturdiness of Pt–Co alloy polymer electrolyte gasoline cell cathode catalysts beneath accelerated stress assessments. J. Electrochem. Soc. 165, F3166–F3177 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Slack, J. J. et al. Nanofiber gasoline cell MEAs with a PtCo/C cathode. J. Electrochem. Soc. 166, F3202–F3209 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Gasoline Cell Applied sciences Workplace Multi-year Analysis, Improvement, and Demonstration Plan https://www.power.gov/eere/fuelcells/downloads/fuel-cell-technologies-office-multi-year-research-development-and-22 (US DOE, 2017).

  • Zhao, Z. et al. Pt-based nanocrystal for electrocatalytic oxygen discount. Adv. Mater. 31, 1808115 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Kleen, G. & Padgett, E. Sturdiness-Adjusted Gasoline Cell System Value (US DOE, 2021).

  • Baker, D. R., Caulk, D. A., Neyerlin, Ok. C. & Murphy, M. W. Measurement of oxygen transport resistance in PEM gasoline cells by limiting present strategies. J. Electrochem. Soc. 156, B991–B1003 (2009).

    CAS 
    Article 

    Google Scholar
     

  • Garsany, Y., Atkinson, R. W., Gould, B. D. & Swider-Lyons, Ok. E. Excessive energy, low-Pt membrane electrode assemblies for proton trade membrane gasoline cells. J. Energy Sources 408, 38–45 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Papageorgopoulos, D. Gasoline Cell R&D Overview (US DOE, 2019).

  • Kongkanand, A. Extremely Accessible Catalysts for Sturdy Excessive Energy Efficiency (US DOE, 2020).

  • Stariha, S. et al. Latest advances in catalyst accelerated stress assessments for polymer electrolyte membrane gasoline cells. J. Electrochem. Soc. 165, F492–F501 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Zhao, Z. et al. Tailoring a three-phase microenvironment for high-performance oxygen discount response in proton trade membrane gasoline cells. Matter 3, 1774–1790 (2020).

    Article 

    Google Scholar
     

  • Huang, P. Y. et al. Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 469, 389–392 (2011).

    CAS 
    Article 

    Google Scholar
     

  • Stariha, S. et al. Latest advances in catalyst accelerated stress assessments for polymer electrolyte membrane gasoline cells. J. Electrochem. Soc. 165, F492–F501 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Garrick, T. R., Moylan, T. E., Carpenter, M. Ok. & Kongkanand, A. Electrochemically lively floor space measurement of aged Pt alloy catalysts in PEM gasoline cells by CO stripping. J. Electrochem. Soc. 164, F55–F59 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Yarlagadda, V. et al. Boosting gasoline cell efficiency with accessible carbon mesopores. ACS Vitality Lett. 3, 618–621 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Garsany, Y., Atkinson, R. W., Gould, B. D. & Swider-Lyons, Ok. E. Excessive energy, low-Pt membrane electrode assemblies for proton trade membrane gasoline cells. J. Energy Sources 408, 38–45 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Baker, D. R., Caulk, D. A., Neyerlin, Ok. C. & Murphy, M. W. Measurement of oxygen transport resistance in PEM gasoline cells by limiting present strategies. J. Electrochem. Soc. 156, B991–B1003 (2009).

    CAS 
    Article 

    Google Scholar
     



  • Supply hyperlink

    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    - Advertisment -
    Google search engine

    Most Popular

    Recent Comments