Debe, M. Ok. Electrocatalyst approaches and challenges for automotive gasoline cells. Nature 486, 43–51 (2012).
Yarlagadda, V. et al. Boosting gasoline cell efficiency with accessible carbon mesopores. ACS Vitality Lett. 3, 618–621 (2018).
Tollefson, J. Price its weight in platinum. Nature 450, 334–335 (2007).
Bossi, T. & Gediga, J. The environmental profile of platinum group metals. Johnson Matthey Technol. Rev. 61, 111–121 (2017).
James, B. D., Huya-Kouadio, J. M., Houchins, C. & DeSantis, D. A. Mass Manufacturing Value Estimation of Direct H2 PEM Gasoline Cell Techniques for Transportation Functions: 2018 Replace (US DOE, 2018).
Pollet, B. G., Kocha, S. S. & Staffell, I. Present standing of automotive gasoline cells for sustainable transport. Curr. Opin. Electrochem. 16, 90–95 (2019).
Gröger, O., Gasteiger, H. A. & Suchsland, J.-P. Electromobility: batteries or gasoline cells? J. Electrochem. Soc. 162, A2605–A2622 (2015).
Hao, H. et al. Securing platinum-group metals for transport low-carbon transition. One Earth 1, 117–125 (2019).
Kongkanand, A. & Mathias, M. F. The precedence and problem of high-power efficiency of low-platinum proton-exchange membrane gasoline cells. J. Phys. Chem. Lett. 7, 1127–1137 (2016).
Li, M. et al. Ultrafine jagged platinum nanowires allow ultrahigh mass exercise for the oxygen discount response. Science 354, 1414–1419 (2016).
Escudero-Escribano, M. et al. Tuning the exercise of Pt alloy electrocatalysts by way of the lanthanide contraction. Science 352, 73–76 (2016).
Chen, C. et al. Extremely crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 343, 1339–1343 (2014).
Greeley, J. et al. Alloys of platinum and early transition metals as oxygen discount electrocatalysts. Nat. Chem. 1, 552–556 (2009).
Zhang, L. et al. Platinum-based nanocages with subnanometer-thick partitions and well-defined, controllable aspects. Science 349, 412–416 (2015).
Cui, C., Gan, L., Heggen, M., Rudi, S. & Strasser, P. Compositional segregation in formed Pt alloy nanoparticles and their structural behaviour throughout electrocatalysis. Nat. Mater. 12, 765–771 (2013).
Seh, Z. W. et al. Combining idea and experiment in electrocatalysis: insights into supplies design. Science 355, eaad4998 (2017).
Li, W., Chen, Z., Xu, L. & Yan, Y. An answer-phase synthesis technique to extremely lively Pt-Co/C electrocatalysts for proton trade membrane gasoline cell. J. Energy Sources 195, 2534–2540 (2010).
Zhang, Z. et al. One-pot synthesis of extremely anisotropic five-fold-twinned PtCu nanoframes used as a bifunctional electrocatalyst for oxygen discount and methanol oxidation. Adv. Mater. 28, 8712–8717 (2016).
Wang, X. X. et al. Ordered Pt3Co intermetallic nanoparticles derived from steel–natural frameworks for oxygen discount. Nano Lett. 18, 4163–4171 (2018).
Huang, L., Zheng, C. Y., Shen, B. & Mirkin, C. A. Excessive-index-facet steel–alloy nanoparticles as gasoline cell electrocatalysts. Adv. Mater. 32, 2002849 (2020).
Ott, S. et al. Ionomer distribution management in porous carbon-supported catalyst layers for high-power and low Pt-loaded proton trade membrane gasoline cells. Nat. Mater. 19, 77–85 (2019).
Qiao, Z. et al. 3D porous graphitic nanocarbon for enhancing the efficiency and sturdiness of Pt catalysts: a stability between graphitization and hierarchical porosity. Vitality Environ. Sci. 12, 2830–2841 (2019).
Wang, L. et al. Tunable intrinsic pressure in two-dimensional transition steel electrocatalysts. Science 363, 870–874 (2019).
Wang, C. et al. Synthesis of homogeneous Pt-bimetallic nanoparticles as extremely environment friendly electrocatalysts. ACS Catal. 1, 1355–1359 (2011).
He, D. S. et al. Ultrathin icosahedral Pt-enriched nanocage with wonderful oxygen discount response exercise. J. Am. Chem. Soc. 138, 1494–1497 (2016).
Pizzutilo, E. et al. The house confinement strategy utilizing hole graphitic spheres to unveil exercise and stability of Pt–Co nanocatalysts for PEMFC. Adv. Vitality Mater. 7, 1700835 (2017).
Mezzavilla, S. et al. Construction–exercise–stability relationships for space-confined PtxNiy nanoparticles within the oxygen discount response. ACS Catal. 6, 8058–8068 (2016).
DOE Technical Targets for Polymer Electrolyte Membrane Gasoline Cell Elements https://power.gov/eere/fuelcells/doe-technical-targets-polymer-electrolyte-membrane-fuel-cell-components (US DOE, 2016).
Kodama, Ok., Nagai, T., Kuwaki, A., Jinnouchi, R. & Morimoto, Y. Challenges in making use of extremely lively Pt-based nanostructured catalysts for oxygen discount reactions to gasoline cell automobiles. Nat. Nanotechnol. 16, 140–147 (2021).
Weber, A. Z. & Kusoglu, A. Unexplained transport resistances for low-loaded fuel-cell catalyst layers. J. Mater. Chem. A 2, 17207–17211 (2014).
Holby, E. F., Sheng, W., Shao-Horn, Y. & Morgan, D. Pt nanoparticle stability in PEM gasoline cells: affect of particle dimension distribution and crossover hydrogen. Vitality Environ. Sci. 2, 865–871 (2009).
Borup, R. L. et al. Latest developments in catalyst-related PEM gasoline cell sturdiness. Curr. Opin. Electrochem. 21, 192–200 (2020).
Tang, L., Li, X., Cammarata, R. C., Friesen, C. & Sieradzki, Ok. Electrochemical stability of elemental steel nanoparticles. J. Am. Chem. Soc. 132, 11722–11726 (2010).
Tang, L. et al. Electrochemical stability of nanometer-scale Pt particles in acidic environments. J. Am. Chem. Soc. 132, 596–600 (2010).
Du, L. et al. Low-PGM and PGM-free catalysts for proton trade membrane gasoline cells: stability challenges and materials options. Adv. Mater. 33, 1908232 (2021).
Han, B. et al. Document exercise and stability of dealloyed bimetallic catalysts for proton trade membrane gasoline cells. Vitality Environ. Sci. 8, 258–266 (2015).
Braaten, J. P., Xu, X., Cai, Y., Kongkanand, A. & Litster, S. Contaminant cation impact on oxygen transport by way of the ionomers of polymer electrolyte membrane gasoline cells. J. Electrochem. Soc. 166, F1337–F1343 (2019).
Sulek, M., Adams, J., Kaberline, S., Ricketts, M. & Waldecker, J. R. In situ steel ion contamination and the results on proton trade membrane gasoline cell efficiency. J. Energy Sources 196, 8967–8972 (2011).
Hoene, J. V., Charles, R. G. & Hickam, W. M. Thermal decomposition of steel acetylacetonates: mass spectrometer research. J. Phys. Chem. 62, 1098–1101 (1958).
Grimm, S. et al. Fuel-phase aluminium acetylacetonate decomposition: revision of the present mechanism by VUV synchrotron radiation. Phys. Chem. Chem. Phys. 23, 15059–15075 (2021).
Fei, L.-f et al. Direct statement of carbon nanostructure progress at liquid–stable interfaces. Chem. Commun. 50, 826–828 (2014).
Picher, M., Lin, P. A., Gomez-Ballesteros, J. L., Balbuena, P. B. & Sharma, R. Nucleation of graphene and its conversion to single-walled carbon nanotubes. Nano Lett. 14, 6104–6108 (2014).
Fan, H. et al. Dynamic state and lively construction of Ni–Co catalyst in carbon nanofiber progress revealed by in situ transmission electron microscopy. ACS Nano 15, 17895–17906 (2021).
Zhao, Z. et al. Tailoring a three-phase microenvironment for high-performance oxygen discount response in proton trade membrane gasoline cells. Matter 3, 1774–1790 (2020).
Cullen, D. A. et al. New roads and challenges for gasoline cells in heavy-duty transportation. Nat. Vitality 6, 462–474 (2021).
Chong, L. et al. Ultralow-loading platinum–cobalt gasoline cell catalysts derived from imidazolate frameworks. Science 362, 1276–1281 (2018).
Jia, Q. et al. Improved oxygen discount exercise and sturdiness of dealloyed PtCox catalysts for proton trade membrane gasoline cells: pressure, ligand, and particle dimension results. ACS Catal. 5, 176–186 (2015).
Li, J. et al. Onerous-magnet L10-CoPt nanoparticles advance gasoline cell catalysis. Joule 3, 124–135 (2019).
Papadias, D. D. et al. Sturdiness of Pt–Co alloy polymer electrolyte gasoline cell cathode catalysts beneath accelerated stress assessments. J. Electrochem. Soc. 165, F3166–F3177 (2018).
Slack, J. J. et al. Nanofiber gasoline cell MEAs with a PtCo/C cathode. J. Electrochem. Soc. 166, F3202–F3209 (2019).
Gasoline Cell Applied sciences Workplace Multi-year Analysis, Improvement, and Demonstration Plan https://www.power.gov/eere/fuelcells/downloads/fuel-cell-technologies-office-multi-year-research-development-and-22 (US DOE, 2017).
Zhao, Z. et al. Pt-based nanocrystal for electrocatalytic oxygen discount. Adv. Mater. 31, 1808115 (2019).
Kleen, G. & Padgett, E. Sturdiness-Adjusted Gasoline Cell System Value (US DOE, 2021).
Baker, D. R., Caulk, D. A., Neyerlin, Ok. C. & Murphy, M. W. Measurement of oxygen transport resistance in PEM gasoline cells by limiting present strategies. J. Electrochem. Soc. 156, B991–B1003 (2009).
Garsany, Y., Atkinson, R. W., Gould, B. D. & Swider-Lyons, Ok. E. Excessive energy, low-Pt membrane electrode assemblies for proton trade membrane gasoline cells. J. Energy Sources 408, 38–45 (2018).
Papageorgopoulos, D. Gasoline Cell R&D Overview (US DOE, 2019).
Kongkanand, A. Extremely Accessible Catalysts for Sturdy Excessive Energy Efficiency (US DOE, 2020).
Stariha, S. et al. Latest advances in catalyst accelerated stress assessments for polymer electrolyte membrane gasoline cells. J. Electrochem. Soc. 165, F492–F501 (2018).
Zhao, Z. et al. Tailoring a three-phase microenvironment for high-performance oxygen discount response in proton trade membrane gasoline cells. Matter 3, 1774–1790 (2020).
Huang, P. Y. et al. Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 469, 389–392 (2011).
Stariha, S. et al. Latest advances in catalyst accelerated stress assessments for polymer electrolyte membrane gasoline cells. J. Electrochem. Soc. 165, F492–F501 (2018).
Garrick, T. R., Moylan, T. E., Carpenter, M. Ok. & Kongkanand, A. Electrochemically lively floor space measurement of aged Pt alloy catalysts in PEM gasoline cells by CO stripping. J. Electrochem. Soc. 164, F55–F59 (2016).
Yarlagadda, V. et al. Boosting gasoline cell efficiency with accessible carbon mesopores. ACS Vitality Lett. 3, 618–621 (2018).
Garsany, Y., Atkinson, R. W., Gould, B. D. & Swider-Lyons, Ok. E. Excessive energy, low-Pt membrane electrode assemblies for proton trade membrane gasoline cells. J. Energy Sources 408, 38–45 (2018).
Baker, D. R., Caulk, D. A., Neyerlin, Ok. C. & Murphy, M. W. Measurement of oxygen transport resistance in PEM gasoline cells by limiting present strategies. J. Electrochem. Soc. 156, B991–B1003 (2009).