Tan, Z.-Ok. et al. Shiny light-emitting diodes based mostly on organometal halide perovskite. Nat. Nanotechnol. 9, 687–692 (2014).
Cho, H. et al. Overcoming the electroluminescence effectivity limitations of perovskite light-emitting diodes. Science 350, 1222–1225 (2015).
Zhao, B. et al. Excessive-efficiency perovskite–polymer bulk heterostructure light-emitting diodes. Nat. Photon. 12, 783–789 (2018).
Chiba, T. et al. Anion-exchange crimson perovskite quantum dots with ammonium iodine salts for extremely environment friendly light-emitting gadgets. Nat. Photon. 12, 681–687 (2018).
Lin, Ok. et al. Perovskite light-emitting diodes with exterior quantum effectivity exceeding 20 per cent. Nature 562, 245–248 (2018).
Cao, Y. et al. Perovskite light-emitting diodes based mostly on spontaneously shaped submicrometre-scale constructions. Nature 562, 249–253 (2018).
Xu, W. et al. Rational molecular passivation for high-performance perovskite light-emitting diodes. Nat. Photon. 13, 418–424 (2019).
Guo, B. et al. Ultrastable near-infrared perovskite light-emitting diodes. Nat. Photon. 16, 637–643 (2022).
Kim, J. S. et al. Extremely-bright, environment friendly and steady perovskite light-emitting diodes. Nature 611, 688–694 (2022). (2022).
Han, T. H. et al. A roadmap for the commercialization of perovskite gentle emitters. Nat. Rev. Mater. 7, 757–777 (2022).
Liu, S. et al. Manipulating environment friendly gentle emission in two-dimensional perovskite crystals by pressure-induced anisotropic deformation. Sci. Adv. 5, eaav9445 (2019).
Cho, C. et al. The function of photon recycling in perovskite light-emitting diodes. Nat. Commun. 11, 611 (2020).
Stranks, S. D. et al. The physics of sunshine emission in halide perovskite gadgets. Adv. Mater. 31, 1803336 (2019).
Zhao, X. & Tan, Z. Ok. Massive-area near-infrared perovskite light-emitting diodes. Nat. Photon. 14, 215–218 (2019).
Xiao, Z. et al. Environment friendly perovskite light-emitting diodes that includes nanometre-sized crystallites. Nat. Photon. 11, 108–115 (2017).
Zhao, B. et al. Environment friendly light-emitting diodes from mixed-dimensional perovskites on a fluoride interface. Nat. Electron. 3, 704–710 (2020).
Wang, N. et al. Perovskite light-emitting diodes based mostly on solution-processed self-organized a number of quantum wells. Nat. Photon. 10, 699–704 (2016).
Yuan, M. et al. Perovskite power funnels for environment friendly light-emitting diodes. Nat. Nanotechnol. 11, 872–877 (2016).
Jiang, Y. et al. Lowering the affect of Auger recombination in quasi-2D perovskite light-emitting diodes. Nat. Commun. 12, 336 (2021).
Hutter, E. M. et al. Direct–oblique character of the bandgap in methylammonium lead iodide perovskite. Nat. Mater. 16, 115–120 (2016).
Li, P. et al. A number of-quantum-well perovskite for hole-transport-layer-free light-emitting diodes. Chin. Chem. Lett. 33, 1017–1020 (2022).
Jiang, Y. et al. Synthesis-on-substrate of quantum dot solids. Nature 612, 679–684 (2022).
Ban, M. et al. Answer-processed perovskite gentle emitting diodes with effectivity exceeding 15% by means of additive-controlled nanostructure tailoring. Nat. Commun. 9, 3892 (2018).
Zou, W. et al. Minimising effectivity roll-off in high-brightness perovskite light-emitting diodes. Nat. Commun. 9, 608 (2018).
Zhang, Q. et al. Gentle out-coupling administration in perovskite LEDs—what can we be taught from the previous? Adv. Funct. Mater. 30, 2002570 (2020).
Shen, Y. et al. Excessive-efficiency perovskite light-emitting diodes with synergetic outcoupling enhancement. Adv. Mater. 31, 1901517 (2019).
Zhao, L., Lee, Ok. M., Roh, Ok., Khan, S. U. Z. & Rand, B. P. Improved outcoupling effectivity and stability of perovskite light-emitting diodes utilizing skinny emitting layers. Adv. Mater. 31, 1805836 (2019).
Richter, J. M. et al. Enhancing photoluminescence yields in lead halide perovskites by photon recycling and lightweight out-coupling. Nat. Commun. 7, 13941 (2016).
He, S. et al. Tailoring the refractive index and floor defects of CsPbBr3 quantum dots through alkyl cation-engineering for environment friendly perovskite light-emitting diodes. Chem. Eng. J. 425, 130678 (2021).
Shi, X. B. et al. Optical power losses in natural–inorganic hybrid perovskite light-emitting diodes. Adv. Choose. Mater. 6, 1800667 (2018).
Wan, Q. et al. Ultrathin light-emitting diodes with exterior effectivity over 26% based mostly on resurfaced perovskite nanocrystals. ACS Vitality Lett. 13, 927–934 (2023).
Zou, C. & Lin, L. Y. Impact of emitter orientation on the outcoupling effectivity of perovskite light-emitting diodes. Choose. Lett. 45, 4786–4789 (2020).
Werner, J. et al. Advanced refractive indices of cesium-formamidinium-based mixed-halide perovskites with optical band gaps from 1.5 to 1.8 eV. ACS Vitality Lett. 3, 742–747 (2018).
Liu, Z. et al. Perovskite light-emitting diodes with EQE exceeding 28% by means of a synergetic dual-additive technique for defect passivation and nanostructure regulation. Adv. Mater. 33, 2103268 (2021).
Bowman, A. R., Anaya, M., Greenham, N. C. & Stranks, S. D. Quantifying photon recycling in photo voltaic cells and light-emitting diodes: absorption and emission are all the time key. Phys. Rev. Lett. 125, 067401 (2020).
Chen, J., Ma, P., Chen, W. & Xiao, Z. Overcoming outcoupling restrict in perovskite light-emitting diodes with enhanced photon recycling. Nano Lett. 21, 8426–8432 (2021).
Fieramosca, A. et al. Tunable Out-of-plane excitons in 2D single-crystal perovskites. ACS Photon. 5, 4179–4185 (2018).
Walters, G. et al. Directional gentle emission from layered steel halide perovskite crystals. J. Phys. Chem. Lett. 11, 3458–3465 (2020).
Jurow, M. J. et al. Tunable anisotropic photon emission from self-organized CsPbBr3 perovskite nanocrystals. Nano Lett. 17, 4534–4540 (2017).
Jurow, M. J. et al. Manipulating the transition dipole second of CsPbBr3 perovskite nanocrystals for superior optical properties. Nano Lett. 19, 2489–2496 (2019).
Cui, J. et al. Environment friendly light-emitting diodes based mostly on oriented perovskite nanoplatelets. Sci. Adv. 7, eabg8458 (2021).
Morgenstern, T. et al. Elucidating the efficiency limits of perovskite nanocrystal gentle emitting diodes. J. Lumin. 220, 116939 (2020).
Proppe, A. H. et al. Transition dipole moments of n = 1, 2, and three perovskite quantum wells from the optical stark impact and many-body perturbation idea. J. Phys. Chem. Lett. 11, 716–723 (2020).
Cho, C. & Greenham, N. C. Computational research of dipole radiation in re-absorbing perovskite semiconductors for optoelectronics. Adv. Sci. 8, 2003559 (2021).
Liu, Y. et al. Environment friendly blue light-emitting diodes based mostly on quantum-confined bromide perovskite nanostructures. Nat. Photon. 13, 760–764 (2019).
Ziebarth, J. M., Saafir, A. Ok., Fan, S. & McGehee, M. D. Extracting gentle from polymer light-emitting diodes utilizing stamped bragg gratings. Adv. Funct. Mater. 14, 451–456 (2004).
Solar, Y. & Forrest, S. R. Enhanced gentle out-coupling of natural light-emitting gadgets utilizing embedded low-index grids. Nat. Photon. 2, 483–487 (2008).
Zhang, Q. et al. Environment friendly steel halide perovskite light-emitting diodes with considerably improved gentle extraction on nanophotonic substrates. Nat. Commun. 10, 727 (2019).
Jeon, S. et al. Perovskite light-emitting diodes with improved outcoupling utilizing a high-index distinction nanoarray. Small 15, 1900135 (2019).
Shen, Y. et al. Interfacial nucleation seeding for electroluminescent manipulation in blue perovskite light-emitting diodes. Adv. Funct. Mater. 31, 2103870 (2021).
Mehta, D. S., Saxena, Ok., Rai, V. Ok., Srivastava, R. & Kamalasanan, M. N. Enhancement of sunshine out-coupling effectivity of natural light-emitting gadgets by anti-reflection coating method. In 2007 Worldwide Workshop on Physics of Semiconductor Gadgets 628–629 (IEEE, 2007).
Meng, S. S., Li, Y. Q. & Tang, J. X. Theoretical perspective to gentle outcoupling and administration in perovskite light-emitting diodes. Org. Electron. 61, 351–358 (2018).
Kim, H. P. et al. Excessive-efficiency, blue, inexperienced, and near-infrared light-emitting diodes based mostly on triple cation perovskite. Adv. Choose. Mater. 5, 1600920 (2017).
Fakharuddin, A. et al. Diminished effectivity roll-off and improved stability of combined 2D/3D perovskite gentle emitting diodes by balancing cost injection. Adv. Funct. Mater. 29, 1904101 (2019).
Weidlich, A. & Wilkie, A. Anomalous dispersion in predictive rendering. Comput. Graph. Discussion board 28, 1065–1072 (2009).
Usha, Ok. S., Sivakumar, R. & Sanjeeviraja, C. Optical constants and dispersion power parameters of NiO skinny movies ready by radio frequency magnetron sputtering method. J. Appl. Phys. 114, 123501 (2013).
Fang, C. Y. et al. Nanoparticle stacks with graded refractive indices improve the omnidirectional gentle harvesting of photo voltaic cells and the sunshine extraction of light-emitting diodes. Adv. Funct. Mater. 23, 1412–1421 (2013).
Schubert, E. F. et al. Extremely environment friendly light-emitting diodes with microcavities. Science 265, 943–945 (1994).
Purcell, E. M. in Confined Electrons and Photons (eds Burstein, E. & Weisbuch, C.) 839–839 (Springer, 1995).
Lüssem, B., Leo, Ok., Thomschke, M. & Hofmann, S. Prime-emitting natural light-emitting diodes. Choose. Specific 19, A1250–A1264 (2011).
Miao, Y. et al. Microcavity top-emission perovskite light-emitting diodes. Gentle Sci. Appl. 9, 89 (2020).
Gu, L., Wen, Ok., Peng, Q., Huang, W. & Wang, J. Floor-plasmon-enhanced perovskite light-emitting diodes. Small 16, 2001861 (2020).
Barnes, W. L., Dereux, A. & Ebbesen, T. W. Floor plasmon subwavelength optics. Nature 424, 824–830 (2003).
Xu, L. et al. Floor plasmon enhanced luminescence from organic-inorganic hybrid perovskites. Appl. Phys. Lett. 110, 233113 (2017).
Cai, C. et al. Photoluminescence enhancement in huge spectral vary excitation in CsPbBr3 nanocrystal/Ag nanostructure through floor plasmon coupling. Choose. Lett. 44, 658–661 (2019).
Li, D. et al. Plasmonic photonic crystals induced two-order fluorescence enhancement of blue perovskite nanocrystals and its software for high-performance versatile ultraviolet photodetectors. Adv. Funct. Mater. 28, 1804429 (2018).
Zhang, Ok. et al. Silver nanoparticles enhanced luminescence and stability of CsPbBr3 perovskite quantum dots in borosilicate glass. J. Am. Ceram. Soc. 103, 2463–2470 (2020).
Bayles, A. et al. Localized floor plasmon results on the photophysics of perovskite skinny movies embedding steel nanoparticles. J. Mater. Chem. C 8, 916–921 (2020).
Zhang, X. et al. Plasmonic perovskite light-emitting diodes based mostly on the Ag-CsPbBr3 system. ACS Appl. Mater. Interf. 9, 4926–4931 (2017).
Cai, C., Bi, G., Wu, H. & Zhai, J. Electron power switch impact in Au NS/CH3NH3PbI3-xClx heterostructures through localized floor plasmon resonance coupling. Choose. Lett. 41, 4297–4300 (2016).
Storm, M. M. et al. Spectral conduct of plasmon enhanced fluorescence in natural–inorganic perovskite quantum dot options. Phys. Scr. 94, 055503 (2019).
Juan, F. et al. Photoluminescence enhancement of perovskite CsPbBr3 quantum dots by plasmonic Au nanorods. Chem. Phys. 530, 110627 (2020).
Chen, P. et al. Practically 100% effectivity enhancement of CH3NH3PbBr3 perovskite light-emitting diodes by using plasmonic Au nanoparticles. J. Phys. Chem. Lett. 8, 3961–3969 (2017).
Liu, J. et al. Rational power band alignment and Au nanoparticles in floor plasmon enhanced Si-based perovskite quantum dot light-emitting diodes. Adv. Choose. Mater. 6, 1800693 (2018).
Zhang, Y. et al. Enhancing luminescence in all-inorganic perovskite floor plasmon light-emitting diode by incorporating Au-Ag alloy nanoparticle. Choose. Mater. 89, 563–567 (2019).
Shi, Z. et al. Localized floor plasmon enhanced all-inorganic perovskite quantum dot light-emitting diodes based mostly on coaxial core/shell heterojunction structure. Adv. Funct. Mater. 28, 1707031 (2018).
Möller, S. & Forrest, S. R. Improved gentle out-coupling in natural gentle emitting diodes using ordered microlens arrays. J. Appl. Phys. 91, 3324 (2002).
Do, Y. R., Kim, Y. C., Track, Y. W. & Lee, Y. H. Enhanced gentle extraction effectivity from natural gentle emitting diodes by insertion of a two-dimensional photonic crystal construction. J. Appl. Phys. 96, 7629 (2004).
Feng, J., Kawata, S. & Okamoto, T. Enhancement of electroluminescence by means of a two-dimensional corrugated steel movie by grating-induced surface-plasmon cross coupling. Choose. Lett. 30, 2302–2304 (2005).
Agrawal, M., Solar, Y., Forrest, S. R. & Peumans, P. Enhanced outcoupling from natural light-emitting diodes utilizing aperiodic dielectric mirrors. Appl. Phys. Lett. 90, 241112 (2007).
Tsutsui, T., Yahiro, M., Yokogawa, H., Kawano, Ok. & Yokoyama, M. Doubling coupling-out effectivity in natural light-emitting gadgets utilizing a skinny silica aerogel layer. Adv. Mater. 13, 1149–1152 (2001).
Gifford, D. Ok. & Corridor, D. G. Emission by means of one in all two steel electrodes of an natural light-emitting diode through surface-plasmon cross coupling. Appl. Phys. Lett. 81, 4315 (2002).
Salehi, A., Chen, Y., Fu, X., Peng, C. & So, F. Manipulating refractive index in natural light-emitting diodes. ACS Appl. Mater. Interf. 10, 9595–9601 (2018).
Lee, Ok. H. et al. Over 40 cd/A environment friendly inexperienced quantum dot electroluminescent system comprising uniquely large-sized quantum dots. ACS Nano 8, 4893–4901 (2014).
Pan, J. et al. Extremely environment friendly perovskite-quantum-dot light-emitting diodes by floor engineering. Adv. Mater. 28, 8718–8725 (2016).
Kim, Y. H. et al. Complete defect suppression in perovskite nanocrystals for high-efficiency light-emitting diodes. Nat. Photon. 15, 148–155 (2021).
Kumar, S. et al. Anisotropic nanocrystal superlattices overcoming intrinsic gentle outcoupling effectivity restrict in perovskite quantum dot light-emitting diodes. Nat. Commun. 13, 2106 (2022).
Chen, W. et al. Extremely vibrant and steady single-crystal perovskite light-emitting diodes. Nat. Photon. 17, 401–407 (2023).
Solar, Y. et al. Shiny and steady perovskite light-emitting diodes within the near-infrared vary. Nature 615, 830–835 (2023).
Ye, Y.-C. et al. Minimizing optical power losses for long-lifetime perovskite light-emitting diodes. Adv. Funct. Mater. 31, 2105813 (2021).