Monday, October 16, 2023
HomeNanotechnologyFerromagnetic single-atom spin catalyst for reinforcing water splitting

Ferromagnetic single-atom spin catalyst for reinforcing water splitting


  • Seh, Z. W. et al. Combining idea and experiment in electrocatalysis: insights into supplies design. Science 355, eaad4998 (2017).

    Article 

    Google Scholar
     

  • Glenk, G. et al. Economics of changing renewable energy to hydrogen. Nat. Power 4, 216–222 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Davis, S. J. et al. Internet-zero emissions power programs. Science 360, eaas9793 (2018).

    Article 

    Google Scholar
     

  • Tong, W. M. et al. Electrolysis of low-grade and saline floor water. Nat. Power 5, 367–377 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Track, F. et al. Transition metallic oxides as electrocatalysts for the oxygen evolution response in alkaline options: an application-inspired renaissance. J. Am. Chem. Soc. 140, 7748–7759 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Solar, T. et al. Design of native atomic environments in single-atom electrocatalysts for renewable power conversions. Adv. Mater. 33, 2003073 (2021).

    Article 

    Google Scholar
     

  • Gracia, J. Spin dependent interactions catalyse the oxygen electrochemistry. Phys. Chem. Chem. Phys. 19, 20451–20456 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Gracia, J. et al. Rules figuring out the exercise of magnetic oxides for electron switch reactions. J. Catal. 361, 331–338 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, Y. Y. et al. Latest advances in magnetic field-enhanced electrocatalysis. ACS Appl. Power Mater. 3, 10303–10316 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Li, X. N. et al. Optimized digital configuration to enhance the floor absorption and bulk conductivity for enhanced oxygen evolution response. J. Am. Chem. Soc. 141, 3121–3128 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Ren, X. et al. Spin-polarized oxygen evolution response underneath magnetic area. Nat. Commun. 12, 2608 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Yan, J. H. et al. Direct magnetic reinforcement of electrocatalytic ORR/OER with electromagnetic induction of magnetic catalysts. Adv. Mater. 33, 2007525 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Wu, T. Z. et al. Spin pinning impact to reconstructed oxyhydroxide layer on ferromagnetic oxides for enhanced water oxidation. Nat. Commun. 12, 3634 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, G. et al. Spin-state reconfiguration induced by alternating magnetic area for environment friendly oxygen evolution response. Nat. Commun. 12, 4827 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Solar, Z. M. et al. Regulating the spin state of FeIII enhances the magnetic impact of the molecular catalysis mechanism. J. Am. Chem. Soc. 144, 8204–8213 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Buchachenko, A. L. et al. Electron spin catalysis. Chem. Rev. 102, 603–612 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Naaman, R. et al. Chiral molecules and the electron spin. Nat. Rev. Chem. 3, 250–260 (2019).

    Article 
    CAS 

    Google Scholar
     

  • McCusker, J. M. Digital construction within the transition metallic block and its implications for gentle harvesting. Science 363, 484–488 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Garcés-Pineda, F. A. et al. Direct magnetic enhancement of electrocatalytic water oxidation in alkaline media. Nat. Power 4, 519–525 (2019).

    Article 

    Google Scholar
     

  • Chen, R. R. et al. SmCo5 with a reconstructed oxyhydroxide floor for spin-selective water oxidation at elevated temperature. Angew. Chem. Int. Ed. 60, 25884–25890 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Hunt, C. et al. Quantification of the impact of an exterior magnetic area on water oxidation with cobalt oxide anodes. J. Am. Chem. Soc. 144, 733–739 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, Z. M. et al. Important change of metallic cations in geometric websites by magnetic-field annealing FeCo2O4 for enhanced oxygen catalytic exercise. Small 18, 210418 (2022).


    Google Scholar
     

  • Zhang, Y. Y. et al. Magnetic area assisted electrocatalytic oxygen evolution response of nickel-based supplies. J. Mater. Chem. A 10, 1760–1767 (2020).

    Article 

    Google Scholar
     

  • Niether, C. et al. Improved water electrolysis utilizing magnetic heating of FeC–Ni core–shell nanoparticles. Nat. Power 3, 476–483 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Duan, H. L. et al. Single-atom-layer catalysis in a MoS2 monolayer activated by long-range ferromagnetism for the hydrogen evolution response: past single-atom catalysis. Angew. Chem. Int. Ed. 60, 7251–7258 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Fu, S. C. et al. Enabling room temperature ferromagnetism in monolayer MoS2 by way of in situ iron-doping. Nat. Commun. 11, 2034 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, J. et al. Engineering water dissociation websites in MoS2 nanosheets for accelerated electrocatalytic hydrogen manufacturing. Power Environ. Sci. 9, 2789–2793 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Deng, J. et al. Multiscale structural and digital management of molybdenum disulfide foam for extremely environment friendly hydrogen manufacturing. Nat. Commun. 8, 14430 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Zheng, Z. et al. Boosting hydrogen evolution on MoS2 by way of co-confining selenium in floor and cobalt in interior layer. Nat. Commun. 11, 3315 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Liu, J. L. et al. In situ tracing of atom migration in Pt/NiPt hole spheres throughout catalysis of CO oxidation. Chem. Commun. 50, 1804–1807 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Hai, X. et al. Scalable two-step annealing technique for getting ready ultra-high-density single-atom catalyst libraries. Nat. Nanotechnol. 17, 174–181 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, H. B. et al. Floor modulation of hierarchical MoS2 nanosheets by Ni single atoms for enhanced electrocatalytic hydrogen evolution. Adv. Funct. Mater. 28, 1807086 (2018).

    Article 

    Google Scholar
     

  • Li, J. F. et al. Strong ferromagnetism in Cr-doped ReS2 nanosheets demonstrated by experiments and density useful idea calculations. Nanotechnology 31, 175702 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, F. et al. Monolayer vanadium-doped tungsten disulfide: a room-temperature dilute magnetic semiconductor. Adv. Sci. 7, 2001174 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Ahmed, S. et al. Excessive coercivity and magnetization in WSe2 by codoping Co and Nb. Small 16, 1903173 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Ahmed, S. et al. Colossal magnetization and large coercivity in ion-implanted (Nb and Co) MoS2 crystals. ACS Appl. Mater. Interfaces 12, 58140–58148 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Zhecheva, E. et al. EPR evaluation of the native construction of Ni3+ ions in Ni-based electrode supplies obtained underneath high-pressure. J. Mater. Sci. 42, 3343–3348 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Wongnate, T. et al. The novel mechanism of organic methane synthesis by methyl-coenzyme M reductase. Science 352, 953–958 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Krellner, C. et al. Relevance of ferromagnetic correlations for the electron spin resonance in Kondo lattice programs. Phys. Rev. Lett. 100, 066401 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Yahya, M. et al. ESR research of transition from ferromagnetism to superparamagnetism in nano-ferromagnet La0.8Sr0.2MnO3. J. Magn. Magn. Mater. 466, 341–350 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Wu, Z. P. et al. Non-noble-metal-based electrocatalysts towards the oxygen evolution response. Adv. Funct. Mater. 30, 1910274 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Y. Y. et al. Latest progress on layered double hydroxides and their derivatives for electrocatalytic water splitting. Adv. Sci. 5, 1800064 (2018).

    Article 

    Google Scholar
     

  • Meng, L. J. et al. Anomalous thickness dependence of Curie temperature in air-stable two-dimensional ferromagnetic 1T-CrTe2 grown by chemical vapor deposition. Nat. Commun. 12, 809 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Shi, S. Y. et al. All-electric magnetization switching and Dzyaloshinskii–Moriya interplay in WTe2/ferromagnet heterostructures. Nat. Nanotechnol. 14, 945–949 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Gambardella, P. et al. Ferromagnetism in one-dimensional monatomic metallic chains. Nature 416, 301–304 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Yu, J. et al. Seawater electrolyte-based metallic–air batteries: from methods to purposes. Power Environ. Sci. 13, 3253–3268 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Q. C. et al. Pyridinic-N-dominated doped faulty graphene as a superior oxygen electrocatalyst for ultrahigh-energy-density Zn–air batteries. ACS Power Lett. 3, 1183–1191 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Chen, R. et al. Layered construction causes bulk NiFe layered double hydroxide unstable in alkaline oxygen evolution response. Adv. Mater. 31, 1903909 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Kresse, G. et al. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    Article 
    CAS 

    Google Scholar
     

  • Kresse, G. et al. From ultrasoft pseudopotentials to the projector augmented-wave technique. Phys. Rev. B 59, 1758–1775 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Blöchl, P. E. Projector augmented-wave technique. Phys. Rev. B 50, 17953–17979 (1994).

    Article 

    Google Scholar
     

  • Perdew, J. P. et al. Generalized gradient approximation made easy. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Dudarev, S. L. et al. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U examine. Phys. Rev. B 57, 1505–1509 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Andriotis, A. N. et al. Tunable magnetic properties of transition metallic doped MoS2. Phys. Rev. B 90, 125304 (2014).

    Article 

    Google Scholar
     

  • Mishra, R. et al. Lengthy-range ferromagnetic ordering in manganese-doped two-dimensiaonal dichalcogenides. Phys. Rev. B 88, 144409 (2013).

    Article 

    Google Scholar
     

  • Tang, W. et al. A grid-based Bader evaluation algorithm with out lattice bias. J. Phys. Condens. Matter 21, 084204 (2009).

    Article 
    CAS 

    Google Scholar
     



  • Supply hyperlink

    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    - Advertisment -
    Google search engine

    Most Popular

    Recent Comments