Seh, Z. W. et al. Combining idea and experiment in electrocatalysis: insights into supplies design. Science 355, eaad4998 (2017).
Glenk, G. et al. Economics of changing renewable energy to hydrogen. Nat. Power 4, 216–222 (2019).
Davis, S. J. et al. Internet-zero emissions power programs. Science 360, eaas9793 (2018).
Tong, W. M. et al. Electrolysis of low-grade and saline floor water. Nat. Power 5, 367–377 (2020).
Track, F. et al. Transition metallic oxides as electrocatalysts for the oxygen evolution response in alkaline options: an application-inspired renaissance. J. Am. Chem. Soc. 140, 7748–7759 (2018).
Solar, T. et al. Design of native atomic environments in single-atom electrocatalysts for renewable power conversions. Adv. Mater. 33, 2003073 (2021).
Gracia, J. Spin dependent interactions catalyse the oxygen electrochemistry. Phys. Chem. Chem. Phys. 19, 20451–20456 (2017).
Gracia, J. et al. Rules figuring out the exercise of magnetic oxides for electron switch reactions. J. Catal. 361, 331–338 (2018).
Zhang, Y. Y. et al. Latest advances in magnetic field-enhanced electrocatalysis. ACS Appl. Power Mater. 3, 10303–10316 (2020).
Li, X. N. et al. Optimized digital configuration to enhance the floor absorption and bulk conductivity for enhanced oxygen evolution response. J. Am. Chem. Soc. 141, 3121–3128 (2019).
Ren, X. et al. Spin-polarized oxygen evolution response underneath magnetic area. Nat. Commun. 12, 2608 (2021).
Yan, J. H. et al. Direct magnetic reinforcement of electrocatalytic ORR/OER with electromagnetic induction of magnetic catalysts. Adv. Mater. 33, 2007525 (2021).
Wu, T. Z. et al. Spin pinning impact to reconstructed oxyhydroxide layer on ferromagnetic oxides for enhanced water oxidation. Nat. Commun. 12, 3634 (2021).
Zhou, G. et al. Spin-state reconfiguration induced by alternating magnetic area for environment friendly oxygen evolution response. Nat. Commun. 12, 4827 (2021).
Solar, Z. M. et al. Regulating the spin state of FeIII enhances the magnetic impact of the molecular catalysis mechanism. J. Am. Chem. Soc. 144, 8204–8213 (2022).
Buchachenko, A. L. et al. Electron spin catalysis. Chem. Rev. 102, 603–612 (2002).
Naaman, R. et al. Chiral molecules and the electron spin. Nat. Rev. Chem. 3, 250–260 (2019).
McCusker, J. M. Digital construction within the transition metallic block and its implications for gentle harvesting. Science 363, 484–488 (2019).
Garcés-Pineda, F. A. et al. Direct magnetic enhancement of electrocatalytic water oxidation in alkaline media. Nat. Power 4, 519–525 (2019).
Chen, R. R. et al. SmCo5 with a reconstructed oxyhydroxide floor for spin-selective water oxidation at elevated temperature. Angew. Chem. Int. Ed. 60, 25884–25890 (2021).
Hunt, C. et al. Quantification of the impact of an exterior magnetic area on water oxidation with cobalt oxide anodes. J. Am. Chem. Soc. 144, 733–739 (2022).
Zhang, Z. M. et al. Important change of metallic cations in geometric websites by magnetic-field annealing FeCo2O4 for enhanced oxygen catalytic exercise. Small 18, 210418 (2022).
Zhang, Y. Y. et al. Magnetic area assisted electrocatalytic oxygen evolution response of nickel-based supplies. J. Mater. Chem. A 10, 1760–1767 (2020).
Niether, C. et al. Improved water electrolysis utilizing magnetic heating of FeC–Ni core–shell nanoparticles. Nat. Power 3, 476–483 (2018).
Duan, H. L. et al. Single-atom-layer catalysis in a MoS2 monolayer activated by long-range ferromagnetism for the hydrogen evolution response: past single-atom catalysis. Angew. Chem. Int. Ed. 60, 7251–7258 (2021).
Fu, S. C. et al. Enabling room temperature ferromagnetism in monolayer MoS2 by way of in situ iron-doping. Nat. Commun. 11, 2034 (2020).
Zhang, J. et al. Engineering water dissociation websites in MoS2 nanosheets for accelerated electrocatalytic hydrogen manufacturing. Power Environ. Sci. 9, 2789–2793 (2016).
Deng, J. et al. Multiscale structural and digital management of molybdenum disulfide foam for extremely environment friendly hydrogen manufacturing. Nat. Commun. 8, 14430 (2017).
Zheng, Z. et al. Boosting hydrogen evolution on MoS2 by way of co-confining selenium in floor and cobalt in interior layer. Nat. Commun. 11, 3315 (2020).
Liu, J. L. et al. In situ tracing of atom migration in Pt/NiPt hole spheres throughout catalysis of CO oxidation. Chem. Commun. 50, 1804–1807 (2014).
Hai, X. et al. Scalable two-step annealing technique for getting ready ultra-high-density single-atom catalyst libraries. Nat. Nanotechnol. 17, 174–181 (2022).
Zhang, H. B. et al. Floor modulation of hierarchical MoS2 nanosheets by Ni single atoms for enhanced electrocatalytic hydrogen evolution. Adv. Funct. Mater. 28, 1807086 (2018).
Li, J. F. et al. Strong ferromagnetism in Cr-doped ReS2 nanosheets demonstrated by experiments and density useful idea calculations. Nanotechnology 31, 175702 (2020).
Zhang, F. et al. Monolayer vanadium-doped tungsten disulfide: a room-temperature dilute magnetic semiconductor. Adv. Sci. 7, 2001174 (2020).
Ahmed, S. et al. Excessive coercivity and magnetization in WSe2 by codoping Co and Nb. Small 16, 1903173 (2020).
Ahmed, S. et al. Colossal magnetization and large coercivity in ion-implanted (Nb and Co) MoS2 crystals. ACS Appl. Mater. Interfaces 12, 58140–58148 (2020).
Zhecheva, E. et al. EPR evaluation of the native construction of Ni3+ ions in Ni-based electrode supplies obtained underneath high-pressure. J. Mater. Sci. 42, 3343–3348 (2007).
Wongnate, T. et al. The novel mechanism of organic methane synthesis by methyl-coenzyme M reductase. Science 352, 953–958 (2016).
Krellner, C. et al. Relevance of ferromagnetic correlations for the electron spin resonance in Kondo lattice programs. Phys. Rev. Lett. 100, 066401 (2008).
Yahya, M. et al. ESR research of transition from ferromagnetism to superparamagnetism in nano-ferromagnet La0.8Sr0.2MnO3. J. Magn. Magn. Mater. 466, 341–350 (2018).
Wu, Z. P. et al. Non-noble-metal-based electrocatalysts towards the oxygen evolution response. Adv. Funct. Mater. 30, 1910274 (2020).
Wang, Y. Y. et al. Latest progress on layered double hydroxides and their derivatives for electrocatalytic water splitting. Adv. Sci. 5, 1800064 (2018).
Meng, L. J. et al. Anomalous thickness dependence of Curie temperature in air-stable two-dimensional ferromagnetic 1T-CrTe2 grown by chemical vapor deposition. Nat. Commun. 12, 809 (2021).
Shi, S. Y. et al. All-electric magnetization switching and Dzyaloshinskii–Moriya interplay in WTe2/ferromagnet heterostructures. Nat. Nanotechnol. 14, 945–949 (2019).
Gambardella, P. et al. Ferromagnetism in one-dimensional monatomic metallic chains. Nature 416, 301–304 (2002).
Yu, J. et al. Seawater electrolyte-based metallic–air batteries: from methods to purposes. Power Environ. Sci. 13, 3253–3268 (2020).
Wang, Q. C. et al. Pyridinic-N-dominated doped faulty graphene as a superior oxygen electrocatalyst for ultrahigh-energy-density Zn–air batteries. ACS Power Lett. 3, 1183–1191 (2018).
Chen, R. et al. Layered construction causes bulk NiFe layered double hydroxide unstable in alkaline oxygen evolution response. Adv. Mater. 31, 1903909 (2019).
Kresse, G. et al. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).
Kresse, G. et al. From ultrasoft pseudopotentials to the projector augmented-wave technique. Phys. Rev. B 59, 1758–1775 (1999).
Blöchl, P. E. Projector augmented-wave technique. Phys. Rev. B 50, 17953–17979 (1994).
Perdew, J. P. et al. Generalized gradient approximation made easy. Phys. Rev. Lett. 77, 3865–3868 (1996).
Dudarev, S. L. et al. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U examine. Phys. Rev. B 57, 1505–1509 (1998).
Andriotis, A. N. et al. Tunable magnetic properties of transition metallic doped MoS2. Phys. Rev. B 90, 125304 (2014).
Mishra, R. et al. Lengthy-range ferromagnetic ordering in manganese-doped two-dimensiaonal dichalcogenides. Phys. Rev. B 88, 144409 (2013).
Tang, W. et al. A grid-based Bader evaluation algorithm with out lattice bias. J. Phys. Condens. Matter 21, 084204 (2009).