Troeger C, Forouzanfar M, Rao PC, Khalil I, Brown A, Reiner RC Jr, Fullman N, Thompson RL, Abajobir A, Ahmed M. Estimates of world, regional, and nationwide morbidity, mortality, and aetiologies of diarrhoeal ailments: a scientific evaluation for the International Burden of Illness Research 2015. Lancet Infect Dis. 2017;17:909–48.
Kotloff KL, Riddle MS, Platts-Mills JA, Pavlinac P, Zaidi AK. Shigellosis. The Lancet. 2018;391:801–12.
Niyogi SK. Shigellosis. J Microbiol. 2005;43:133–43.
Khalil IA, Troeger C, Blacker BF, Rao PC, Brown A, Atherly DE, Brewer TG, Engmann CM, Houpt ER, Kang G. Morbidity and mortality as a result of Shigella and enterotoxigenic Escherichia coli diarrhoea: the worldwide burden of illness research 1990–2016. Lancet Infect Dis. 2018;18:1229–40.
O’Ryan M, Prado V, Pickering LK. A millennium replace on pediatric diarrheal sickness within the growing world. Semin Pediatr Infect Dis. 2005. https://doi.org/10.1053/j.spid.2005.12.008.
Nguyen TV, Van Le P, Le CH, Weintraub A. Antibiotic resistance in diarrheagenic Escherichia coli and Shigella strains remoted from youngsters in Hanoi, Vietnam. Antimicrob Brokers Chemother. 2005;49:816–9.
Puzari M, Sharma M, Chetia P. Emergence of antibiotic resistant Shigella species: a matter of concern. J Infect Public Well being. 2018;11:451–4.
Wharton M, Spiegel RA, Horan JM, Tauxe RV, Wells JG, Barg N, Herndon J, Meriwether RA, MacCormack JN, Levine R. A big outbreak of antibiotic-resistant shigellosis at a mass gathering. J Infect Dis. 1990;162:1324–8.
Murray Ok, Reddy V, Kornblum JS, Waechter H, Chicaiza LF, Rubinstein I, Balter S, Greene SK, Braunstein SL, Rakeman JL. Rising antibiotic resistance in Shigella spp. from contaminated New York Metropolis residents, New York, USA. Emer Infect Dis. 2017;23:332.
Ranjbar R, Soltan-Dallal MM, Pourshafie MR, Mammina C. Antibiotic resistance amongst Shigella serogroups remoted in Tehran, Iran (2002–2004). J Infect Dev Ctries. 2009;3:647–8.
Bhattacharya D, Bhattacharya H, Sayi D, Bharadwaj A, Singhania M, Sugunan A, Roy S. Altering patterns and widening of antibiotic resistance in Shigella spp. over a decade (2000–2011), Andaman Islands, India. Epidemiol Infect. 2015;143:470–7.
Pazhani GP, Niyogi SK, Singh AK, Sen B, Taneja N, Kundu M, Yamasaki S, Ramamurthy T. Molecular characterization of multidrug-resistant Shigella species remoted from epidemic and endemic circumstances of shigellosis in India. J Med Microbiol. 2008;57:856–63.
Mani S, Wierzba T, Walker RI. Standing of vaccine analysis and improvement for Shigella. Vaccine. 2016;34:2887–94.
Camacho AI, Irache JM, Gamazo C. Current progress in direction of improvement of a Shigella vaccine. Professional Rev Vaccines. 2013;12:43–55.
Levine MM, Kotloff KL, Barry EM, Pasetti MF, Sztein MB. Scientific trials of Shigella vaccines: two steps ahead and one step again on an extended, arduous highway. Nat Rev Microbiol. 2007;5:540–53.
Pazhani GP, Sarkar B, Ramamurthy T, Bhattacharya S, Takeda Y, Niyogi S. Clonal multidrug-resistant Shigella dysenteriae kind 1 strains related to epidemic and sporadic dysenteries in jap India. Antimicrob Brokers Chemother. 2004;48:681–4.
El-Gendy A, Mansour A, Weiner M, Pimentel G, Armstrong A, Younger S, Elsayed N, Klena J. Genetic variety and antibiotic resistance in Shigella dysenteriae and Shigella boydii strains remoted from youngsters aged < 5 years in Egypt. Epidemiol Infect. 2012;140:299–310.
Baker KS, Dallman TJ, Subject N, Childs T, Mitchell H, Day M, Weill F-X, Lefèvre S, Tourdjman M, Hughes G. Horizontal antimicrobial resistance switch drives epidemics of a number of Shigella species. Nat Commun. 2018;9:1–10.
Njamkepo E, Fawal N, Tran-Dien A, Hawkey J, Strockbine N, Jenkins C, Talukder KA, Bercion R, Kuleshov Ok, Kolínská R. International phylogeography and evolutionary historical past of Shigella dysenteriae kind 1. Nat Microbiol. 2016;1:1–10.
Barry EM, Pasetti MF, Sztein MB, Fasano A, Kotloff KL, Levine MM. Progress and pitfalls in Shigella vaccine analysis. Nat Rev Gastroenterol Hepatol. 2013;10:245.
Pasetti MF, Venkatesan MM, Barry EM. Chapter 30—oral Shigella vaccines. In: Kiyono H, Pascual DW editors. Mucosal vaccines. 2nd ed. Tutorial Press; 2020. p. 515–36.
Schroeder GN, Hilbi H. Molecular pathogenesis of Shigella spp.: controlling host cell signaling, invasion, and demise by kind III secretion. Clin Microbiol Rev. 2008;21:134–56.
Martinez-Becerra FJ, Kissmann JM, Diaz-McNair J, Choudhari SP, Fast AM, Mellado-Sanchez G, Clements JD, Pasetti MF, Choosing WL. Broadly protecting Shigella vaccine based mostly on kind III secretion equipment proteins. Infect Immun. 2012;80:1222–31.
Chitradevi STS, Kaur G, Sivaramakrishna U, Singh D, Bansal A. Improvement of recombinant vaccine candidate molecule towards Shigella an infection. Vaccine. 2016;34:5376–83.
Heine SJ, Franco-Mahecha OL, Chen X, Choudhari S, Blackwelder WC, Van Roosmalen ML, Leenhouts Ok, Choosing WL, Pasetti MF. Shigella IpaB and IpaD displayed on L. lactis bacterium-like particles induce protecting immunity in grownup and toddler mice. Immunol Cell Biol. 2015;93:641–52.
Baruah N, Ahamad N, Maiti S, Howlader DR, Bhaumik U, Patil VV, Chakrabarti MK, Koley H, Katti DS. Improvement of a self-adjuvanting, cross-protective, steady intranasal recombinant vaccine for shigellosis. ACS Infect Dis. 2021. https://doi.org/10.1021/acsinfecdis.1c00345.
Turbyfill KR, Clarkson KA, Vortherms AR, Oaks EV, Kaminski RW. Meeting, biochemical characterization, immunogenicity, adjuvanticity, and efficacy of Shigella synthetic invaplex. Msphere. 2018. https://doi.org/10.1128/mSphere.00583-17.
Bernard AR, Duarte SM, Kumar P, Dickenson NE. Detergent isolation stabilizes and prompts the Shigella kind III secretion system translocator protein IpaC. J Pharm Sci. 2016;105:2240–8.
Scheiblhofer S, Laimer J, Machado Y, Weiss R, Thalhamer J. Affect of protein fold stability on immunogenicity and its implications for vaccine design. Professional Rev Vaccines. 2017;16:479–89.
Rice-Ficht AC, Arenas-Gamboa AM, Kahl-McDonagh MM, Ficht TA. Polymeric particles in vaccine supply. Curr Opin Microbiol. 2010;13:106–12.
Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based mostly drug supply programs. Colloids Surf, B. 2010;75:1–18.
Singh A. Eliciting B cell immunity towards infectious ailments utilizing nanovaccines. Nat Nanotechnol. 2021;16:16–24.
Akagi T, Baba M, Akashi M. Biodegradable nanoparticles as vaccine adjuvants and supply programs: regulation of immune responses by nanoparticle-based vaccine. In: Kunugi S, Yamaoka T, editors. Polymers in nanomedicine. Berlin: Springer; 2011. p. 31–64.
Pati R, Shevtsov M, Sonawane A. Nanoparticle vaccines towards infectious ailments. Entrance Immunol. 2018;9:2224.
Tosyali OA, Allahverdiyev A, Bagirova M, Abamor ES, Aydogdu M, Dinparvar S, Acar T, Mustafaeva Z, Derman S. Nano-co-delivery of lipophosphoglycan with soluble and autoclaved leishmania antigens into PLGA nanoparticles: analysis of in vitro and in vivo immunostimulatory results towards visceral leishmaniasis. Mater Sci Eng, C. 2021;120: 111684.
Sahdev P, Ochyl LJ, Moon JJ. Biomaterials for nanoparticle vaccine supply programs. Pharm Res. 2014;31:2563–82.
Park Ok, Skidmore S, Hadar J, Garner J, Park H, Otte A, Soh BK, Yoon G, Yu D, Yun Y. Injectable, long-acting PLGA formulations: analyzing PLGA and understanding microparticle formation. J Management Launch. 2019;304:125–34.
Silva A, Soema P, Slütter B, Ossendorp F, Jiskoot W. PLGA particulate supply programs for subunit vaccines: linking particle properties to immunogenicity. Hum Vaccin Immunother. 2016;12:1056–69.
Shah RB, Schwendeman SP. A biomimetic strategy to lively self-microencapsulation of proteins in PLGA. J Management Launch. 2014;196:60–70.
Siefert AL, Caplan MJ, Fahmy TM. Synthetic bacterial biomimetic nanoparticles synergize pathogen-associated molecular patterns for vaccine efficacy. Biomaterials. 2016;97:85–96.
Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Préat V. PLGA-based nanoparticles: an summary of biomedical purposes. J Management Launch. 2012;161:505–22.
Makadia HK, Siegel SJ. Poly lactic-co-glycolic acid (PLGA) as biodegradable managed drug supply service. Polymers. 2011;3:1377–97.
Rajapaksa TE, Stover-Hamer M, Fernandez X, Eckelhoefer HA, Lo DD. Claudin 4-targeted protein included into PLGA nanoparticles can mediate M cell focused supply. J Management Launch. 2010;142:196–205.
O’Hagan D, Jeffery H, Roberts M, McGee J, Davis S. Managed launch microparticles for vaccine improvement. Vaccine. 1991;9:768–71.
Gilavand F, Marzban A, Ebrahimipour G, Soleimani N, Goudarzi M. Designation of chitosan nano-vaccine based mostly on MxiH antigen of Shigella flexneri with elevated immunization capability. Carbohyd Polym. 2020;232: 115813.
Camacho AI, Irache JM, de Souza J, Sánchez-Gómez S, Gamazo C. Nanoparticle-based vaccine for mucosal safety towards Shigella flexneri in mice. Vaccine. 2013;31:3288–94.
Akbari MR, Saadati M, Honari H, Ghorbani HM. IpaD-loaded N-trimethyl chitosan nanoparticles can effectively defend guinea pigs towards Shigella flexneri. Iran J Immunol. 2019;16:212–24.
Baruah N, Halder P, Koley H, Katti DS. Steady recombinant Invasion plasmid antigen C (IpaC)-based single dose nanovaccine for shigellosis. Mol Pharm. 2022;19:3884–93.
Joshi VB, Geary SM, Salem AK. Biodegradable particles as vaccine supply programs: measurement issues. AAPS J. 2013;15:85–94.
Liu Q, Jia J, Yang T, Fan Q, Wang L, Ma G. Pathogen-mimicking polymeric nanoparticles based mostly on dopamine polymerization as vaccines adjuvants induce strong humoral and mobile immune responses. Small. 2016;12:1744–57.
Kasturi SP, Sachaphibulkij Ok, Roy Ok. Covalent conjugation of polyethyleneimine on biodegradable microparticles for supply of plasmid DNA vaccines. Biomaterials. 2005;26:6375–85.
Demento SL, Bonafé N, Cui W, Kaech SM, Caplan MJ, Fikrig E, Ledizet M, Fahmy TM. TLR9-targeted biodegradable nanoparticles as immunization vectors defend towards West Nile encephalitis. J Immunol. 2010;185:2989–97.
Molino NM, Anderson AK, Nelson EL, Wang S-W. Biomimetic protein nanoparticles facilitate enhanced dendritic cell activation and cross-presentation. ACS Nano. 2013;7:9743–52.
Liu X, Zhao Y, Liu P, Wang L, Lin J, Fan C. Biomimetic DNA nanotubes: nanoscale channel design and purposes. Angew Chem Int Ed. 2019;58:8996–9011.
De Geest BG, Willart MA, Lambrecht BN, Pollard C, Vervaet C, Remon JP, Grooten J, De Koker S. Floor-engineered polyelectrolyte multilayer capsules: artificial vaccines mimicking microbial construction and performance. Angew Chem Int Ed. 2012;51:3862–6.
Bode C, Zhao G, Steinhagen F, Kinjo T, Klinman DM. CpG DNA as a vaccine adjuvant. Professional Rev Vaccines. 2011;10:499–511.
Klinman DM, Klaschik S, Sato T, Tross D. CpG oligonucleotides as adjuvants for vaccines focusing on infectious ailments. Adv Drug Deliv Rev. 2009;61:248–55.
De Titta A, Ballester M, Julier Z, Nembrini C, Jeanbart L, Van Der Vlies AJ, Swartz MA, Hubbell JA. Nanoparticle conjugation of CpG enhances adjuvancy for mobile immunity and reminiscence recall at low dose. Proc Natl Acad Sci USA. 2013;110:19902–7.
Khalifehzadeh R, Arami H. The CpG molecular construction controls the mineralization of calcium phosphate nanoparticles and their immunostimulation efficacy as vaccine adjuvants. Nanoscale. 2020;12:9603–15.
Singh M, Chakrapani A, O’Hagan D. Nanoparticles and microparticles as vaccine-delivery programs. Professional Rev Vaccines. 2007;6:797–808.
Mounier J, Popoff MR, Enninga J, Body MC, Sansonetti PJ, Van Nhieu GT. The IpaC carboxyterminal effector area mediates Src-dependent actin polymerization throughout Shigella invasion of epithelial cells. PLoS Pathogen. 2009;5: e1000271.
Van Nhieu GT, Caron E, Corridor A, Sansonetti PJ. IpaC induces actin polymerization and filopodia formation throughout Shigella entry into epithelial cells. EMBO J. 1999;18:3249–62.
Ménard R, Prévost M-C, Gounon P, Sansonetti P, Dehio C. The secreted Ipa complicated of Shigella flexneri promotes entry into mammalian cells. Proc Natl Acad Sci USA. 1996;93:1254–8.
Skwarczynski M, Toth I. Non-invasive mucosal vaccine supply: benefits, challenges and the longer term. Professional Opin Drug Deliv. 2020;17:435–7.
Davis S. Nasal vaccines. Adv Drug Deliv Rev. 2001;51:21–42.
Djupesland PG. Nasal drug supply gadgets: traits and efficiency in a medical perspective—a evaluate. Drug Deliv Transl Res. 2013;3:42–62.
Türker S, Onur E, Ózer Y. Nasal route and drug supply programs. Pharm World Sci. 2004;26:137–42.
Köping-Höggård M, Sánchez A, Alonso MJ. Nanoparticles as carriers for nasal vaccine supply. Professional Rev Vaccines. 2005;4:185–96.
Wu H-Y, Russell MW. Nasal lymphoid tissue, intranasal immunization, and compartmentalization of the widespread mucosal immune system. Immunol Res. 1997;16:187–201.
Ahamad N, Katti DS. A two-step methodology for extraction of lipopolysaccharide from Shigella dysenteriae serotype 1 and Salmonella typhimurium: an improved methodology for enhanced yield and purity. J Microbiol Strategies. 2016;127:41–50.
Chitradevi STS, Kaur G, Uppalapati S, Yadav A, Singh D, Bansal A. Co-administration of rIpaB area of Shigella with rGroEL of S. Typhi enhances the immune responses and protecting efficacy towards Shigella an infection. Cell Mol Immunol. 2015;12:757–67.
Zambaux M, Bonneaux F, Gref R, Maincent P, Dellacherie E, Alonso M, Labrude P, Vigneron C. Affect of experimental parameters on the traits of poly (lactic acid) nanoparticles ready by a double emulsion methodology. J Management Launch. 1998;50:31–40.
Tune C, Labhasetwar V, Murphy H, Qu X, Humphrey W, Shebuski R, Levy R. Formulation and characterization of biodegradable nanoparticles for intravascular native drug supply. J Management Launch. 1997;43:197–212.
Jeffery H, Davis SS, O’Hagan DT. The preparation and characterization of poly (lactide-co-glycolide) microparticles. II. The entrapment of a mannequin protein utilizing a (water-in-oil)-in-water emulsion solvent evaporation method. Pharm Res. 1993;10:362–8.
Schneider CA, Rasband WS, Eliceiri KW. NIH Picture to ImageJ: 25 years of picture evaluation. Nat Strategies. 2012;9:671–5.
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B. Fiji: an open-source platform for biological-image evaluation. Nat Strategies. 2012;9:676–82.
Maeda Ok, Mehta H, Drevets DA, Coggeshall KM. IL-6 will increase B-cell IgG manufacturing in a feed-forward proinflammatory mechanism to skew hematopoiesis and elevate myeloid manufacturing. Blood. 2010;115:4699–706.
Samandari T, Kotloff KL, Losonsky GA, Choosing WD, Sansonetti PJ, Levine MM, Sztein MB. Manufacturing of IFN-γ and IL-10 to Shigella invasins by mononuclear cells from volunteers orally inoculated with a shiga toxin-deleted Shigella dysenteriae kind 1 pressure. J Immunol. 2000;164:2221–32.
Martinez-Becerra FJ, Chen X, Dickenson NE, Choudhari SP, Harrison Ok, Clements JD, Choosing WD, Van De Verg LL, Walker RI, Choosing WL. Characterization of a novel fusion protein from IpaB and IpaD of Shigella spp. and its potential as a pan-Shigella vaccine. Infect Immun. 2013;81:4470–7.
Yang J-Y, Lee S-N, Chang S-Y, Ko H-J, Ryu S, Kweon M-N. A mouse mannequin of shigellosis by intraperitoneal an infection. J Infect Dis. 2013;209:203–15.
Barel L-A, Mulard LA. Classical and novel methods to develop a Shigella glycoconjugate vaccine: from idea to efficacy in human. Hum Vaccin Immunother. 2019;15:1338–56.
Mancini F, Micoli F, Necchi F, Pizza M, Berlanda Scorza F, Rossi O. GMMA-based vaccines: the identified and the unknown. Entrance Immun. 2021. https://doi.org/10.3389/fimmu.2021.715393.
Camacho A, De Souza J, Sánchez-Gómez S, Pardo-Ros M, Irache JM, Gamazo C. Mucosal immunization with Shigella flexneri outer membrane vesicles induced safety in mice. Vaccine. 2011;29:8222–9.
Mitra S, Barman S, Nag D, Sinha R, Saha DR, Koley H. Outer membrane vesicles of Shigella boydii kind 4 induce passive immunity in neonatal mice. FEMS Immunol Med Microbiol. 2012;66:240–50.
Mitra S, Chakrabarti MK, Koley H. Multi-serotype outer membrane vesicles of Shigellae confer passive safety to the neonatal mice towards shigellosis. Vaccine. 2013;31:3163–73.