Friday, June 30, 2023
HomeNanotechnologyExtremely secure and pure single-photon emission with 250 ps optical coherence occasions in...

Extremely secure and pure single-photon emission with 250 ps optical coherence occasions in InP colloidal quantum dots


  • Lu, X. et al. Chip-integrated seen–telecom entangled photon pair supply for quantum communication. Nat. Phys. 15, 373–381 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Guo, X. et al. Distributed quantum sensing in a continuous-variable entangled community. Nat. Phys. 16, 281–284 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Knill, E., Laflamme, R. & Milburn, G. J. A scheme for environment friendly quantum computation with linear optics. Nature 409, 46–52 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Madsen, L. S. et al. Quantum computational benefit with a programmable photonic processor. Nature 606, 75–81 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Aharonovich, I., Englund, D. & Toth, M. Stable-state single-photon emitters. Nat. Photonics 10, 631–641 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Dietrich, A. et al. Remark of Fourier rework restricted traces in hexagonal boron nitride. Phys. Rev. B 98, 081414 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Spokoyny, B. et al. Impact of spectral diffusion on the coherence properties of a single quantum emitter in hexagonal boron nitride. J. Phys. Chem. Lett. 11, 1330–1335 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Aharonovich, I. & Neu, E. Diamond nanophotonics. Adv. Decide. Mater. 2, 911–928 (2014).

    Article 
    CAS 

    Google Scholar
     

  • He, Y.-M. et al. Single quantum emitters in monolayer semiconductors. Nat. Nanotechnol. 10, 497–502 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Claudon, J. et al. A extremely environment friendly single-photon supply based mostly on a quantum dot in a photonic nanowire. Nat. Photonics 4, 174–177 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Nilsson, J. et al. Quantum teleportation utilizing a light-emitting diode. Nat. Photonics 7, 311–315 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Salter, C. L. et al. An entangled-light-emitting diode. Nature 465, 594–597 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Kuhlmann, A. V. et al. Cost noise and spin noise in a semiconductor quantum gadget. Nat. Phys. 9, 570–575 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Utzat, H. et al. Coherent single-photon emission from colloidal lead halide perovskite quantum dots. Science 363, 1068–1072 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Somaschi, N. et al. Close to-optimal single-photon sources within the stable state. Nat. Photonics 10, 340–345 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Müller, M., Bounouar, S., Jöns, Ok. D., Glässl, M. & Michler, P. On-demand era of indistinguishable polarization-entangled photon pairs. Nat. Photonics 8, 224–228 (2014).

    Article 

    Google Scholar
     

  • Dousse, A. et al. Managed gentle–matter coupling for a single quantum dot embedded in a pillar microcavity utilizing far-field optical lithography. Phys. Rev. Lett. 101, 267404 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Efros, A. L. et al. Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: darkish and brilliant exciton states. Phys. Rev. B 54, 4843–4856 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Sercel, P. C. & Efros, A. L. Band-edge exciton in CdSe and different II–VI and III–V compound semiconductor nanocrystals – revisited. Nano Lett. 18, 4061–4068 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Nirmal, M. et al. Remark of the ‘darkish exciton’ in CdSe quantum dots. Phys. Rev. Lett. 75, 3728–3731 (1995).

    Article 
    CAS 

    Google Scholar
     

  • Empedocles, S. A. & Bawendi, M. G. Affect of spectral diffusion on the road shapes of single CdSe nanocrystallite quantum dots. J. Phys. Chem. B 103, 1826–1830 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Empedocles, S. A. & Bawendi, M. G. Quantum-confined Stark impact in single CdSe nanocrystallite quantum dots. Science 278, 2114–2117 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Fernée, M. J. et al. Spontaneous spectral diffusion in CdSe quantum dots. J. Phys. Chem. Lett. 3, 1716–1720 (2012).

    Article 

    Google Scholar
     

  • Thoma, A. et al. Exploring dephasing of a solid-state quantum emitter by way of time- and temperature-dependent Hong–Ou–Mandel experiments. Phys. Rev. Lett. 116, 033601 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Becker, M. A. et al. Shiny triplet excitons in caesium lead halide perovskites. Nature 553, 189–193 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Kaplan, A. E. Ok. et al. Hong–Ou–Mandel interference in colloidal CsPbBr3 perovskite nanocrystals. Nat. Photonics https://doi.org/10.1038/s41566-023-01225-w (2023).

  • Gained, Y.-H. et al. Extremely environment friendly and secure InP/ZnSe/ZnS quantum dot light-emitting diodes. Nature 575, 634–638 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Kelley, A. M. et al. Id of the reversible gap traps in InP/ZnSe core/shell quantum dots. J. Chem. Phys. 157, 174701 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Lange, H. & Kelley, D. F. Spectroscopic results of lattice pressure in InP/ZnSe and InP/ZnS nanocrystals. J. Phys. Chem. C 124, 22839–22844 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Jang, E., Kim, Y., Gained, Y.-H., Jang, H. & Choi, S.-M. Environmentally pleasant InP-based quantum dots for environment friendly extensive coloration gamut shows. ACS Power Lett. 5, 1316–1327 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Kim, T., Gained, Y.-H., Jang, E. & Kim, D. Adverse trion Auger recombination in extremely luminescent InP/ZnSe/ZnS quantum dots. Nano Lett. 21, 2111–2116 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Hinuma, Y., Grüneis, A., Kresse, G. & Oba, F. Band alignment of semiconductors from density-functional concept and many-body perturbation concept. Phys. Rev. B 90, 155405 (2014).

    Article 

    Google Scholar
     

  • Berkinsky, D. B. et al. Slender intrinsic line widths and electron–phonon coupling of InP colloidal quantum dots. ACS Nano https://doi.org/10.1021/acsnano.2c10237 (2023).

  • Brodu, A. et al. Exciton nice construction and lattice dynamics in InP/ZnSe core/shell quantum dots. ACS Photonics 5, 3353–3362 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Labeau, O., Tamarat, P. & Lounis, B. Temperature dependence of the luminescence lifetime of single CdSe/ZnS quantum dots. Phys. Rev. Lett. 90, 257404 (2003).

    Article 

    Google Scholar
     

  • Marshall, L. F. Spectral Dynamics of Single Quantum Dots: A Research utilizing Photon-Correlation Fourier Spectroscopy for Submillisecond Time Decision at Low Temperature and in Resolution. PhD thesis, Massachusetts Institute of Know-how (2011).

  • Brokmann, X., Bawendi, M., Coolen, L. & Hermier, J.-P. Photon-correlation Fourier spectroscopy. Decide. Categorical 14, 6333–6341 (2006).

    Article 

    Google Scholar
     

  • Beyler, A. P., Marshall, L. F., Cui, J., Brokmann, X. & Bawendi, M. G. Direct commentary of fast discrete spectral dynamics in single colloidal CdSe–CdS core–shell quantum dots. Phys. Rev. Lett. 111, 177401 (2013).

    Article 

    Google Scholar
     

  • Muller, A., Fang, W., Lawall, J. & Solomon, G. S. Creating polarization-entangled photon pairs from a semiconductor quantum dot utilizing the optical Stark impact. Phys. Rev. Lett. 103, 217402 (2009).

    Article 

    Google Scholar
     

  • Muller, A., Fang, W., Lawall, J. & Solomon, G. S. Emission spectrum of a dressed exciton–biexciton complicated in a semiconductor quantum dot. Phys. Rev. Lett. 101, 027401 (2008).

    Article 

    Google Scholar
     

  • Laferriѐre, P. et al. Unity yield of deterministically positioned quantum dot single photon sources. Sci. Rep. 12, 6376 (2022).

    Article 

    Google Scholar
     

  • Haffouz, S. et al. Shiny single InAsP quantum dots at telecom wavelengths in position-controlled InP nanowires: the position of the photonic waveguide. Nano Lett. 18, 3047–3052 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Solar, W. et al. Elastic phonon scattering dominates dephasing in weakly confined cesium lead bromide nanocrystals at cryogenic temperatures. Nano Lett. 23, 2615–2622 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Coolen, L., Brokmann, X., Spinicelli, P. & Hermier, J.-P. Emission characterization of a single CdSe–ZnS nanocrystal with excessive temporal and spectral decision by photon-correlation Fourier spectroscopy. Phys. Rev. Lett. 100, 027403 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Luo, Y. & Wang, L.-W. Digital buildings of the CdSe/CdS core–shell nanorods. ACS Nano 4, 91–98 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Nasilowski, M., Spinicelli, P., Patriarche, G. & Dubertret, B. Gradient CdSe/CdS quantum dots with room temperature biexciton unity quantum yield. Nano Lett. 15, 3953–3958 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Wang, X., Yu, J. & Chen, R. Optical traits of ZnS passivated CdSe/CdS quantum dots for prime photostability and lasing. Sci. Rep. 8, 17323 (2018).

    Article 

    Google Scholar
     

  • Protesescu, L. et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic supplies exhibiting brilliant emission with extensive coloration gamut. Nano Lett. 15, 3692–3696 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Mangum, B. D., Ghosh, Y., Hollingsworth, J. A. & Htoon, H. Disentangling the consequences of clustering and multi-exciton emission in second-order photon correlation experiments. Decide. Categorical 21, 7419–7426 (2013).

    Article 

    Google Scholar
     

  • Proppe, A. H. et al. Adversarial autoencoder ensemble for quick and probabilistic reconstructions of few-shot photon correlation capabilities for solid-state quantum emitters. Phys. Rev. B 106, 045425 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Chen, B., Li, D. & Wang, F. InP quantum dots: synthesis and lighting purposes. Small 16, 2002454 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Quintero-Bermudez, R., Sabatini, R. P., Lejay, M., Voznyy, O. & Sargent, E. H. Small-band-offset perovskite shells improve Auger lifetime in quantum dot solids. ACS Nano 11, 12378–12384 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Chandrasekaran, V. et al. Practically blinking-free, high-purity single-photon emission by colloidal InP/ZnSe quantum dots. Nano Lett. 17, 6104–6109 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Nair, G., Zhao, J. & Bawendi, M. G. Biexciton quantum yield of single semiconductor nanocrystals from photon statistics. Nano Lett. 11, 1136–1140 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Hoang, T. B., Akselrod, G. M. & Mikkelsen, M. H. Ultrafast room-temperature single photon emission from quantum dots coupled to plasmonic nanocavities. Nano Lett. 16, 270–275 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Fan, F. et al. Steady-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy. Nature 544, 75–79 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Park, Y.-S., Lim, J. & Klimov, V. I. Asymmetrically strained quantum dots with non-fluctuating single-dot emission spectra and subthermal room-temperature linewidths. Nat. Mater. 18, 249–255 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Fedin, I. et al. Enhanced emission from brilliant excitons in asymmetrically strained colloidal CdSe/CdxZn1−xSe quantum dots. ACS Nano 15, 14444–14452 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Valencia, D. et al. Unravelling the chemical reactions of fatty acids and triacylglycerides beneath hydrodeoxygenation circumstances based mostly on a complete thermodynamic evaluation. Biomass Bioenergy 112, 37–44 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Cortes, C. L., Adhikari, S., Ma, X. & Grey, S. Ok. Accelerating quantum optics experiments with statistical studying. Appl. Phys. Lett. 116, 184003 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Chen, O. et al. Compact high-quality CdSe–CdS core–shell nanocrystals with slim emission linewidths and suppressed blinking. Nat. Mater. 12, 445–451 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Yuan, Y. et al. Cu-catalyzed synthesis of CdZnSe–CdZnS alloy quantum dots with extremely tunable emission. Chem. Mater. 31, 2635–2643 (2019).

    Article 
    CAS 

    Google Scholar
     



  • Supply hyperlink

    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    - Advertisment -
    Google search engine

    Most Popular

    Recent Comments