Lu, X. et al. Chip-integrated seen–telecom entangled photon pair supply for quantum communication. Nat. Phys. 15, 373–381 (2019).
Guo, X. et al. Distributed quantum sensing in a continuous-variable entangled community. Nat. Phys. 16, 281–284 (2020).
Knill, E., Laflamme, R. & Milburn, G. J. A scheme for environment friendly quantum computation with linear optics. Nature 409, 46–52 (2001).
Madsen, L. S. et al. Quantum computational benefit with a programmable photonic processor. Nature 606, 75–81 (2022).
Aharonovich, I., Englund, D. & Toth, M. Stable-state single-photon emitters. Nat. Photonics 10, 631–641 (2016).
Dietrich, A. et al. Remark of Fourier rework restricted traces in hexagonal boron nitride. Phys. Rev. B 98, 081414 (2018).
Spokoyny, B. et al. Impact of spectral diffusion on the coherence properties of a single quantum emitter in hexagonal boron nitride. J. Phys. Chem. Lett. 11, 1330–1335 (2020).
Aharonovich, I. & Neu, E. Diamond nanophotonics. Adv. Decide. Mater. 2, 911–928 (2014).
He, Y.-M. et al. Single quantum emitters in monolayer semiconductors. Nat. Nanotechnol. 10, 497–502 (2015).
Claudon, J. et al. A extremely environment friendly single-photon supply based mostly on a quantum dot in a photonic nanowire. Nat. Photonics 4, 174–177 (2010).
Nilsson, J. et al. Quantum teleportation utilizing a light-emitting diode. Nat. Photonics 7, 311–315 (2013).
Salter, C. L. et al. An entangled-light-emitting diode. Nature 465, 594–597 (2010).
Kuhlmann, A. V. et al. Cost noise and spin noise in a semiconductor quantum gadget. Nat. Phys. 9, 570–575 (2013).
Utzat, H. et al. Coherent single-photon emission from colloidal lead halide perovskite quantum dots. Science 363, 1068–1072 (2019).
Somaschi, N. et al. Close to-optimal single-photon sources within the stable state. Nat. Photonics 10, 340–345 (2016).
Müller, M., Bounouar, S., Jöns, Ok. D., Glässl, M. & Michler, P. On-demand era of indistinguishable polarization-entangled photon pairs. Nat. Photonics 8, 224–228 (2014).
Dousse, A. et al. Managed gentle–matter coupling for a single quantum dot embedded in a pillar microcavity utilizing far-field optical lithography. Phys. Rev. Lett. 101, 267404 (2008).
Efros, A. L. et al. Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: darkish and brilliant exciton states. Phys. Rev. B 54, 4843–4856 (1996).
Sercel, P. C. & Efros, A. L. Band-edge exciton in CdSe and different II–VI and III–V compound semiconductor nanocrystals – revisited. Nano Lett. 18, 4061–4068 (2018).
Nirmal, M. et al. Remark of the ‘darkish exciton’ in CdSe quantum dots. Phys. Rev. Lett. 75, 3728–3731 (1995).
Empedocles, S. A. & Bawendi, M. G. Affect of spectral diffusion on the road shapes of single CdSe nanocrystallite quantum dots. J. Phys. Chem. B 103, 1826–1830 (1999).
Empedocles, S. A. & Bawendi, M. G. Quantum-confined Stark impact in single CdSe nanocrystallite quantum dots. Science 278, 2114–2117 (1997).
Fernée, M. J. et al. Spontaneous spectral diffusion in CdSe quantum dots. J. Phys. Chem. Lett. 3, 1716–1720 (2012).
Thoma, A. et al. Exploring dephasing of a solid-state quantum emitter by way of time- and temperature-dependent Hong–Ou–Mandel experiments. Phys. Rev. Lett. 116, 033601 (2016).
Becker, M. A. et al. Shiny triplet excitons in caesium lead halide perovskites. Nature 553, 189–193 (2018).
Kaplan, A. E. Ok. et al. Hong–Ou–Mandel interference in colloidal CsPbBr3 perovskite nanocrystals. Nat. Photonics https://doi.org/10.1038/s41566-023-01225-w (2023).
Gained, Y.-H. et al. Extremely environment friendly and secure InP/ZnSe/ZnS quantum dot light-emitting diodes. Nature 575, 634–638 (2019).
Kelley, A. M. et al. Id of the reversible gap traps in InP/ZnSe core/shell quantum dots. J. Chem. Phys. 157, 174701 (2022).
Lange, H. & Kelley, D. F. Spectroscopic results of lattice pressure in InP/ZnSe and InP/ZnS nanocrystals. J. Phys. Chem. C 124, 22839–22844 (2020).
Jang, E., Kim, Y., Gained, Y.-H., Jang, H. & Choi, S.-M. Environmentally pleasant InP-based quantum dots for environment friendly extensive coloration gamut shows. ACS Power Lett. 5, 1316–1327 (2020).
Kim, T., Gained, Y.-H., Jang, E. & Kim, D. Adverse trion Auger recombination in extremely luminescent InP/ZnSe/ZnS quantum dots. Nano Lett. 21, 2111–2116 (2021).
Hinuma, Y., Grüneis, A., Kresse, G. & Oba, F. Band alignment of semiconductors from density-functional concept and many-body perturbation concept. Phys. Rev. B 90, 155405 (2014).
Berkinsky, D. B. et al. Slender intrinsic line widths and electron–phonon coupling of InP colloidal quantum dots. ACS Nano https://doi.org/10.1021/acsnano.2c10237 (2023).
Brodu, A. et al. Exciton nice construction and lattice dynamics in InP/ZnSe core/shell quantum dots. ACS Photonics 5, 3353–3362 (2018).
Labeau, O., Tamarat, P. & Lounis, B. Temperature dependence of the luminescence lifetime of single CdSe/ZnS quantum dots. Phys. Rev. Lett. 90, 257404 (2003).
Marshall, L. F. Spectral Dynamics of Single Quantum Dots: A Research utilizing Photon-Correlation Fourier Spectroscopy for Submillisecond Time Decision at Low Temperature and in Resolution. PhD thesis, Massachusetts Institute of Know-how (2011).
Brokmann, X., Bawendi, M., Coolen, L. & Hermier, J.-P. Photon-correlation Fourier spectroscopy. Decide. Categorical 14, 6333–6341 (2006).
Beyler, A. P., Marshall, L. F., Cui, J., Brokmann, X. & Bawendi, M. G. Direct commentary of fast discrete spectral dynamics in single colloidal CdSe–CdS core–shell quantum dots. Phys. Rev. Lett. 111, 177401 (2013).
Muller, A., Fang, W., Lawall, J. & Solomon, G. S. Creating polarization-entangled photon pairs from a semiconductor quantum dot utilizing the optical Stark impact. Phys. Rev. Lett. 103, 217402 (2009).
Muller, A., Fang, W., Lawall, J. & Solomon, G. S. Emission spectrum of a dressed exciton–biexciton complicated in a semiconductor quantum dot. Phys. Rev. Lett. 101, 027401 (2008).
Laferriѐre, P. et al. Unity yield of deterministically positioned quantum dot single photon sources. Sci. Rep. 12, 6376 (2022).
Haffouz, S. et al. Shiny single InAsP quantum dots at telecom wavelengths in position-controlled InP nanowires: the position of the photonic waveguide. Nano Lett. 18, 3047–3052 (2018).
Solar, W. et al. Elastic phonon scattering dominates dephasing in weakly confined cesium lead bromide nanocrystals at cryogenic temperatures. Nano Lett. 23, 2615–2622 (2023).
Coolen, L., Brokmann, X., Spinicelli, P. & Hermier, J.-P. Emission characterization of a single CdSe–ZnS nanocrystal with excessive temporal and spectral decision by photon-correlation Fourier spectroscopy. Phys. Rev. Lett. 100, 027403 (2008).
Luo, Y. & Wang, L.-W. Digital buildings of the CdSe/CdS core–shell nanorods. ACS Nano 4, 91–98 (2010).
Nasilowski, M., Spinicelli, P., Patriarche, G. & Dubertret, B. Gradient CdSe/CdS quantum dots with room temperature biexciton unity quantum yield. Nano Lett. 15, 3953–3958 (2015).
Wang, X., Yu, J. & Chen, R. Optical traits of ZnS passivated CdSe/CdS quantum dots for prime photostability and lasing. Sci. Rep. 8, 17323 (2018).
Protesescu, L. et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic supplies exhibiting brilliant emission with extensive coloration gamut. Nano Lett. 15, 3692–3696 (2015).
Mangum, B. D., Ghosh, Y., Hollingsworth, J. A. & Htoon, H. Disentangling the consequences of clustering and multi-exciton emission in second-order photon correlation experiments. Decide. Categorical 21, 7419–7426 (2013).
Proppe, A. H. et al. Adversarial autoencoder ensemble for quick and probabilistic reconstructions of few-shot photon correlation capabilities for solid-state quantum emitters. Phys. Rev. B 106, 045425 (2022).
Chen, B., Li, D. & Wang, F. InP quantum dots: synthesis and lighting purposes. Small 16, 2002454 (2020).
Quintero-Bermudez, R., Sabatini, R. P., Lejay, M., Voznyy, O. & Sargent, E. H. Small-band-offset perovskite shells improve Auger lifetime in quantum dot solids. ACS Nano 11, 12378–12384 (2017).
Chandrasekaran, V. et al. Practically blinking-free, high-purity single-photon emission by colloidal InP/ZnSe quantum dots. Nano Lett. 17, 6104–6109 (2017).
Nair, G., Zhao, J. & Bawendi, M. G. Biexciton quantum yield of single semiconductor nanocrystals from photon statistics. Nano Lett. 11, 1136–1140 (2011).
Hoang, T. B., Akselrod, G. M. & Mikkelsen, M. H. Ultrafast room-temperature single photon emission from quantum dots coupled to plasmonic nanocavities. Nano Lett. 16, 270–275 (2016).
Fan, F. et al. Steady-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy. Nature 544, 75–79 (2017).
Park, Y.-S., Lim, J. & Klimov, V. I. Asymmetrically strained quantum dots with non-fluctuating single-dot emission spectra and subthermal room-temperature linewidths. Nat. Mater. 18, 249–255 (2019).
Fedin, I. et al. Enhanced emission from brilliant excitons in asymmetrically strained colloidal CdSe/CdxZn1−xSe quantum dots. ACS Nano 15, 14444–14452 (2021).
Valencia, D. et al. Unravelling the chemical reactions of fatty acids and triacylglycerides beneath hydrodeoxygenation circumstances based mostly on a complete thermodynamic evaluation. Biomass Bioenergy 112, 37–44 (2018).
Cortes, C. L., Adhikari, S., Ma, X. & Grey, S. Ok. Accelerating quantum optics experiments with statistical studying. Appl. Phys. Lett. 116, 184003 (2020).
Chen, O. et al. Compact high-quality CdSe–CdS core–shell nanocrystals with slim emission linewidths and suppressed blinking. Nat. Mater. 12, 445–451 (2013).
Yuan, Y. et al. Cu-catalyzed synthesis of CdZnSe–CdZnS alloy quantum dots with extremely tunable emission. Chem. Mater. 31, 2635–2643 (2019).