Choi, J., Hwang, J., Kim, J. Y. & Choi, H. Current progress in magnetically actuated microrobots for focused supply of therapeutic brokers. Adv. Healthc. Mater. 10, 2001596 (2021).
Schmidt, C. Ok., Medina-Sánchez, M., Edmondson, R. J. & Schmidt, O. G. Engineering microrobots for focused most cancers therapies from a medical perspective. Nat. Commun. 11, 5618 (2020).
Aubry, M. et al. Engineering E. coli for magnetic management and the spatial localization of features. ACS Synth. Biol. 9, 3030–3041 (2020).
Cho, I. H. & Ku, S. Present technical approaches for the early detection of foodborne pathogens: challenges and alternatives. Int. J. Mol. Sci. 18, 2078 (2017).
Taukulis, R. et al. Magnetic iron oxide nanoparticles as MRI distinction brokers – a complete bodily and theoretical examine. Magnetohydrodynamics 51, 721–748 (2015).
Huang, J., Zhong, X., Wang, L., Yang, L. & Mao, H. Enhancing the magnetic resonance imaging distinction and detection strategies with engineered magnetic nanoparticles. Theranostics 2, 86–102 (2012).
Nishida, Ok. & Silver, P. A. Induction of biogenic magnetization and redox management by a element of the goal of rapamycin advanced 1 signaling pathway. PLoS Biol. 10, e1001269 (2012).
Nimpf, S. & Keays, D. A. Is magnetogenetics the brand new optogenetics? EMBO J. 36, 1643–1646 (2017).
Pekarsky, A. & Spadiut, O. Intrinsically magnetic cells: a evaluation on their pure incidence and artificial technology. Entrance. Bioeng. Biotechnol. 8, 573183 (2020).
Del Sol-Fernández, S. et al. Magnetogenetics: distant activation of mobile features triggered by magnetic switches. Nanoscale 14, 2091–2118 (2022).
Vargas, G. et al. Purposes of magnetotactic micro organism, magnetosomes and magnetosome crystals in biotechnology and nanotechnology: mini-review. Molecules 23, 2438 (2018).
Uebe, R. & Schüler, D. Magnetosome biogenesis in magnetotactic micro organism. Nat. Rev. Microbiol. 14, 621–637 (2016).
Mickoleit, F. & Schüler, D. Technology of multifunctional magnetic nanoparticles with amplified catalytic actions by genetic expression of enzyme arrays on bacterial magnetosomes. Adv. Biosyst. 2, 1700109 (2018).
Mickoleit, F. & Schüler, D. Technology of nanomagnetic biocomposites by genetic engineering of bacterial magnetosomes. Bioinspired Biomim. Nanobiomaterials 8, 86–98 (2018).
Mickoleit, F., Lanzloth, C. & Schüler, D. A flexible toolkit for controllable and extremely selective multifunctionalization of bacterial magnetic nanoparticles. Small 16, 1906922 (2020).
Kuzajewska, D., Wszołek, A., Żwierełło, W., Kirczuk, L. & Maruszewska, A. Magnetotactic micro organism and magnetosomes as sensible drug supply programs: a brand new weapon on the battlefield with most cancers? Biology 9, 102 (2020).
Boucher, M. et al. Genetically tailor-made magnetosomes used as MRI probe for molecular imaging of mind tumor. Biomaterials 121, 167–178 (2017).
Kraupner, A. et al. Bacterial magnetosomes – nature’s highly effective contribution to MPI tracer analysis. Nanoscale 9, 5788–5793 (2017).
Le Fèvre, R. et al. Enhanced antitumor efficacy of biocompatible magnetosomes for the magnetic hyperthermia remedy of glioblastoma. Theranostics 7, 4618–4631 (2017).
Alphandéry, E. Purposes of magnetosomes synthesized by magnetotactic micro organism in medication. Entrance. Bioeng. Biotechnol. 2, 5 (2014).
Kolinko, I. et al. Biosynthesis of magnetic nanostructures in a international organism by switch of bacterial magnetosome gene clusters. Nat. Nanotechnol. 9, 193–197 (2014).
Dziuba, M. V., Zwiener, T., Uebe, R. & Schüler, D. Single-step switch of biosynthetic operons endows a non-magnetotactic Magnetospirillum pressure from wetland with magnetosome biosynthesis. Environ. Microbiol. 22, 1603–1618 (2020).
Dziuba, M. V. et al. Silent gene clusters encode magnetic organelle biosynthesis in a non-magnetotactic phototrophic bacterium. ISME J. 17, 326–339 (2023).
Juodeikis, R. Engineering Membranes in Escherichia coli: the Magnetosome, LemA Protein Household and Outer Membrane Vesicles. PhD thesis, Univ. Kent (2016).
Magazine-nano-tite: Creating magnetite nanoparticles in E.coli. iGEM https://2016.igem.org/Workforce:Kent/Description (2016).
iGEM toolkits: magnetosomes. iGEM https://2011.igem.org/Workforce:Washington/Magnetosomes/Magnet_Toolkit (2011).
Magnetosome formation: experiments & outcomes. iGEM https://2014.igem.org/Workforce:Kyoto/Mission/Magnetosome_Formation#experiments (2014).
Sistrom, W. R. A requirement for sodium within the progress of Rhodopseudomonas spheroides. J. Gen. Microbiol. 22, 778–785 (1960).
Heyen, U. & Schüler, D. Development and magnetosome formation by microaerophilic Magnetospirillum strains in an oxygen-controlled fermentor. Appl. Microbiol. Biotechnol. 61, 536–544 (2003).
Pfennig, N. Rhodopseudomonas acidophila, sp. n., a brand new species of the budding purple nonsulfur micro organism. J. Bacteriol. 99, 597–602 (1969).
Moisescu, C., Ardelean, I. I. & Benning, L. G. The impact and function of environmental circumstances on magnetosome synthesis. Entrance. Microbiol. 5, 49 (2014).
Grant, C. R. et al. Distinct gene clusters drive formation of ferrosome organelles in micro organism. Nature 606, 160–164 (2022).
Silva, Ok. T. et al. Genome-wide identification of important and auxiliary gene units for magnetosome biosynthesis in Magnetospirillum gryphiswaldense. mSystems 5, e00565–20 (2020).
Li, Y., Katzmann, E., Borg, S. & Schüler, D. The periplasmic nitrate reductase Nap is required for anaerobic progress and concerned in redox management of magnetite biomineralization in Magnetospirillum gryphiswaldense. J. Bacteriol. 194, 4847–4856 (2012).
Li, Y. et al. Cytochrome cd1 nitrite reductase NirS is concerned in anaerobic magnetite biomineralization in Magnetospirillum gryphiswaldense and requires NirN for correct d1 heme meeting. J. Bacteriol. 195, 4297–4309 (2013).
Li, Y., Raschdorf, O., Silva, Ok. T. & Schüler, D. The terminal oxidase cbb3 features in redox management of magnetite biomineralization in Magnetospirillum gryphiswaldense. J. Bacteriol. 196, 2552–2562 (2014).
Wang, Q. et al. Iron response regulator protein IrrB in Magnetospirillum gryphiswaldense MSR-1 helps management the iron/oxygen steadiness, oxidative stress tolerance, and magnetosome formation. Appl. Environ. Microbiol. 81, 8044–8053 (2015).
Li, Y. et al. The oxygen sensor MgFnr controls magnetite biomineralization by regulation of denitrification in Magnetospirillum gryphiswaldense. BMC Microbiol. 14, 153 (2014).
Qi, L. et al. Fur in Magnetospirillum gryphiswaldense influences magnetosomes formation and instantly regulates the genes concerned in iron and oxygen metabolism. PLoS ONE 7, e29572 (2012).
Kolinko, S., Richter, M., Glöckner, F. O., Brachmann, A. & Schüler, D. Single-cell genomics reveals potential for magnetite and greigite biomineralization in an uncultivated multicellular magnetotactic prokaryote. Environ. Microbiol. Rep. 6, 524–531 (2014).
Popp, F., Armitage, J. P. & Schüler, D. Polarity of bacterial magnetotaxis is managed by aerotaxis via a typical sensory pathway. Nat. Commun. 14, 5398 (2014).
Rong, C. et al. FeoB2 features in magnetosome formation and oxidative stress safety in Magnetospirillum gryphiswaldense pressure MSR-1. J. Bacteriol. 194, 3972–3976 (2012).
Rong, C. et al. Ferrous iron transport protein B gene (feoB1) performs an adjunct function in magnetosome formation in Magnetospirillum gryphiswaldense pressure MSR-1. Res. Microbiol. 159, 530–536 (2008).
Nelson, L. M. & Knowles, R. Impact of oxygen and nitrate on nitrogen fixation and denitrification by Azospirillum brasilense grown in steady tradition. Can. J. Microbiol. 24, 1395–1403 (1978).
Bergaust, L., Shapleigh, J., Frostegård, Å. & Bakken, L. Transcription and actions of NOx reductases in Agrobacterium tumefaciens: the affect of nitrate, nitrite and oxygen availability. Environ. Microbiol. 10, 3070–3081 (2008).
Kampschreur, M. J. et al. Metabolic modeling of denitrification in Agrobacterium tumefaciens: a device to check inhibiting and activating compounds for the denitrification pathway. Entrance. Microbiol. 3, 370 (2012).
Hershberg, R. & Petrov, D. A. Choice on codon bias. Annu. Rev. Genet. 42, 287–299 (2008).
Gomes, A. L. C. et al. Genome and sequence determinants governing the expression of horizontally acquired DNA in micro organism. ISME J. 14, 2347–2357 (2020).
Mickoleit, F. et al. Excessive-yield manufacturing, characterization, and functionalization of recombinant magnetosomes within the artificial bacterium Rhodospirillum rubrum “magneticum”. Adv. Biol. 5, 2101017 (2021).
Richter, P., Melzer, B. & Müller, F. D. Interacting bactofilins affect cell form of the MreB-less multicellular Rhodomicrobium vannielii. PLoS Genet. 19, e1010788 (2023).
Orsi, E., Beekwilder, J., Eggink, G., Kengen, S. W. M. & Weusthuis, R. A. The transition of Rhodobacter sphaeroides right into a microbial cell manufacturing facility. Biotechnol. Bioeng. 118, 531–541 (2021).
Li, M., Ning, P., Solar, Y., Luo, J. & Yang, J. Traits and utility of Rhodopseudomonas palustris as a microbial cell manufacturing facility. Entrance. Bioeng. Biotechnol. 10, 897003 (2022).
Strittmatter, W., Weckesser, J., Salimath, P. V. & Galanos, C. Unhazardous lipopolysaccharide from Rhodopseudomonas sphaeroides ATCC 17023. J. Bacteriol. 155, 153–158 (1983).
Lin, T. L. et al. Like cures like: pharmacological exercise of anti-inflammatory lipopolysaccharides from intestine microbiome. Entrance. Pharmacol. 11, 554 (2020).
Schultheiss, D. & Schüler, D. Improvement of a genetic system for Magnetospirillum gryphiswaldense. Arch. Microbiol. 179, 89–94 (2003).
Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).
Langmead, B. & Salzberg, S. L. Quick gapped-read alignment with Bowtie 2. Nat. Strategies 9, 357–359 (2012).
Kearse, M. et al. Geneious Fundamental: an built-in and extendable desktop software program platform for the group and evaluation of sequence information. Bioinforma. Appl. 28, 1647–1649 (2012).
Contreras-Moreira, B. & Vinuesa, P. GET_HOMOLOGUES, a flexible software program package deal for scalable and sturdy microbial pangenome evaluation. Appl. Environ. Microbiol. 79, 7696–7701 (2013).
Waskom, M. seaborn: statistical information visualization. J. Open Supply Softw. 6, 3021 (2021).
Schüler, D., Uhl, R., & Bäuerlein, E. A easy gentle scattering technique to assay magnetism in Magnetospirillum gryphiswaldense. FEMS Microbiol. Lett 132, 139–145 (1995).