Saturday, September 23, 2023
HomeNanotechnologyExploring the host vary for genetic switch of magnetic organelle biosynthesis

Exploring the host vary for genetic switch of magnetic organelle biosynthesis


  • Choi, J., Hwang, J., Kim, J. Y. & Choi, H. Current progress in magnetically actuated microrobots for focused supply of therapeutic brokers. Adv. Healthc. Mater. 10, 2001596 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Schmidt, C. Ok., Medina-Sánchez, M., Edmondson, R. J. & Schmidt, O. G. Engineering microrobots for focused most cancers therapies from a medical perspective. Nat. Commun. 11, 5618 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Aubry, M. et al. Engineering E. coli for magnetic management and the spatial localization of features. ACS Synth. Biol. 9, 3030–3041 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Cho, I. H. & Ku, S. Present technical approaches for the early detection of foodborne pathogens: challenges and alternatives. Int. J. Mol. Sci. 18, 2078 (2017).

    Article 

    Google Scholar
     

  • Taukulis, R. et al. Magnetic iron oxide nanoparticles as MRI distinction brokers – a complete bodily and theoretical examine. Magnetohydrodynamics 51, 721–748 (2015).

    Article 

    Google Scholar
     

  • Huang, J., Zhong, X., Wang, L., Yang, L. & Mao, H. Enhancing the magnetic resonance imaging distinction and detection strategies with engineered magnetic nanoparticles. Theranostics 2, 86–102 (2012).

    Article 

    Google Scholar
     

  • Nishida, Ok. & Silver, P. A. Induction of biogenic magnetization and redox management by a element of the goal of rapamycin advanced 1 signaling pathway. PLoS Biol. 10, e1001269 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Nimpf, S. & Keays, D. A. Is magnetogenetics the brand new optogenetics? EMBO J. 36, 1643–1646 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Pekarsky, A. & Spadiut, O. Intrinsically magnetic cells: a evaluation on their pure incidence and artificial technology. Entrance. Bioeng. Biotechnol. 8, 573183 (2020).

    Article 

    Google Scholar
     

  • Del Sol-Fernández, S. et al. Magnetogenetics: distant activation of mobile features triggered by magnetic switches. Nanoscale 14, 2091–2118 (2022).

    Article 

    Google Scholar
     

  • Vargas, G. et al. Purposes of magnetotactic micro organism, magnetosomes and magnetosome crystals in biotechnology and nanotechnology: mini-review. Molecules 23, 2438 (2018).

    Article 

    Google Scholar
     

  • Uebe, R. & Schüler, D. Magnetosome biogenesis in magnetotactic micro organism. Nat. Rev. Microbiol. 14, 621–637 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Mickoleit, F. & Schüler, D. Technology of multifunctional magnetic nanoparticles with amplified catalytic actions by genetic expression of enzyme arrays on bacterial magnetosomes. Adv. Biosyst. 2, 1700109 (2018).

    Article 

    Google Scholar
     

  • Mickoleit, F. & Schüler, D. Technology of nanomagnetic biocomposites by genetic engineering of bacterial magnetosomes. Bioinspired Biomim. Nanobiomaterials 8, 86–98 (2018).

    Article 

    Google Scholar
     

  • Mickoleit, F., Lanzloth, C. & Schüler, D. A flexible toolkit for controllable and extremely selective multifunctionalization of bacterial magnetic nanoparticles. Small 16, 1906922 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Kuzajewska, D., Wszołek, A., Żwierełło, W., Kirczuk, L. & Maruszewska, A. Magnetotactic micro organism and magnetosomes as sensible drug supply programs: a brand new weapon on the battlefield with most cancers? Biology 9, 102 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Boucher, M. et al. Genetically tailor-made magnetosomes used as MRI probe for molecular imaging of mind tumor. Biomaterials 121, 167–178 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Kraupner, A. et al. Bacterial magnetosomes – nature’s highly effective contribution to MPI tracer analysis. Nanoscale 9, 5788–5793 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Le Fèvre, R. et al. Enhanced antitumor efficacy of biocompatible magnetosomes for the magnetic hyperthermia remedy of glioblastoma. Theranostics 7, 4618–4631 (2017).

    Article 

    Google Scholar
     

  • Alphandéry, E. Purposes of magnetosomes synthesized by magnetotactic micro organism in medication. Entrance. Bioeng. Biotechnol. 2, 5 (2014).


    Google Scholar
     

  • Kolinko, I. et al. Biosynthesis of magnetic nanostructures in a international organism by switch of bacterial magnetosome gene clusters. Nat. Nanotechnol. 9, 193–197 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Dziuba, M. V., Zwiener, T., Uebe, R. & Schüler, D. Single-step switch of biosynthetic operons endows a non-magnetotactic Magnetospirillum pressure from wetland with magnetosome biosynthesis. Environ. Microbiol. 22, 1603–1618 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Dziuba, M. V. et al. Silent gene clusters encode magnetic organelle biosynthesis in a non-magnetotactic phototrophic bacterium. ISME J. 17, 326–339 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Juodeikis, R. Engineering Membranes in Escherichia coli: the Magnetosome, LemA Protein Household and Outer Membrane Vesicles. PhD thesis, Univ. Kent (2016).

  • Magazine-nano-tite: Creating magnetite nanoparticles in E.coli. iGEM https://2016.igem.org/Workforce:Kent/Description (2016).

  • iGEM toolkits: magnetosomes. iGEM https://2011.igem.org/Workforce:Washington/Magnetosomes/Magnet_Toolkit (2011).

  • Magnetosome formation: experiments & outcomes. iGEM https://2014.igem.org/Workforce:Kyoto/Mission/Magnetosome_Formation#experiments (2014).

  • Sistrom, W. R. A requirement for sodium within the progress of Rhodopseudomonas spheroides. J. Gen. Microbiol. 22, 778–785 (1960).

    Article 
    CAS 

    Google Scholar
     

  • Heyen, U. & Schüler, D. Development and magnetosome formation by microaerophilic Magnetospirillum strains in an oxygen-controlled fermentor. Appl. Microbiol. Biotechnol. 61, 536–544 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Pfennig, N. Rhodopseudomonas acidophila, sp. n., a brand new species of the budding purple nonsulfur micro organism. J. Bacteriol. 99, 597–602 (1969).

    Article 
    CAS 

    Google Scholar
     

  • Moisescu, C., Ardelean, I. I. & Benning, L. G. The impact and function of environmental circumstances on magnetosome synthesis. Entrance. Microbiol. 5, 49 (2014).

    Article 

    Google Scholar
     

  • Grant, C. R. et al. Distinct gene clusters drive formation of ferrosome organelles in micro organism. Nature 606, 160–164 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Silva, Ok. T. et al. Genome-wide identification of important and auxiliary gene units for magnetosome biosynthesis in Magnetospirillum gryphiswaldense. mSystems 5, e00565–20 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Li, Y., Katzmann, E., Borg, S. & Schüler, D. The periplasmic nitrate reductase Nap is required for anaerobic progress and concerned in redox management of magnetite biomineralization in Magnetospirillum gryphiswaldense. J. Bacteriol. 194, 4847–4856 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Li, Y. et al. Cytochrome cd1 nitrite reductase NirS is concerned in anaerobic magnetite biomineralization in Magnetospirillum gryphiswaldense and requires NirN for correct d1 heme meeting. J. Bacteriol. 195, 4297–4309 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Li, Y., Raschdorf, O., Silva, Ok. T. & Schüler, D. The terminal oxidase cbb3 features in redox management of magnetite biomineralization in Magnetospirillum gryphiswaldense. J. Bacteriol. 196, 2552–2562 (2014).

    Article 

    Google Scholar
     

  • Wang, Q. et al. Iron response regulator protein IrrB in Magnetospirillum gryphiswaldense MSR-1 helps management the iron/oxygen steadiness, oxidative stress tolerance, and magnetosome formation. Appl. Environ. Microbiol. 81, 8044–8053 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Li, Y. et al. The oxygen sensor MgFnr controls magnetite biomineralization by regulation of denitrification in Magnetospirillum gryphiswaldense. BMC Microbiol. 14, 153 (2014).

    Article 

    Google Scholar
     

  • Qi, L. et al. Fur in Magnetospirillum gryphiswaldense influences magnetosomes formation and instantly regulates the genes concerned in iron and oxygen metabolism. PLoS ONE 7, e29572 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Kolinko, S., Richter, M., Glöckner, F. O., Brachmann, A. & Schüler, D. Single-cell genomics reveals potential for magnetite and greigite biomineralization in an uncultivated multicellular magnetotactic prokaryote. Environ. Microbiol. Rep. 6, 524–531 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Popp, F., Armitage, J. P. & Schüler, D. Polarity of bacterial magnetotaxis is managed by aerotaxis via a typical sensory pathway. Nat. Commun. 14, 5398 (2014).

    Article 

    Google Scholar
     

  • Rong, C. et al. FeoB2 features in magnetosome formation and oxidative stress safety in Magnetospirillum gryphiswaldense pressure MSR-1. J. Bacteriol. 194, 3972–3976 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Rong, C. et al. Ferrous iron transport protein B gene (feoB1) performs an adjunct function in magnetosome formation in Magnetospirillum gryphiswaldense pressure MSR-1. Res. Microbiol. 159, 530–536 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Nelson, L. M. & Knowles, R. Impact of oxygen and nitrate on nitrogen fixation and denitrification by Azospirillum brasilense grown in steady tradition. Can. J. Microbiol. 24, 1395–1403 (1978).

    Article 
    CAS 

    Google Scholar
     

  • Bergaust, L., Shapleigh, J., Frostegård, Å. & Bakken, L. Transcription and actions of NOx reductases in Agrobacterium tumefaciens: the affect of nitrate, nitrite and oxygen availability. Environ. Microbiol. 10, 3070–3081 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Kampschreur, M. J. et al. Metabolic modeling of denitrification in Agrobacterium tumefaciens: a device to check inhibiting and activating compounds for the denitrification pathway. Entrance. Microbiol. 3, 370 (2012).

    Article 

    Google Scholar
     

  • Hershberg, R. & Petrov, D. A. Choice on codon bias. Annu. Rev. Genet. 42, 287–299 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Gomes, A. L. C. et al. Genome and sequence determinants governing the expression of horizontally acquired DNA in micro organism. ISME J. 14, 2347–2357 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Mickoleit, F. et al. Excessive-yield manufacturing, characterization, and functionalization of recombinant magnetosomes within the artificial bacterium Rhodospirillum rubrum “magneticum”. Adv. Biol. 5, 2101017 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Richter, P., Melzer, B. & Müller, F. D. Interacting bactofilins affect cell form of the MreB-less multicellular Rhodomicrobium vannielii. PLoS Genet. 19, e1010788 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Orsi, E., Beekwilder, J., Eggink, G., Kengen, S. W. M. & Weusthuis, R. A. The transition of Rhodobacter sphaeroides right into a microbial cell manufacturing facility. Biotechnol. Bioeng. 118, 531–541 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Li, M., Ning, P., Solar, Y., Luo, J. & Yang, J. Traits and utility of Rhodopseudomonas palustris as a microbial cell manufacturing facility. Entrance. Bioeng. Biotechnol. 10, 897003 (2022).

    Article 

    Google Scholar
     

  • Strittmatter, W., Weckesser, J., Salimath, P. V. & Galanos, C. Unhazardous lipopolysaccharide from Rhodopseudomonas sphaeroides ATCC 17023. J. Bacteriol. 155, 153–158 (1983).

    Article 
    CAS 

    Google Scholar
     

  • Lin, T. L. et al. Like cures like: pharmacological exercise of anti-inflammatory lipopolysaccharides from intestine microbiome. Entrance. Pharmacol. 11, 554 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Schultheiss, D. & Schüler, D. Improvement of a genetic system for Magnetospirillum gryphiswaldense. Arch. Microbiol. 179, 89–94 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).

    Article 

    Google Scholar
     

  • Langmead, B. & Salzberg, S. L. Quick gapped-read alignment with Bowtie 2. Nat. Strategies 9, 357–359 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Kearse, M. et al. Geneious Fundamental: an built-in and extendable desktop software program platform for the group and evaluation of sequence information. Bioinforma. Appl. 28, 1647–1649 (2012).

    Article 

    Google Scholar
     

  • Contreras-Moreira, B. & Vinuesa, P. GET_HOMOLOGUES, a flexible software program package deal for scalable and sturdy microbial pangenome evaluation. Appl. Environ. Microbiol. 79, 7696–7701 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Waskom, M. seaborn: statistical information visualization. J. Open Supply Softw. 6, 3021 (2021).

    Article 

    Google Scholar
     

  • Schüler, D., Uhl, R., & Bäuerlein, E. A easy gentle scattering technique to assay magnetism in Magnetospirillum gryphiswaldense. FEMS Microbiol. Lett 132, 139–145 (1995).

    Article 

    Google Scholar
     



  • Supply hyperlink

    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    - Advertisment -
    Google search engine

    Most Popular

    Recent Comments