Peres MA, Macpherson LMD, Weyant RJ, Daly B, Venturelli R, Mathur MR, et al. Oral ailments: a world public well being problem. Lancet. 2019;394:249–60.
Im SH, Kim CY, Jung Y, Jang Y, Kim SH. Biodegradable vascular stents with excessive tensile and compressive power: a novel technique for making use of monofilaments by way of solid-state drawing and shaped-annealing processes. Biomater Sci. 2017;5:422–31.
Veneruso V, Rossi F, Villella A, Bena A, Forloni G, Veglianese P. Stem cell paracrine impact and supply methods for spinal twine damage regeneration. J Management Launch. 2019;300:141–53.
Harding C, Heuser J, Stahl P. Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. J Cell Biol. 1983;97:329–39.
Pan B-T, Johnstone RM. Destiny of the transferrin receptor throughout maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell. 1983;33:967–78.
Jeppesen DK, Fenix AM, Franklin JL, Higginbotham JN, Zhang Q, Zimmerman LJ, et al. Reassessment of exosome composition. Cell. 2019;177:428-445.e18.
File M, Carayon Ok, Poirot M, Silvente-Poirot S. Exosomes as new vesicular lipid transporters concerned in cell–cell communication and numerous pathophysiologies. Biochim et Biophys Acta (BBA) – Mol Cell Biol Lipids. 2014;1841:108–20.
Liao W, Du Y, Zhang C, Pan F, Yao Y, Zhang T, et al. Exosomes: the following technology of endogenous nanomaterials for superior drug supply and remedy. Acta Biomater. 2019;86:1–14.
Xiao C, Track F, Zheng YL, Lv J, Wang QF, Xu N. Exosomes in head and neck squamous cell carcinoma. Entrance Oncol. 2019;9:894.
Dang S-Y, Leng Y, Wang Z-X, Xiao X, Zhang X, Wen T, et al. Exosomal switch of weight problems adipose tissue for decreased miR-141-3p mediate insulin resistance of hepatocytes. Int J Biol Sci. 2019;15:351–68.
Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and pals. J Cell Biol. 2013;200:373–83.
Kou M, Huang L, Yang J, Chiang Z, Chen S, Liu J, et al. Mesenchymal stem cell-derived extracellular vesicles for immunomodulation and regeneration: a subsequent technology therapeutic software? Cell Dying Dis. 2022;13:580.
Waldenström A, Ronquist G. Position of exosomes in myocardial transforming. Circ Res. 2014;114:315–24.
Hannafon BN, Gin AL, Xu Y-F, Bruns M, Calloway CL, Ding W-Q. Metastasis-associated protein 1 (MTA1) is transferred by exosomes and contributes to the regulation of hypoxia and estrogen signaling in breast most cancers cells. Cell Commun Sign. 2019;17:13.
Distler JHW, Huber LC, Homosexual S, Distler O, Pisetsky DS. Microparticles as mediators of mobile cross-talk in inflammatory illness. Autoimmunity. 2006;39:683–90.
Zhang H, Freitas D, Kim HS, Fabijanic Ok, Li Z, Chen H, et al. Identification of distinct nanoparticles and subsets of extracellular vesicles by uneven circulation field-flow fractionation. Nat Cell Biol. 2018;20:332–43.
Heneberg P. Paracrine tumor signaling induces transdifferentiation of surrounding fibroblasts. Crit Rev Oncol Hematol. 2016;97:303–11.
Bang C, Thum T. Exosomes: new gamers in cell–cell communication. Int J Biochem Cell Biol. 2012;44:2060–4.
Kalluri R, LeBleu VS. The biology, operate, and biomedical functions of exosomes. Science. 2020;367:eaau6977.
Van Den Boorn JG, Schlee M, Coch C, Hartmann G. SiRNA supply with exosome nanoparticles. Nat Biotechnol. 2011;29:325–6.
Zhang Y, Bi J, Huang J, Tang Y, Du S, Li P. Exosome: a assessment of its classification, isolation strategies, storage. Diagn Goal Ther Appl IJN. 2020;15:6917–34.
Schiffelers R, Kooijmans S, Van Vader D, Van Solinge WW. Exosome mimetics: a novel class of drug supply techniques. IJN. 2012;7:1525–41.
Shao H, Im H, Castro CM, Breakefield X, Weissleder R, Lee H. New applied sciences for evaluation of extracellular vesicles. Chem Rev. 2018;118:1917–50.
Tao S-C, Guo S-C, Li M, Ke Q-F, Guo Y-P, Zhang C-Q. Chitosan wound dressings incorporating exosomes derived from MicroRNA-126-overexpressing synovium mesenchymal stem cells present sustained launch of exosomes and heal full-thickness pores and skin defects in a diabetic rat mannequin. Stem Cells Transl Med. 2016;6(3):736–47.
Li H, Feng Y, Zheng X, Jia M, Mei Z, Wang Y, et al. M2-type exosomes nanoparticles for rheumatoid arthritis remedy by way of macrophage re-polarization. J Management Launch. 2022;341:16–30.
Liu W, Yu M, Xie D, Wang L, Ye C, Zhu Q, et al. Melatonin-stimulated MSC-derived exosomes enhance diabetic wound therapeutic by regulating macrophage M1 and M2 polarization by concentrating on the PTEN/AKT pathway. Stem Cell Res Ther. 2020;11:259.
Yu M, Liu W, Li J, Lu J, Lu H, Jia W, et al. Exosomes derived from atorvastatin-pretreated MSC speed up diabetic wound restore by enhancing angiogenesis by way of AKT/eNOS pathway. Stem Cell Res Ther. 2020;11:350.
Shi H, Xu X, Zhang B, Xu J, Pan Z, Gong A, et al. 3,3′-Diindolylmethane stimulates exosomal Wnt11 autocrine signaling in human umbilical twine mesenchymal stem cells to boost wound therapeutic. Theranostics. 2017;7:1674–88.
Wang J, Wu H, Peng Y, Zhao Y, Qin Y, Zhang Y, et al. Hypoxia adipose stem cell-derived exosomes promote high-quality therapeutic of diabetic wound entails activation of PI3K/Akt pathways. J Nanobiotechnol. 2021;19:202.
Solar D, Zhuang X, Xiang X, Liu Y, Zhang S, Liu C, et al. A novel nanoparticle drug supply system: the anti-inflammatory exercise of curcumin is enhanced when encapsulated in exosomes. Mol Ther. 2010;18:1606–14.
Johnsen KB, Gudbergsson JM, Skov MN, Christiansen G, Gurevich L, Moos T, et al. Analysis of electroporation-induced antagonistic results on adipose-derived stem cell exosomes. Cytotechnology. 2016;68:2125–38.
Haney MJ, Klyachko NL, Zhao Y, Gupta R, Plotnikova EG, He Z, et al. Exosomes as drug supply automobiles for Parkinson’s illness remedy. J Management Launch. 2015;207:18–30.
Yue H, Yuan L, Zhang W, Zhang S, Wei W, Ma G. Macrophage responses to the bodily burden of cell-sized particles. J Mater Chem B. 2018;6:393–400.
Yang Z, Shi J, Xie J, Wang Y, Solar J, Liu T, et al. Massive-scale technology of purposeful mRNA-encapsulating exosomes by way of mobile nanoporation. Nat Biomed Eng. 2019;4:69–83.
Wan T, Zhong J, Pan Q, Zhou T, Ping Y, Liu X. Exosome-mediated supply of Cas9 ribonucleoprotein complexes for tissue-specific gene remedy of liver ailments. Sci Adv. 2022;8:eabp9435.
Xiao S, Xiao C, Miao Y, Wang J, Chen R, Fan Z, et al. Human acellular amniotic membrane incorporating exosomes from adipose-derived mesenchymal stem cells promotes diabetic wound therapeutic. Stem Cell Res Ther. 2021;12:255.
Tao S-C, Guo S-C, Li M, Ke Q-F, Guo Y-P, Zhang C-Q. Chitosan wound dressings incorporating exosomes derived from MicroRNA-126-overexpressing synovium mesenchymal stem cells present sustained launch of exosomes and heal full-thickness pores and skin defects in a diabetic rat mannequin. Stem Cells Transl Med. 2017;6:736–47.
Shiekh PA, Singh A, Kumar A. Exosome laden oxygen releasing antioxidant and antibacterial cryogel wound dressing OxOBand alleviate diabetic and infectious wound therapeutic. Biomaterials. 2020;249:120020.
Jing X, Wang S, Tang H, Li D, Zhou F, Xin L, et al. Dynamically bioresponsive DNA hydrogel integrated with dual-functional stem cells from apical papilla-derived exosomes promotes diabetic bone regeneration. ACS Appl Mater Interfaces. 2022;14:16082–99.
Cao H, Chen M, Cui X, Liu Y, Liu Y, Deng S, et al. Cell-free osteoarthritis therapy with sustained-release of chondrocyte-targeting exosomes from umbilical cord-derived mesenchymal stem cells to rejuvenate getting old chondrocytes. ACS Nano. 2023;17:13358–76.
Kinane DF, Stathopoulou PG, Papapanou PN. Periodontal ailments. Nat Rev Dis Primers. 2017;3:17038.
Haritha A, Jayakumar A. Syndromes as they relate to periodontal illness. Periodontol. 2000;2011(56):65–86.
Ghallab NA. Diagnostic potential and future instructions of biomarkers in gingival crevicular fluid and saliva of periodontal diseases_ assessment of the present proof. Arch Oral Biol. 2018;87:115–24.
Tobón-Arroyave SI, Celis-Mejía N, Córdoba-Hidalgo MP, Isaza-Guzmán DM. Decreased salivary focus of CD 9 and CD 81 exosome-related tetraspanins could also be related to the periodontal medical standing. J Clin Periodontol. 2019;46:470–80.
Chaparro Padilla A, Weber Aracena L, Realini Fuentes O, Albers Busquetts D, Hernández Ríos M, Ramírez Lobos V, et al. Molecular signatures of extracellular vesicles in oral fluids of periodontitis sufferers. Oral Dis. 2020;26:1318–25.
Yu J, Lin Y, Xiong X, Li Ok, Yao Z, Dong H, et al. Detection of exosomal PD-L1 RNA in saliva of sufferers with periodontitis. Entrance Genet. 2019;10:202.
Xia Y, Zhou Ok, Solar M, Shu R, Qian J, Xie Y. The miR-223-3p regulates pyroptosis by NLRP3-Caspase 1-GSDMD sign axis in periodontitis. Irritation. 2021;44:2531–42.
Han P, Bartold PM, Salomon C, Ivanovski S. Salivary small extracellular vesicles related miRNAs in periodontal standing—a pilot examine. IJMS. 2020;21:2809.
Wang Y, Zhang X, Wang J, Zhang Y, Ye Q, Wang Y, et al. Inflammatory periodontal ligament stem cells drive M1 macrophage polarization by way of exosomal miR-143-3p-mediated regulation of PI3K/AKT/NF-κB signaling. Stem Cells. 2023;41:184–99.
Lin C, Yang Y, Wang Y, Jing H, Bai X, Hong Z, et al. Periodontal ligament fibroblasts-derived exosomes induced by PGE2 inhibit human periodontal ligament stem cells osteogenic differentiation by way of activating miR-34c-5p/SATB2/ERK. Exp Cell Res. 2022;419:113318.
Xu X-Y, Tian B-M, Xia Y, Xia Y-L, Li X, Zhou H, et al. Exosomes derived from P2X7 receptor gene-modified cells rescue inflammation-compromised periodontal ligament stem cells from dysfunction. Stem Cells Transl Med. 2020;9:1414–30.
Yan C, Li N, Xiao T, Ye X, Fu L, Ye Y, et al. Extracellular vesicles from the inflammatory microenvironment regulate the osteogenic and odontogenic differentiation of periodontal ligament stem cells by miR-758-5p/LMBR1/BMP2/4 axis. J Transl Med. 2022;20:208.
Luo H, Chen D, Li R, Li R, Teng Y, Cao Y, et al. Genetically engineered CXCR4-modified exosomes for supply of miR-126 mimics to macrophages alleviate periodontitis. J Nanobiotechnol. 2023;21:116.
Yang Y, Zhang B, Yang Y, Peng B, Ye R. PLGA containing human adipose-derived stem cell-derived extracellular vesicles accelerates the restore of alveolar bone defects by way of switch of CGRP. Oxid Med Cell Longev. 2022;2022:1–14.
Zhang Y, Chen J, Fu H, Kuang S, He F, Zhang M, et al. Exosomes derived from 3D-cultured MSCs enhance therapeutic results in periodontitis and experimental colitis and restore the Th17 cell/Treg stability in infected periodontium. Int J Oral Sci. 2021;13:43.
Shen Z, Kuang S, Zhang Y, Yang M, Qin W, Shi X, et al. Chitosan hydrogel integrated with dental pulp stem cell-derived exosomes alleviates periodontitis in mice by way of a macrophage-dependent mechanism. Bioact Mater. 2020;5:1113–26.
Chew JRJ, Chuah SJ, Teo KYW, Zhang S, Lai RC, Fu JH, et al. Mesenchymal stem cell exosomes improve periodontal ligament cell capabilities and promote periodontal regeneration. Acta Biomater. 2019;89:252–64.
Sui B, Chen C, Kou X, Li B, Xuan Ok, Shi S, et al. Pulp stem cell-mediated purposeful pulp regeneration. J Dent Res. 2019;98:27–35.
Ahmed GM, Abouauf EA, AbuBakr N, Dörfer CE, El-Sayed KF. Tissue engineering approaches for enamel, dentin, and pulp regeneration: an replace. Stem Cells Int. 2020;2020:1–15.
Chen WJ. The function of small extracellular vesicles derived from lipopolysaccharide-preconditioned human dental pulp stem cells in dental pulp regeneration. J Endod. 2021;47(6):961–9.
Liu P, Qin L, Liu C, Mi J, Zhang Q, Wang S, et al. Exosomes derived from hypoxia-conditioned stem cells of human deciduous exfoliated tooth improve angiogenesis by way of the switch of let-7f-5p and miR-210-3p. Entrance Cell Dev Biol. 2022;10:879877.
Zheng J, Kong Y, Hu X, Li Z, Li Y, Zhong Y, et al. MicroRNA-enriched small extracellular vesicles possess odonto-immunomodulatory properties for modulating the immune response of macrophages and selling odontogenesis. Stem Cell Res Ther. 2020;11:517.
Wang S, Xing X, Peng W, Huang C, Du Y, Yang H, et al. Fabrication of an exosome-loaded thermosensitive chitin-based hydrogel for dental pulp regeneration. J Mater Chem B. 2023;11:1580–90.
Li J, Ju Y, Liu S, Fu Y, Zhao S. Exosomes derived from lipopolysaccharide-preconditioned human dental pulp stem cells regulate Schwann cell migration and differentiation. Join Tissue Res. 2021;62:277–86.
Siéssere S, Vitti M, Semprini M, Regalo SCH, Iyomasa MM, Dias FJ, et al. Macroscopic and microscopic facets of the temporomandibular joint associated to its medical implication. Micron. 2008;39:852–8.
Liu Y, Zhang Z, Wang B, Dong Y, Zhao C, Zhao Y, et al. Irritation-stimulated MSC-derived small extracellular vesicle miR-27b-3p regulates macrophages by concentrating on CSF-1 to advertise temporomandibular joint condylar Regeneration. Small. 2022;18:2107354.
Gained Lee G, Thangavelu M, Joung Choi M, Yeong Shin E, Sol Kim H, Seon Baek J, et al. Exosome mediated switch of miRNA-140 promotes enhanced chondrogenic differentiation of bone marrow stem cells for enhanced cartilage restore and regeneration. J Cell Biochem. 2020;121:3642–52.
Lang NP, Berglundh T, on Behalf of Working Group 4 of the Seventh European Workshop on Periodontology. Periimplant ailments: the place are we now? – Consensus of the Seventh European Workshop on Periodontology. J Clin Periodontol. 2011;38:178–81.
Lindhe J, Meyle J, on behalf of Group D of the European Workshop on Periodontology. Peri-implant ailments: consensus report of the sixth European workshop on periodontology. J Clinic Periodontol. 2008;35:282–5.
Chaparro A, Atria P, Realini O, Monteiro LJ, Betancur D, Acuña-Gallardo S, et al. Diagnostic potential of peri-implant crevicular fluid microRNA-21-3p and microRNA-150-5p and extracellular vesicles in peri-implant ailments. J Periodontol. 2021;92(6):11–21.
Wang W, Qiao S-C, Wu X-B, Solar B, Yang J-G, Li X, et al. Circ_0008542 in osteoblast exosomes promotes osteoclast-induced bone resorption by m6A methylation. Cell Dying Dis. 2021;12:628.
Zhang Z, Xu R, Yang Y, Liang C, Yu X, Liu Y, et al. Micro/nano-textured hierarchical titanium topography promotes exosome biogenesis and secretion to enhance osseointegration. J Nanobiotechnol. 2021;19:78.
Xu H, Chai Q, Xu X, Li Z, Bao W, Man Z, et al. Exosome-functionalized Ti6Al4V scaffolds selling osseointegration by modulating endogenous osteogenesis and osteoimmunity. ACS Appl Mater Interfaces. 2022;14:46161–75.
Li X, Liu Z, Xu S, Ma X, Zhao Z, Hu H, et al. A drug supply system constructed by a fusion peptide capturing exosomes targets to titanium implants precisely ensuing the enhancement of osseointegration peri-implant. Biomater Res. 2022;26:89.
Aqrawi LA, Galtung HK, Vestad B, Øvstebø R, Thiede B, Rusthen S, et al. Identification of potential saliva and tear biomarkers in main Sjögren’s syndrome, utilising the extraction of extracellular vesicles and proteomics evaluation. Arthritis Res Ther. 2017;19:14.
Yamashiro Ok, Hamada T, Mori Ok, Nishi Ok, Nakamura M, Beppu M, et al. Exosome-derived microRNAs from mouthrinse have the potential to be novel biomarkers for Sjögren syndrome. JPM. 2022;12:1483.
Cortes-Troncoso J, Jang S-I, Perez P, Hidalgo J, Ikeuchi T, Greenwell-Wild T, et al. T cell exosome–derived miR-142-3p impairs glandular cell operate in Sjögren’s syndrome. JCI Perception. 2020;5:e133497.
Roopashree MR, Gondhalekar RV, Shashikanth MC, George J, Thippeswamy SH, Shukla A. Pathogenesis of oral lichen planus – a assessment: pathogenesis of oral lichen planus. J Oral Pathol Med. 2010;39:729–34.
Yang J, Zhang J, Lu R, Tan Y, Du G, Zhou G. T cell–derived exosomes induced macrophage inflammatory protein-1α/β drive the trafficking of CD8 + T cells in oral lichen planus. J Cell Mol Med. 2020;24:14086–98.
Byun J, Hong S, Choi J, Jung J, Lee H. Diagnostic profiling of salivary exosomal micro RNA s in oral lichen planus sufferers. Oral Dis. 2015;21:987–93.
Peng Q, Zhang J, Zhou G. Differentially circulating exosomal microRNAs expression profiling in oral lichen planus. Am J Transl Res. 2018;10(9):2848–58.
Vazquez M-P, Kadlub N, Soupre V, Galliani E, Neiva-Vaz C, Pavlov I, et al. Plaies et traumatismes de la face de l’enfant. Annales de Chirurgie Plastique Esthétique. 2016;61:543–59.
Wang Z-C, Zhao W-Y, Cao Y, Liu Y-Q, Solar Q, Shi P, et al. The roles of irritation in keloid and hypertrophic scars. Entrance Immunol. 2020;11:603187.
Su D, Tsai H, Xu Z, Yan F, Wu Y, Xiao Y, et al. Exosomal PD-L1 capabilities as an immunosuppressant to advertise wound therapeutic. J Extracell Vesicle. 2020;9:1709262.
Harting MT, Srivastava AK, Zhaorigetu S, Bair H, Prabhakara KS, Toledano Furman NE, et al. Irritation-stimulated mesenchymal stromal cell-derived extracellular vesicles attenuate irritation. Stem Cells. 2018;36:79–90.
Ti D, Hao H, Tong C, Liu J, Dong L, Zheng J, et al. LPS-preconditioned mesenchymal stromal cells modify macrophage polarization for decision of persistent irritation by way of exosome-shuttled let-7b. J Transl Med. 2015;13:308.
Born LJ, Chang Ok, Shoureshi P, Lay F, Bengali S, Hsu ATW, et al. HOTAIR-loaded mesenchymal stem/stromal cell extracellular vesicles improve angiogenesis and wound therapeutic. Adv Healthcare Mater. 2022;11:2002070.
Li X, Wang Y, Shi L, Li B, Li J, Wei Z, et al. Magnetic concentrating on enhances the cutaneous wound therapeutic results of human mesenchymal stem cell-derived iron oxide exosomes. J Nanobiotechnol. 2020;18:113.
Kim S, Kim Y, Hyun Y-S, Choi H, Kim S-Y, Kim T-G. Exosomes from human twine blood plasma speed up cutaneous wound therapeutic by selling fibroblast operate, angiogenesis, and M2 macrophage differentiation. Biomater Sci. 2021;9:3028–39.
Wang Y, Cao Z, Wei Q, Ma Ok, Hu W, Huang Q, et al. VH298-loaded extracellular vesicles launched from gelatin methacryloyl hydrogel facilitate diabetic wound therapeutic by HIF-1α-mediated enhancement of angiogenesis. Acta Biomater. 2022;147:342–55.
Singer AJ. Cutaneous wound therapeutic. New Engl J Med. 1999;341(10):738–46.
Li B, Luan S, Chen J, Zhou Y, Wang T, Li Z, et al. The MSC-derived Exosomal lncRNA H19 promotes wound therapeutic in diabetic foot ulcers by upregulating PTEN by way of MicroRNA-152-3p. Mol Ther—Nucleic Acids. 2020;19:814–26.
Lai S, Deng L, Liu C, Li X, Fan L, Zhu Y, et al. Bone marrow mesenchymal stem cell-derived exosomes loaded with miR-26a by the novel immunomodulatory peptide DP7-C can promote osteogenesis. Biotechnol Lett. 2023;45:905–19.
Yang Z, Li X, Gan X, Wei M, Wang C, Yang G, et al. Hydrogel armed with Bmp2 mRNA-enriched exosomes enhances bone regeneration. J Nanobiotechnol. 2023;21:119.
Zha Y, Li Y, Lin T, Chen J, Zhang S, Wang J. Progenitor cell-derived exosomes endowed with VEGF plasmids improve osteogenic induction and vascular transforming in giant segmental bone defects. Theranostics. 2021;11:397–409.
Liu L, Yu F, Li L, Zhou L, Zhou T, Xu Y, et al. Bone marrow stromal cells stimulated by strontium-substituted calcium silicate ceramics: launch of exosomal miR-146a regulates osteogenesis and angiogenesis. Acta Biomater. 2021;119:444–57.
Kademani D. Oral most cancers. Mayo Clin Proc. 2007;82:878–87.
Thomson PJ. Views on oral squamous cell carcinoma prevention—proliferation, place, development and prediction. J Oral Pathol Med. 2018;47:803–7.
Zlotogorski-Hurvitz A, Dayan D, Chaushu G, Salo T, Vered M. Morphological and molecular options of oral fluid-derived exosomes: oral most cancers sufferers versus wholesome people. J Most cancers Res Clin Oncol. 2016;142:101–10.
Bigagli E, Locatello LG, Maggiore G, Valdarnini F, Bambi F, Gallo O, et al. Extracellular vesicles miR-210 as a possible biomarker for prognosis and survival prediction of oral squamous cell carcinoma sufferers. J Oral Pathol Med. 2022;51(4):350–7.
He T, Guo X, Li X, Liao C, Wang X, He Ok. Plasma-derived exosomal microRNA-130a serves as a noninvasive biomarker for prognosis and prognosis of oral squamous cell carcinoma. J Oncol. 2021;2021:1–9.
Faur CI, Roman RC, Jurj A, Raduly L, Almășan O, Rotaru H, et al. Salivary exosomal MicroRNA-486-5p and MicroRNA-10b-5p in oral and oropharyngeal squamous cell carcinoma. Medicina. 2022;58:1478.
Patel A, Patel S, Patel P, Mandlik D, Patel Ok, Tanavde V. Salivary exosomal miRNA-1307-5p predicts illness aggressiveness and poor prognosis in oral squamous cell carcinoma sufferers. IJMS. 2022;23:10639.
Coon J, Kingsley Ok, Howard KM. miR-365 (microRNA): potential biomarker in oral squamous cell carcinoma exosomes and extracellular vesicles. Int J Mol Sci. 2020;21(15):5317.
Gai C, Camussi F, Broccoletti R, Gambino A, Cabras M, Molinaro L, et al. Salivary extracellular vesicle-associated miRNAs as potential biomarkers in oral squamous cell carcinoma. BMC Most cancers. 2018;18:439.
He L, Ping F, Fan Z, Zhang C, Deng M, Cheng B, et al. Salivary exosomal miR-24-3p serves as a possible detective biomarker for oral squamous cell carcinoma screening. Biomed Pharmacother. 2020;121:109553.
Chen Y, Li Z, Liang J, Liu J, Hao J, Wan Q, et al. CircRNA has_circ_0069313 induced OSCC immunity escape by miR-325-3p-Foxp3 axes in each OSCC cells and Treg cells. Growing older. 2022;14:4376–89.
Deng Q, Chen Y, Lin L, Lin J, Wang H, Qiu Y, et al. Exosomal hsa_circRNA_047733 built-in with medical options for preoperative prediction of lymph node metastasis threat in oral squamous cell carcinoma. J Oral Pathol Med. 2023;52:37–46.
Yerneni SS, Hoffmann TK, Gooding WE, Whiteside TL. Scientific significance of PD-L1 Exosomes in plasma of head and neck most cancers sufferers+. Clin Most cancers Res. 2018;24(4):896–905.
Wang S, Liou G, Liu S, Chang JS, Hsiao J, Yen Y, et al. Laminin γ2-enriched extracellular vesicles of oral squamous cell carcinoma cells improve in vitro lymphangiogenesis by way of integrin α3-dependent uptake by lymphatic endothelial cells. Intl J Most cancers. 2019;144:2795–810.
Li C, Zhou Y, Liu J, Su X, Qin H, Huang S, et al. Potential markers from serum-purified exosomes for detecting oral squamous cell carcinoma metastasis. Most cancers Epidemiol Biomark Prev. 2019;28:1668–81.
Li L, Li C, Wang S, Wang Z, Jiang J, Wang W, et al. Exosomes derived from hypoxic oral squamous cell carcinoma cells ship miR-21 to normoxic cells to elicit a prometastatic phenotype. Can Res. 2016;76:1770–80.
Deng W, Meng Y, Wang B, Wang C-X, Hou C-X, Zhu Q-H, et al. In vitro experimental examine on the formation of microRNA-34a loaded exosomes and their inhibitory impact in oral squamous cell carcinoma. Cell Cycle. 2022;21:1775–83.
Kase Y, Uzawa Ok, Wagai S, Yoshimura S, Yamamoto J-I, Toeda Y, et al. Engineered exosomes delivering particular tumor-suppressive RNAi attenuate oral most cancers development. Sci Rep. 2021;11:5897.
Sayyed AA, Gondaliya P, Mali M, Pawar A, Bhat P, Khairnar A, et al. MiR-155 inhibitor-laden exosomes reverse resistance to cisplatin in a 3D tumor spheroid and xenograft mannequin of oral most cancers. Mol Pharm. 2021;18:3010–25.
Zhang Q, Xiao Q, Yin H, Xia C, Pu Y, He Z, et al. Milk-exosome based mostly pH/gentle delicate drug system to boost anticancer exercise towards oral squamous cell carcinoma. RSC Adv. 2020;10:28314–23.
Kamerkar S, Leng C, Burenkova O, Jang SC, McCoy C, Zhang Ok, et al. Exosome-mediated genetic reprogramming of tumor-associated macrophages by exoASO-STAT6 results in potent monotherapy antitumor exercise. Sci Adv. 2022;8:eabj7002.