Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. International Most cancers statistics 2020: GLOBOCAN estimates of incidence and Mortality Worldwide for 36 cancers in 185 nations. Ca-Most cancers J Clin. 2021;71:209–49.
Dekker E, Tanis PJ, Vleugels JLA, Kasi PM, Wallace MB. Colorectal most cancers. Lancet. 2019;394:1467–80.
Orosco RK, Tapia VJ, Califano JA, Clary B, Cohen EEW, Kane C, Lippman SM, Messer Ok, Molinolo A, Murphy JD, et al. Optimistic surgical margins within the 10 most typical strong cancers. Sci Rep. 2018;8:5686.
Amri R, Bordeianou LG, Sylla P, Berger DL. Affiliation of radial margin positivity with colon most cancers. JAMA Surg. 2015;150:890–8.
Peeters KC, Marijnen CA, Nagtegaal ID, Kranenbarg EK, Putter H, Wiggers T, Rutten H, Pahlman L, Glimelius B, Leer JW, van de Velde CJ. The TME trial after a median follow-up of 6 years: elevated native management however no survival profit in irradiated sufferers with resectable rectal carcinoma. Ann Surg. 2007;246:693–701.
Morris VK, Kennedy EB, Baxter NN, Benson AB 3, Cercek A, Cho M, Ciombor KK, Cremolini C, Davis A, Deming DA, et al. Remedy of metastatic colorectal most cancers: ASCO guideline. J Clin Oncol. 2023;41:678–700.
Quénet F, Elias D, Roca L, Goéré D, Ghouti L, Pocard M, Facy O, Arvieux C, Lorimier G, Pezet D, et al. Cytoreductive Surgical procedure plus hyperthermic intraperitoneal chemotherapy versus cytoreductive Surgical procedure alone for colorectal peritoneal metastases (PRODIGE 7): a multicentre, randomised, open-label, section 3 trial. Lancet Oncol. 2021;22:256–66.
Zhu S, Hu Z, Tian R, Yung BC, Yang Q, Zhao S, Kiesewetter DO, Niu G, Solar H, Antaris AL, Chen X. Repurposing cyanine NIR-I dyes accelerates scientific translation of Close to-Infrared-II (NIR-II) bioimaging. Adv Mater. 2018;30:e1802546.
Zhu S, Yung BC, Chandra S, Niu G, Antaris AL, Chen X, Close to-Infrared. -II (NIR-II) Bioimaging through off-peak NIR-I fluorescence Emission. Theranostics. 2018;8:4141–51.
Antaris AL, Chen H, Cheng Ok, Solar Y, Hong G, Qu C, Diao S, Deng Z, Hu X, Zhang B, et al. A small-molecule dye for NIR-II imaging. Nat Mater. 2016;15:235–42.
Han T, Wang Y, Ma S, Li M, Zhu N, Tao S, Xu J, Solar B, Jia Y, Zhang Y, et al. Close to-infrared carbonized polymer dots for NIR-II bioimaging. Adv Sci. 2022;9:e2203474.
Tian R, Ma H, Zhu S, Lau J, Ma R, Liu Y, Lin L, Chandra S, Wang S, Zhu X, et al. Multiplexed NIR-II probes for lymph node-invaded most cancers detection and imaging-guided surgical procedure. Adv Mater. 2020;32:e1907365.
Hong G, Lee JC, Robinson JT, Raaz U, Xie L, Huang NF, Cooke JP, Dai H. Multifunctional in vivo vascular imaging utilizing near-infrared II fluorescence. Nat Med. 2012;18:1841–6.
Wang R, Zhou L, Wang W, Li X, Zhang F. In vivo gastrointestinal drug-release monitoring by means of second near-infrared window fluorescent bioimaging with orally delivered microcarriers. Nat Commun. 2017;8:14702.
Vahrmeijer AL, Hutteman M, van der Vorst JR, van de Velde CJ, Frangioni JV. Picture-guided most cancers surgical procedure utilizing near-infrared fluorescence. Nat Rev Clin Oncol. 2013;10:507–18.
Wan J, Wang S, Yan B, Tang Y, Zheng J, Ji H, Hu Y, Zhuang B, Deng H, Yan J. Indocyanine inexperienced for radical lymph node dissection in sufferers with sigmoid and rectal most cancers: randomized scientific trial. BJS Open. 2022;6:zrac151.
Chen QY, Xie JW, Zhong Q, Wang JB, Lin JX, Lu J, Cao LL, Lin M, Tu RH, Huang ZN, et al. Security and Efficacy of indocyanine inexperienced tracer-guided lymph node dissection throughout laparoscopic radical gastrectomy in sufferers with gastric most cancers: a randomized scientific trial. JAMA Surg. 2020;155:300–11.
He Ok, Hong X, Chi C, Cai C, An Y, Li P, Liu X, Shan H, Tian J, Li J. Efficacy of near-Infrared fluorescence-guided hepatectomy for the detection of colorectal liver metastases: a randomized managed trial. J Am Coll Surg. 2022;234:130–7.
van der Vorst JR, Schaafsma BE, Hutteman M, Verbeek FP, Liefers GJ, Hartgrink HH, Smit VT, Löwik CW, van de Velde CJ, Frangioni JV, Vahrmeijer AL. Close to-infrared fluorescence-guided resection of colorectal liver metastases. Most cancers. 2013;119:3411–8.
Handgraaf HJM, Boogerd LSF, Höppener DJ, Peloso A, Sibinga Mulder BG, Hoogstins CES, Hartgrink HH, van de Velde CJH, Mieog JSD, Swijnenburg RJ, et al. Lengthy-term follow-up after near-infrared fluorescence-guided resection of colorectal liver metastases: a retrospective multicenter evaluation. Eur J Surg Oncol. 2017;43:1463–71.
Han SR, Lee CS, Bae JH, Lee HJ, Yoon MR, Al-Sawat A, Lee DS, Lee IK, Lee YS. Quantitative analysis of colon perfusion after excessive versus low ligation in rectal Surgical procedure by indocyanine inexperienced: a pilot examine. Surg Endosc. 2022;36:3511–9.
Munechika T, Kajitani R, Matsumoto Y, Nagano H, Komono A, Aisu N, Morimoto M, Yoshimatsu G, Yoshida Y, Hasegawa S. Security and effectiveness of excessive ligation of the inferior mesenteric artery for most cancers of the descending colon underneath indocyanine inexperienced fluorescence imaging: a pilot examine. Surg Endosc. 2021;35:1696–702.
De Nardi P, Elmore U, Maggi G, Maggiore R, Boni L, Cassinotti E, Fumagalli U, Gardani M, De Pascale S, Parise P, et al. Intraoperative angiography with indocyanine inexperienced to evaluate anastomosis perfusion in sufferers present process laparoscopic colorectal resection: outcomes of a multicenter randomized managed trial. Surg Endosc. 2020;34:53–60.
Carr JA, Franke D, Caram JR, Perkinson CF, Saif M, Askoxylakis V, Datta M, Fukumura D, Jain RK, Bawendi MG, Bruns OT. Shortwave infrared fluorescence imaging with the clinically permitted near-infrared dye indocyanine inexperienced. Proc Natl Acad Sci U S A. 2018;115:4465–70.
Hu Z, Fang C, Li B, Zhang Z, Cao C, Cai M, Su S, Solar X, Shi X, Li C, et al. First-in-human liver-tumour Surgical procedure guided by multispectral fluorescence imaging within the seen and near-infrared-I/II home windows. Nat Biomed Eng. 2020;4:259–71.
Cao C, Jin Z, Shi X, Zhang Z, Xiao A, Yang J, Ji N, Tian J, Hu Z. First Medical investigation of near-infrared window IIa/IIb fluorescence imaging for exact surgical resection of gliomas. IEEE Trans Biomed Eng. 2022;69:2404–13.
Zhang C, Liu T, Su Y, Luo S, Zhu Y, Tan X, Fan S, Zhang L, Zhou Y, Cheng T, Shi C. A near-infrared fluorescent heptamethine indocyanine dye with preferential Tumor accumulation for in vivo imaging. Biomaterials. 2010;31:6612–7.
Xu J, Han T, Wang Y, Zhang F, Li M, Bai L, Wang X, Solar B, Wang X, Du J, et al. Ultrabright renal-clearable cyanine-protein nanoprobes for high-quality NIR-II angiography and lymphography. Nano Lett. 2022;22:7965–75.
Chen Q, Wang C, Cheng L, He W, Cheng Z, Liu Z. Protein modified upconversion nanoparticles for imaging-guided mixed photothermal and photodynamic remedy. Biomaterials. 2014;35:2915–23.
Peralta DV, Heidari Z, Sprint S, Tarr MA. Hybrid paclitaxel and gold nanorod-loaded human serum albumin nanoparticles for simultaneous chemotherapeutic and photothermal remedy on 4T1 Breast most cancers cells. ACS Appl Mater Interfaces. 2015;7:7101–11.
Xia B, Zhang W, Shi J, Xiao SJ. Engineered stealth porous silicon nanoparticles through floor encapsulation of bovine serum albumin for prolonging blood circulation in vivo. ACS Appl Mater Interfaces. 2013;5:11718–24.
Yang Q, Ma Z, Wang H, Zhou B, Zhu S, Zhong Y, Wang J, Wan H, Antaris A, Ma R, et al. Rational design of molecular fluorophores for organic imaging within the NIR-II window. Adv Mater. 2017;29:1605497.
Alifu N, Zebibula A, Qi J, Zhang H, Solar C, Yu X, Xue D, Lam JWY, Li G, Qian J, Tang BZ. Single-molecular near-Infrared-II theranostic programs: ultrastable aggregation-induced emission nanoparticles for long-term tracing and environment friendly photothermal remedy. ACS Nano. 2018;12:11282–93.
Welsher Ok, Liu Z, Sherlock SP, Robinson JT, Chen Z, Daranciang D, Dai H. A path to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. Nat Nanotechnol. 2009;4:773–80.
Li H, Wang M, Huang B, Zhu SW, Zhou JJ, Chen DR, Cui R, Zhang M, Solar ZJ. Theranostic near-infrared-IIb emitting nanoprobes for selling immunogenic radiotherapy and abscopal results in opposition to most cancers Metastasis. Nat Commun. 2021;12:7149.
Zhang M, Yue J, Cui R, Ma Z, Wan H, Wang F, Zhu S, Zhou Y, Kuang Y, Zhong Y, et al. Brilliant quantum dots emitting at ∼1,600 nm within the NIR-IIb window for deep tissue fluorescence imaging. Proc Natl Acad Sci U S A. 2018;115:6590–5.
Yu M, Yang X, Zhang Y, Yang H, Huang H, Wang Z, Dong J, Zhang R, Solar Z, Li C, Wang Q. Pb-Doped ag(2) Se Quantum dots with enhanced photoluminescence within the NIR-II window. Small. 2021;17:e2006111.
Wang FF, Qu LQ, Ren FQ, Baghdasaryan A, Jiang YY, Hsu R, Liang P, Li JC, Zhu GZ, Ma ZR, Dai HJ. Excessive-precision tumor resection right down to few-cell stage guided by NIR-IIb molecular fluorescence imaging. Proc Natl Acad Sci U S A. 2022;119:2123.
Li M, Zheng X, Han T, Ma S, Wang Y, Solar B, Xu J, Wang X, Zhang S, Zhu S, Chen X. Close to-infrared-II ratiometric fluorescence probes for non-invasive detection and exact navigation Surgical procedure of metastatic sentinel lymph nodes. Theranostics. 2022;12:7191–202.
Otsuka H, Nagasaki Y, Kataoka Ok. PEGylated nanoparticles for organic and pharmaceutical functions. Adv Drug Supply Rev. 2003;55:403–19.
Liu X, Tao H, Yang Ok, Zhang S, Lee ST, Liu Z. Optimization of floor chemistry on single-walled carbon nanotubes for in vivo photothermal ablation of tumors. Biomaterials. 2011;32:144–51.
van Dam GM, Themelis G, Crane LM, Harlaar NJ, Pleijhuis RG, Kelder W, Sarantopoulos A, de Jong JS, Arts HJ, van der Zee AG, et al. Intraoperative tumor-specific fluorescence imaging in Ovarian most cancers by folate receptor-α concentrating on: first in-human outcomes. Nat Med. 2011;17:1315–9.
Suo Y, Wu F, Xu P, Shi H, Wang T, Liu H, Cheng Z. NIR-II fluorescence endoscopy for focused imaging of colorectal most cancers. Adv Healthc Mater. 2019;8:e1900974.
Park S, Lim S-Y, Bae SM, Kim S-Y, Myung S-J, Kim H-J. Indocyanine-based activatable fluorescence Flip-On probe for γ-Glutamyltranspeptidase and its software to the mouse mannequin of Colon Most cancers. ACS Sens. 2016;1:579–83.
Zhan Y, Ling S, Huang H, Zhang Y, Chen G, Huang S, Li C, Guo W, Wang Q. Speedy unperturbed-tissue evaluation for intraoperative most cancers analysis utilizing an enzyme-activated NIR-II nanoprobe. Angew Chem Int Ed. 2021;60:2637–42.
Jeong S, Tune J, Lee W, Ryu YM, Jung Y, Kim SY, Kim Ok, Hong SC, Myung SJ, Kim S. Most cancers-microenvironment-sensitive activatable quantum dot probe within the second near-infrared window. Nano Lett. 2017;17:1378–86.
Blau R, Epshtein Y, Pisarevsky E, Tiram G, Israeli Dangoor S, Yeini E, Krivitsky A, Eldar-Boock A, Ben-Shushan D, Gibori H, et al. Picture-guided Surgical procedure utilizing near-infrared Flip-ON fluorescent nanoprobes for exact detection of Tumor margins. Theranostics. 2018;8:3437–60.
Li H, Yao Q, Solar W, Shao Ok, Lu Y, Chung J, Kim D, Fan J, Lengthy S, Du J, et al. Aminopeptidase N activatable fluorescent probe for monitoring metastatic Most cancers and image-guided Surgical procedure through in situ spraying. J Am Chem Soc. 2020;142:6381–9.
Li Ok, Lyu Y, Huang Y, Xu S, Liu HW, Chen L, Ren TB, Xiong M, Huan S, Yuan L, et al. A de novo technique to develop NIR precipitating fluorochrome for long-term in situ cell membrane bioimaging. Proc Natl Acad Sci U S A. 2021;118: e2018033118.
Urano Y, Sakabe M, Kosaka N, Ogawa M, Mitsunaga M, Asanuma D, Kamiya M, Younger MR, Nagano T, Choyke PL, Kobayashi H. Speedy most cancers detection by topically spraying a γ-glutamyltranspeptidase-activated fluorescent probe. Sci Transl Med. 2011;3:110ra119.
Zhao T, Huang G, Li Y, Yang S, Ramezani S, Lin Z, Wang Y, Ma X, Zeng Z, Luo M, et al. A transistor-like pH nanoprobe for tumour detection and image-guided surgical procedure. Nat Biomed Eng. 2016;1: 0006.
Redy-Keisar O, Kisin-Finfer E, Ferber S, Satchi-Fainaro R, Shabat D. Synthesis and use of QCy7-derived modular probes for the detection and imaging of biologically related analytes. Nat Protoc. 2014;9:27–36.
Pan Y, Lei S, Zhang J, Qu J, Huang P, Lin J. Activatable NIR-II fluorescence probe for extremely delicate and selective visualization of glutathione in vivo. Anal Chem. 2021;93:17103–9.
Solar X, Liang X, Wang Y, Ma P, Xiong W, Qian S, Cui Y, Zhang H, Chen X, Tian F, et al. A Tumor microenvironment-activatable nanoplatform with phycocyanin-assisted in-situ nanoagent era for synergistic therapy of colorectal most cancers. Biomaterials. 2023;301:122263.
Huang J, Pu Ok. Activatable molecular probes for second near-infrared fluorescence, chemiluminescence, and photoacoustic imaging. Angew Chem Int Ed. 2020;59:11717–31.
Zhang Y, Zhang G, Zeng Z, Pu Ok. Activatable molecular probes for fluorescence-guided Surgical procedure, endoscopy and tissue biopsy. Chem Soc Rev. 2022;51:566–93.
Solar Y, Qu C, Chen H, He M, Tang C, Shou Ok, Hong S, Yang M, Jiang Y, Ding B, et al. Novel benzo-bis(1,2,5-thiadiazole) fluorophores for in vivo NIR-II imaging of most cancers. Chem Sci. 2016;7:6203–7.
Qu QJ, Zhang ZY, Guo XY, Yang JY, Cao CG, Li CJ, Zhang H, Xu PF, Hu ZH, Tian J. Novel multifunctional NIR-II aggregation-induced emission nanoparticles-assisted intraoperative identification and elimination of residual tumor. J Nanobiotechnol. 2022;20:143.
Xu P, Kang F, Yang W, Zhang M, Dang R, Jiang P, Wang J. Molecular engineering of a excessive quantum yield NIR-II molecular fluorophore with aggregation-induced emission (AIE) traits for in vivo imaging. Nanoscale. 2020;12:5084–90.
Zhang XD, Wang H, Antaris AL, Li L, Diao S, Ma R, Nguyen A, Hong G, Ma Z, Wang J, et al. Traumatic mind damage imaging within the second near-infrared window with a molecular fluorophore. Adv Mater. 2016;28:6872–9.
Jia R, Xu H, Wang C, Su L, Jing J, Xu S, Zhou Y, Solar W, Tune J, Chen X, Chen H. NIR-II emissive AIEgen photosensitizers allow ultrasensitive imaging-guided surgical procedure and phototherapy to completely inhibit orthotopic hepatic tumors. J Nanobiotechnol. 2021;19:1.
Shou Ok, Qu C, Solar Y, Chen H, Chen S, Zhang L, Xu H, Hong X, Yu A, Cheng Z. Multifunctional biomedical imaging in physiological and pathological situations utilizing a NIR-II probe. Adv Funct Mater. 2017;27:1700995.