Saturday, January 13, 2024
HomeNanotechnologyExcessive-density clear graphene arrays for predicting mobile calcium exercise at depth from...

Excessive-density clear graphene arrays for predicting mobile calcium exercise at depth from floor potential recordings


  • Frank, J. A., Antonini, M.-J. & Anikeeva, P. Subsequent-generation interfaces for learning neural perform. Nat. Biotechnol. 37, 1013–1023 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Machado, T. A., Kauvar, I. V. & Deisseroth, Ok. Multiregion neuronal exercise: the forest and the bushes. Nat. Rev. Neurosci. 23, 683–704 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Logothetis, N. Ok. et al. Hippocampal–cortical interplay during times of subcortical silence. Nature 491, 547–553 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Gradinaru, V. et al. Optical deconstruction of parkinsonian neural circuitry. Science 324, 354–359 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Fernández-Ruiz, A. et al. Gamma rhythm communication between entorhinal cortex and dentate gyrus neuronal assemblies. Science 372, eabf3119 (2021).

    Article 

    Google Scholar
     

  • Bi, X.-a et al. A novel CERNNE method for predicting Parkinson’s disease-associated genes and mind areas based mostly on multimodal imaging genetics knowledge. Med. Picture Anal. 67, 101830 (2021).

    Article 

    Google Scholar
     

  • Zhang, D. et al. Multimodal classification of Alzheimer’s illness and delicate cognitive impairment. Neuroimage 55, 856–867 (2011).

    Article 

    Google Scholar
     

  • Chiarelli, A. M. et al. Deep studying for hybrid EEG-fNIRS mind–laptop interface: utility to motor imagery classification. J. Neural Eng. 15, 036028 (2018).

    Article 

    Google Scholar
     

  • Halme, H.-L. & Parkkonen, L. Throughout-subject offline decoding of motor imagery from MEG and EEG. Sci. Rep. 8, 10087 (2018).

    Article 

    Google Scholar
     

  • Liu, X. et al. Decoding of cortex-wide mind exercise from native recordings of neural potentials. J. Neural Eng. 18, 066009 (2021).

    Article 

    Google Scholar
     

  • Siegle, J. H. et al. Survey of spiking within the mouse visible system reveals useful hierarchy. Nature 592, 86–92 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Kuzum, D. et al. Clear and versatile low noise graphene electrodes for simultaneous electrophysiology and neuroimaging. Nat. Commun. 5, 5259 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Park, D.-W. et al. Graphene-based carbon-layered electrode array know-how for neural imaging and optogenetic purposes. Nat. Commun. 5, 5258 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Thunemann, M. et al. Deep 2-photon imaging and artifact-free optogenetics by way of clear graphene microelectrode arrays. Nat. Commun. 9, 2035 (2018).

    Article 

    Google Scholar
     

  • Driscoll, N. et al. Multimodal in vivo recording utilizing clear graphene microelectrodes illuminates spatiotemporal seizure dynamics on the microscale. Commun. Biol. 4, 136 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Park, D.-W. et al. Electrical neural stimulation and simultaneous in vivo monitoring with clear graphene electrode arrays implanted in GCaMP6f mice. ACS Nano 12, 148–157 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Ledochowitsch, P. et al. A clear μECoG array for simultaneous recording and optogenetic stimulation. In Proc. 2011 Annual Worldwide Convention of the IEEE Engineering in Medication and Biology Society 2937–2940 (IEEE, 2011).

  • Kwon, Ok. Y. et al. Opto-μECoG array: a hybrid neural interface with clear μECoG electrode array and built-in LEDs for optogenetics. IEEE Trans. Biomed. Circuits Syst. 7, 593–600 (2013).

    Article 

    Google Scholar
     

  • Kunori, N. & Takashima, I. A clear epidural electrode array to be used at the side of optical imaging. J. Neurosci. Strategies 251, 130–137 (2015).

    Article 

    Google Scholar
     

  • Ledochowitsch, P. et al. Methods for optical management and simultaneous electrical readout of prolonged cortical circuits. J. Neurosci. Strategies 256, 220–231 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, J. et al. Stretchable clear electrode arrays for simultaneous electrical and optical interrogation of neural circuits in vivo. Nano Lett. 18, 2903–2911 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Chen, Z. et al. Versatile and clear steel nanowire microelectrode arrays and interconnects for electrophysiology, optogenetics, and optical mapping. Adv. Mater. Technol. 6, 2100225 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Neto, J. P. et al. Clear and versatile electrocorticography electrode arrays based mostly on silver nanowire networks for neural recordings. ACS Appl. Nano Mater. 4, 5737–5747 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Araki, T. et al. Lengthy‐time period implantable, versatile, and clear neural interface based mostly on Ag/Au core–shell nanowires. Adv. Healthc. Mater. 8, 1900130 (2019).

    Article 

    Google Scholar
     

  • Search engine optimization, Ok. J. et al. Clear electrophysiology microelectrodes and interconnects from steel nanomesh. ACS Nano 11, 4365–4372 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Search engine optimization, J. W. et al. Artifact‐free 2D mapping of neural exercise in vivo by way of clear gold nanonetwork array. Adv. Funct. Mater. 30, 2000896 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Obaid, S. N. et al. Multifunctional versatile biointerfaces for simultaneous colocalized optophysiology and electrophysiology. Adv. Funct. Mater. 30, 1910027 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Qiang, Y. et al. Clear arrays of bilayer-nanomesh microelectrodes for simultaneous electrophysiology and two-photon imaging within the mind. Sci. Adv. 4, eaat0626 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Cho, Y. U. et al. Extremely‐low value, facile fabrication of clear neural electrode array for electrocorticography with photoelectric artifact‐free optogenetics. Adv. Funct. Mater. 32, 2105568 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Yang, W. et al. A totally clear, versatile PEDOT:PSS–ITO–Ag–ITO based mostly microelectrode array for ECoG recording. Lab Chip 21, 1096–1108 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Kshirsagar, P. et al. Clear graphene/PEDOT:PSS microelectrodes for electro‐ and optophysiology. Adv. Mater. Technol. 4, 1800318 (2019).

    Article 

    Google Scholar
     

  • Viswam, V. et al. Optimum electrode measurement for multi-scale extracellular-potential recording from neuronal assemblies. Entrance. Neurosci. 13, 385 (2019).

    Article 

    Google Scholar
     

  • Rogers, N. et al. Correlation construction in micro-ECoG recordings is described by spatially coherent elements. PLoS Comput. Biol. 15, e1006769 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Harris, Ok. D. et al. Enhancing knowledge high quality in neuronal inhabitants recordings. Nat. Neurosci. 19, 1165–1174 (2016).

    Article 

    Google Scholar
     

  • Akinwande, D. et al. A evaluate on mechanics and mechanical properties of 2D supplies—graphene and past. Extrem. Mech. Lett. 13, 42–77 (2017).

    Article 

    Google Scholar
     

  • Kireev, D. et al. Steady cuffless monitoring of arterial blood stress through graphene bioimpedance tattoos. Nat. Nanotechnol. 17, 864–870 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Sahni, D. et al. Biocompatibility of pristine graphene for neuronal interface. J. Neurosurg. Pediatr. 11, 575–583 (2013).

    Article 

    Google Scholar
     

  • Liu, X. et al. E-cannula reveals anatomical variety in sharp-wave ripples as a driver for the recruitment of distinct hippocampal assemblies. Cell Rep. 41, 111453 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Ding, D. et al. Analysis of sturdiness of clear graphene electrodes fabricated on totally different versatile substrates for continual in vivo experiments. IEEE Trans. Biomed. Eng. 67, 3203–3210 (2020).

    Article 

    Google Scholar
     

  • Wilson, M. N. et al. Multimodal monitoring of human cortical organoids implanted in mice reveal useful reference to visible cortex. Nat. Commun. 13, 7945 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Bonaccini Calia, A. et al. Full-bandwidth electrophysiology of seizures and epileptiform exercise enabled by versatile graphene microtransistor depth neural probes. Nat. Nanotechnol. 17, 301–309 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Masvidal-Codina, E. et al. Excessive-resolution mapping of infraslow cortical mind exercise enabled by graphene microtransistors. Nat. Mater. 18, 280–288 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Lu, Y. et al. Ultralow impedance graphene microelectrodes with excessive optical transparency for simultaneous deep two‐photon imaging in transgenic mice. Adv. Funct. Mater. 28, 1800002 (2018).

    Article 

    Google Scholar
     

  • Xia, J. et al. Measurement of the quantum capacitance of graphene. Nat. Nanotechnol. 4, 505–509 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Liu, X. et al. Multimodal neural recordings with Neuro-FITM uncover numerous patterns of cortical–hippocampal interactions. Nat. Neurosci. 24, 886–896 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Łęski, S. et al. Frequency dependence of sign energy and spatial attain of the native discipline potential. PLoS Comput. Biol. 9, e1003137 (2013).

    Article 

    Google Scholar
     

  • Myers, J. C. et al. The spatial attain of neuronal coherence and spike-field coupling throughout the human neocortex. J. Neurosci. 42, 6285–6294 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Liu, X. et al. Decoding ECoG excessive gamma energy from mobile calcium response utilizing clear graphene microelectrodes. In Proc. 2019 ninth Worldwide IEEE/EMBS Convention on Neural Engineering (NER) 710–713 (IEEE, 2019).

  • Gallego, J. A. et al. Neural manifolds for the management of motion. Neuron 94, 978–984 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Elsayed, G. F. et al. Reorganization between preparatory and motion inhabitants responses in motor cortex. Nat. Commun. 7, 13239 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Stringer, C. et al. Spontaneous behaviors drive multidimensional, brainwide exercise. Science 364, eaav7893 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Okun, M. et al. Various coupling of neurons to populations in sensory cortex. Nature 521, 511–515 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Stringer, C. et al. Excessive-dimensional geometry of inhabitants responses in visible cortex. Nature 571, 361–365 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Lin, M. Z. & Schnitzer, M. J. Genetically encoded indicators of neuronal exercise. Nat. Neurosci. 19, 1142–1153 (2016).

    Article 

    Google Scholar
     

  • Zhang, D. et al. Coping with the overseas‐physique response to implanted biomaterials: methods and purposes of recent supplies. Adv. Funct. Mater. 31, 2007226 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Carnicer-Lombarte, A. et al. International physique response to implanted biomaterials and its affect in nerve neuroprosthetics. Entrance. Bioeng. Biotechnol. 9, 271 (2021).

  • Salatino, J. W. et al. Glial responses to implanted electrodes within the mind. Nat. Biomed. Eng. 1, 862–877 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Y. et al. Electrochemical delamination of CVD-grown graphene movie: towards the recyclable use of copper catalyst. ACS Nano 5, 9927–9933 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Brug, G. et al. The evaluation of electrode impedances sophisticated by the presence of a continuing part component. J. Electroanal. Chem. Interfacial Electrochem. 176, 275–295 (1984).

    Article 
    CAS 

    Google Scholar
     

  • Mayford, M. et al. Management of reminiscence formation by way of regulated expression of a CaMKII transgene. Science 274, 1678–1683 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Wekselblatt, J. B. et al. Giant-scale imaging of cortical dynamics throughout sensory notion and habits. J. Neurophysiol. 115, 2852–2866 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Mitani, A. & Komiyama, T. Actual-time processing of two-photon calcium imaging knowledge together with lateral movement artifact correction. Entrance. Neuroinform. 12, 98 (2018).

    Article 

    Google Scholar
     

  • Pachitariu, M. et al. Suite2p: past 10,000 neurons with normal two-photon microscopy. Preprint at bioRxiv https://doi.org/10.1101/061507 (2016).

  • Yu, B. M. et al. Gaussian-process issue evaluation for low-dimensional single-trial evaluation of neural inhabitants exercise. in Advances in Neural Data Processing Methods Vol. 21 (Curran Associates, 2008).



  • Supply hyperlink

    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    - Advertisment -
    Google search engine

    Most Popular

    Recent Comments