Dinh, C. T. et al. CO2 electroreduction to ethylene by way of hydroxide-mediated copper catalysis at an abrupt interface. Science 360, 783–787 (2018).
Birdja, Y. Y. et al. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat. Power 4, 732–745 (2019).
Gao, D., Arán-Ais, R. M., Jeon, H. S. & Roldan Cuenya, B. Rational catalyst and electrolyte design for CO2 electroreduction in direction of multicarbon merchandise. Nat. Catal. 2, 198–210 (2019).
Ren, S. et al. Molecular electrocatalysts can mediate quick, selective CO2 discount in a circulation cell. Science 365, 367–369 (2019).
Wu, Y., Jiang, Z., Lu, X., Liang, Y. & Wang, H. Domino electroreduction of CO2 to methanol on a molecular catalyst. Nature 575, 639–642 (2019).
Choi, C. et al. Extremely lively and steady stepped Cu floor for enhanced electrochemical CO2 discount to C2H4. Nat. Catal. 3, 804–812 (2020).
Chen, C. et al. Boosting the productiveness of electrochemical CO2 discount to multi-carbon merchandise by enhancing CO2 diffusion via a porous natural cage. Angew. Chem. Int. Ed. 61, e202202607 (2022).
Weng, L.-C., Bell, A. T. & Weber, A. Z. In direction of membrane-electrode meeting methods for CO2 discount: a modeling research. Power Environ. Sci. 12, 1950–1968 (2019).
Jeng, E. & Jiao, F. Investigation of CO2 single-pass conversion in a circulation electrolyzer. React. Chem. Eng. 5, 1768–1775 (2020).
Ma, M. et al. Insights into the carbon stability for CO2 electroreduction on Cu utilizing gasoline diffusion electrode reactor designs. Power Environ. Sci. 13, 977–985 (2020).
Ma, M., Kim, S., Chorkendorff, I. & Seger, B. Position of ion-selective membranes within the carbon stability for CO2 electroreduction by way of gasoline diffusion electrode reactor designs. Chem. Sci. 11, 8854–8861 (2020).
Cofell, E. R., Nwabara, U. O., Bhargava, S. S., Henckel, D. E. & Kenis, P. J. A. Investigation of electrolyte-dependent carbonate formation on gasoline diffusion electrodes for CO2 electrolysis. ACS Appl. Mater. Inter. 13, 15132–15142 (2021).
Iizuka, A. et al. Carbon dioxide restoration from carbonate options utilizing bipolar membrane electrodialysis. Sep. Purif. Technol. 101, 49–59 (2012).
Al-Mamoori, A., Krishnamurthy, A., Rownaghi, A. A. & Rezaei, F. Carbon seize and utilization replace. Power Technol. 5, 834–849 (2017).
Keith, D. W., Holmes, G., St. Angelo, D. & Heidel, Ok. A course of for capturing CO2 from the ambiance. Joule 2, 1573–1594 (2018).
Sisler, J. et al. Ethylene electrosynthesis: a comparative techno-economic evaluation of alkaline vs membrane electrode meeting vs CO2–CO–C2H4 tandems. ACS Power Lett. 6, 997–1002 (2021).
Gu, J. et al. Modulating electrical discipline distribution by alkali cations for CO2 electroreduction in strongly acidic medium. Nat. Catal. 5, 268–276 (2022).
Huang, J. E. et al. CO2 electrolysis to multicarbon merchandise in robust acid. Science 372, 1074–1078 (2021).
Monteiro, M. C. O., Philips, M. F., Schouten, Ok. J. P. & Koper, M. T. M. Effectivity and selectivity of CO2 discount to CO on gold gasoline diffusion electrodes in acidic media. Nat. Commun. 12, 4943 (2021).
Xie, Y. et al. Excessive carbon utilization in CO2 discount to multi-carbon merchandise in acidic media. Nat. Catal. 5, 564–570 (2022).
Ooka, H., Figueiredo, M. C. & Koper, M. T. M. Competitors between hydrogen evolution and carbon dioxide discount on copper electrodes in mildly acidic media. Langmuir 33, 9307–9313 (2017).
Bondue, C. J., Graf, M., Goyal, A. & Koper, M. T. M. Suppression of hydrogen evolution in acidic electrolytes by electrochemical CO2 discount. J. Am. Chem. Soc. 143, 279–285 (2021).
Mariano, R. G. et al. Microstructural origin of domestically enhanced CO2 electroreduction exercise on gold. Nat. Mater. 20, 1000–1006 (2021).
Monteiro, M. C. O. et al. Absence of CO2 electroreduction on copper, gold and silver electrodes with out steel cations in answer. Nat. Catal. 4, 654–662 (2021).
Banerjee, S., Gerke, C. S. & Thoi, V. S. Guiding CO2RR selectivity by compositional tuning within the electrochemical double layer. Acc. Chem. Res. 55, 504–515 (2022).
Nitopi, S. et al. Progress and views of electrochemical CO2 discount on copper in aqueous electrolyte. Chem. Rev. 119, 7610–7672 (2019).
Shi, C., Hansen, H. A., Lausche, A. C. & Norskov, J. Ok. Developments in electrochemical CO2 discount exercise for open and close-packed steel surfaces. Phys. Chem. Chem. Phys. 16, 4720–4727 (2014).
Zhong, M. et al. Accelerated discovery of CO2 electrocatalysts utilizing lively machine studying. Nature 581, 178–183 (2020).
Zhang, Y.-J., Sethuraman, V., Michalsky, R. & Peterson, A. A. Competitors between CO2 discount and H2 evolution on transition-metal electrocatalysts. ACS Catal. 4, 3742–3748 (2014).
Liu, X. et al. Understanding tendencies in electrochemical carbon dioxide discount charges. Nat. Commun. 8, 15438 (2017).
Wang, X. et al. Mechanistic response pathways of enhanced ethylene yields throughout electroreduction of CO2–CO co-feeds on Cu and Cu-tandem electrocatalysts. Nat. Nanotechnol. 14, 1063–1070 (2019).
Chen, C. et al. Cu-Ag tandem catalysts for high-rate CO2 electrolysis towards multicarbons. Joule 4, 1688–1699 (2020).
Wang, H. et al. Synergistic enhancement of electrocatalytic CO2 discount to C2 oxygenates at nitrogen-doped nanodiamonds/Cu interface. Nat. Nanotechnol. 15, 131–137 (2020).
Wang, Y., Zheng, X. & Wang, D. Design idea for electrocatalysts. Nano Res. 15, 1730–1752 (2022).
Seh, Z. W. et al. Combining idea and experiment in electrocatalysis: insights into supplies design. Science 355, eaad4998 (2017).
Li, F. et al. Molecular tuning of CO2-to-ethylene conversion. Nature 577, 509–513 (2020).
Li, F. et al. Cooperative CO2-to-ethanol conversion by way of enriched intermediates at molecule–steel catalyst interfaces. Nat. Catal. 3, 75–82 (2019).
Hung, S. F. et al. A metal-supported single-atom catalytic website permits carbon dioxide hydrogenation. Nat. Commun. 13, 819 (2022).
Skafte, T. L. et al. Selective high-temperature CO2 electrolysis enabled by oxidized carbon intermediates. Nat. Power 4, 846–855 (2019).
Yan, J. et al. Excessive-efficiency intermediate temperature stable oxide electrolyzer cells for the conversion of carbon dioxide to fuels. J. Energy Sources 252, 79–84 (2014).
Ozden, A. et al. Carbon-efficient carbon dioxide electrolysers. Nat. Maintain. 5, 563–573 (2022).
Luc, W., Rosen, J. & Jiao, F. An Ir-based anode for a sensible CO2 electrolyzer. Catal. In the present day 288, 79–84 (2017).
Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).
Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994).
Blochl, P. E. Projector augmented-wave technique. Phys. Rev. B 50, 17953–17979 (1994).
Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave technique. Phys. Rev. B 59, 1758–1775 (1999).
Perdew, J. P., Burke, Ok. & Ernzerhof, M. Generalized gradient approximation made easy. Phys. Rev. Lett. 77, 3865–3868 (1996).
Grimme, S., Ehrlich, S. & Goerigk, L. Impact of the damping perform in dispersion corrected density practical idea. J. Comput. Chem. 32, 1456–1465 (2011).
Monkhorst, H. J. & Pack, J. D. Particular factors for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).
Henkelman, G., Uberuaga, B. P. & Jónsson, H. A climbing picture nudged elastic band technique for locating saddle factors and minimal vitality paths. J. Chem. Phys. 113, 9901–9904 (2000).
Fan, Q. et al. Electrochemical CO2 discount to C2+ species: heterogeneous electrocatalysts, response pathways, and optimization methods. Mater. In the present day Power 10, 280–301 (2018).