Tuesday, December 19, 2023
HomeNanotechnologyEntry and exit of extracellular vesicles to and from the blood circulation

Entry and exit of extracellular vesicles to and from the blood circulation


  • Alberro, A., Iparraguirre, L., Fernandes, A. & Otaegui, D. Extracellular vesicles in blood: sources, results, and functions. Int. J. Mol. Sci. 22, 8163 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Witwer, Okay. W. & Wolfram, J. Extracellular vesicles versus artificial nanoparticles for drug supply. Nat. Rev. Mater. 6, 103–106 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Busatto, S., Pham, A., Suh, A., Shapiro, S. & Wolfram, J. Organotropic drug supply: artificial nanoparticles and extracellular vesicles. Biomed. Microdevices 21, 46 (2019).

    Article 

    Google Scholar
     

  • Beetler, D. J. et al. Extracellular vesicles as personalised medication. Mol. Elements Med. 91, 101155 (2022).

    Article 

    Google Scholar
     

  • Walker, S. et al. Extracellular vesicle-based drug supply techniques for most cancers therapy. Theranostics 9, 8001–8017 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Hu, T., Wolfram, J. & Srivastava, S. Extracellular vesicles in most cancers detection: hopes and hypes. Developments Most cancers 7, 122–133 (2020).

    Article 

    Google Scholar
     

  • Iannotta, D., Yang, M., Celia, C., Di Marzio, L. & Wolfram, J. Extracellular vesicle therapeutics from plasma and adipose tissue. Nano As we speak 39, 101159 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Ghodasara, A., Raza, A., Wolfram, J., Salomon, C. & Popat, A. Medical translation of extracellular vesicles. Adv. Healthc. Mater. https://doi.org/10.1002/adhm.202301010 (2023).

  • Dumas, S. J. et al. Phenotypic variety and metabolic specialization of renal endothelial cells. Nat. Rev. Nephrol. 17, 441–464 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Jourde-Chiche, N. et al. Endothelium construction and performance in kidney well being and illness. Nat. Rev. Nephrol. 15, 87–108 (2019).

    Article 

    Google Scholar
     

  • Wolfram, J. & Ferrari, M. Medical most cancers nanomedicine. Nano As we speak 25, 85–89 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Prabhakar, U. et al. Challenges and key concerns of the improved permeability and retention impact for nanomedicine drug supply in oncology. Most cancers Res. 73, 2412–2417 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Sindhwani, S. et al. The entry of nanoparticles into stable tumours. Nat. Mater. 19, 566–575 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Lessey-Morillon, E. C. et al. The RhoA guanine nucleotide alternate issue, LARG, mediates ICAM-1-dependent mechanotransduction in endothelial cells to stimulate transendothelial migration. J. Immunol. 192, 3390–3398 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Zeng, Z. et al. Most cancers-derived exosomal miR-25-3p promotes pre-metastatic area of interest formation by inducing vascular permeability and angiogenesis. Nat. Commun. 9, 5395 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Treps, L., Perret, R., Edmond, S., Ricard, D. & Gavard, J. Glioblastoma stem-like cells secrete the pro-angiogenic VEGF-A consider extracellular vesicles. J. Extracell. Vesicles 6, 1359479 (2017).

    Article 

    Google Scholar
     

  • Tominaga, N. et al. Mind metastatic most cancers cells launch microRNA-181c-containing extracellular vesicles able to destructing blood–mind barrier. Nat. Commun. 6, 6716 (2015).

    Article 
    CAS 

    Google Scholar
     

  • De La Cruz, E. M. How cofilin severs an actin filament. Biophys. Rev. 1, 51–59 (2009).

    Article 

    Google Scholar
     

  • Chatterjee, V. et al. Endothelial microvesicles carrying Src-rich cargo impair adherens junction integrity and cytoskeleton homeostasis. Cardiovasc. Res. 116, 1525–1538 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Sperandio, M., Gleissner, C. A. & Ley, Okay. Glycosylation in immune cell trafficking. Immunol. Rev. 230, 97–113 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Goncalves, J. P., Deliwala, V. J., Kolarich, D., Souza-Fonseca-Guimaraes, F. & Wolfram, J. The most cancers cell-derived extracellular vesicle glycocode in immunoevasion. Developments Immunol. 43, 864–867 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Yang, M. et al. Extracellular vesicle glucose transporter-1 and glycan options in monocyte-endothelial inflammatory interactions. Nanomedicine 42, 102515 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Walker, S. A. et al. Glycan node evaluation of plasma-derived extracellular vesicles. Cells 9, 1946 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Williams, C. et al. Glycosylation of extracellular vesicles: present information, instruments and scientific views. J. Extracell. Vesicles 7, 1442985 (2018).

    Article 

    Google Scholar
     

  • Pendiuk Goncalves, J. et al. Glycan node evaluation detects various glycosaminoglycan ranges in melanoma-derived extracellular vesicles. Int. J. Mol. Sci. 9, 1946 (2023).


    Google Scholar
     

  • Li, Y. et al. EV-origin: enumerating the tissue-cellular origin of circulating extracellular vesicles utilizing exLR profile. Comput Struct. Biotechnol. J. 18, 2851–2859 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Baluk, P. et al. Functionally specialised junctions between endothelial cells of lymphatic vessels. J. Exp. Med. 204, 2349–2362 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Trzewik, J., Mallipattu, S. Okay., Artmann, G. M., Delano, F. A. & Schmid-Schönbein, G. W. Proof for a second valve system in lymphatics: endothelial microvalves. FASEB J. 15, 1711–1717 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Breslin, J. W. et al. Lymphatic vessel community construction and physiology. Compr. Physiol. 9, 207–299 (2018).

    Article 

    Google Scholar
     

  • Liu, D. et al. CD97 promotion of gastric carcinoma lymphatic metastasis is exosome dependent. Gastric Most cancers 19, 754–766 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Shimizu, A. et al. Exosomal CD47 performs a necessary position in immune evasion in ovarian most cancers. Mol. Most cancers Res. 19, 1583–1595 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Tessandier, N. et al. Platelets disseminate extracellular vesicles in lymph in rheumatoid arthritis. Arterioscler. Thromb. Vasc. Biol. 40, 929–942 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Welsh, J. D., Kahn, M. L. & Candy, D. T. Lymphovenous hemostasis and the position of platelets in regulating lymphatic circulation and lymphatic vessel maturation. Blood 128, 1169–1173 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Mehta, D. & Malik, A. B. Signaling mechanisms regulating endothelial permeability. Physiol. Rev. 86, 279–367 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Fernández-Hernando, C. et al. Genetic proof supporting a important position of endothelial caveolin-1 through the development of atherosclerosis. Cell Metab. 10, 48–54 (2009).

    Article 

    Google Scholar
     

  • Morad, G. et al. Tumor-derived extracellular vesicles breach the intact blood–mind barrier by way of transcytosis. ACS Nano 13, 13853–13865 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Chen, C. C. et al. Elucidation of exosome migration throughout the blood–mind barrier mannequin in vitro. Cell. Mol. Bioeng. 9, 509–529 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Gonda, A., Kabagwira, J., Senthil, G. N. & Wall, N. R. Internalization of exosomes by means of receptor-mediated endocytosis. Mol. Most cancers Res. 17, 337–347 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Mulcahy, L. A., Pink, R. C. & Carter, D. R. F. Routes and mechanisms of extracellular vesicle uptake. J. Extracell. Vesicles 3, 24641 (2014).

    Article 

    Google Scholar
     

  • Feng, Y. et al. The blocking of integrin-mediated interactions with maternal endothelial cells reversed the endothelial cell dysfunction induced by EVs, derived from preeclamptic placentae. Int. J. Mol. Sci. 23, 13115 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Fomina, A. F., Deerinck, T. J., Ellisman, M. H. & Cahalan, M. D. Regulation of membrane trafficking and subcellular group of endocytic compartments revealed with FM1-43 in resting and activated human T cells. Exp. Cell. Res. 291, 150–166 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Morelli, A. E. et al. Endocytosis, intracellular sorting, and processing of exosomes by dendritic cells. Blood 104, 3257–3266 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Wei, X. et al. Floor phosphatidylserine is accountable for the internalization on microvesicles derived from hypoxia-induced human bone marrow mesenchymal stem cells into human endothelial cells. PLoS ONE 11, e0147360 (2016).

    Article 

    Google Scholar
     

  • He, C., Hu, Y., Yin, L., Tang, C. & Yin, C. Results of particle dimension and floor cost on mobile uptake and biodistribution of polymeric nanoparticles. Biomaterials 31, 3657–3666 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Lu, F., Wu, S. H., Hung, Y. & Mou, C. Y. Dimension impact on cell uptake in effectively‐suspended, uniform mesoporous silica nanoparticles. Small 5, 1408–1413 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Théry, C. et al. Minimal info for research of extracellular vesicles 2018 (MISEV2018): a place assertion of the Worldwide Society for Extracellular Vesicles and replace of the MISEV2014 pointers. J. Extracell. Vesicles 7, 1535750 (2018).

    Article 

    Google Scholar
     

  • Gould, S. J. & Raposo, G. As we wait: dealing with an imperfect nomenclature for extracellular vesicles. J. Extracell. Vesicles 2, 20389 (2013).

    Article 

    Google Scholar
     

  • Sousa de Almeida, M. et al. Understanding nanoparticle endocytosis to enhance concentrating on methods in nanomedicine. Chem. Soc. Rev. 50, 5397–5434 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Nazarenko, I. et al. Cell floor tetraspanin Tspan8 contributes to molecular pathways of exosome-induced endothelial cell activation. Most cancers Res. 70, 1668–1678 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Yuan, D. et al. Macrophage exosomes as pure nanocarriers for protein supply to infected mind. Biomaterials 142, 1–12 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Joshi, B. S. & Zuhorn, I. S. Heparan sulfate proteoglycan-mediated dynamin-dependent transport of neural stem cell exosomes in an in vitro blood–mind barrier mannequin. Eur. J. Neurosci. 53, 706–719 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Ihrcke, N. S., Wrenshall, L. E., Lindman, B. J. & Platt, J. L. Function of heparan sulfate in immune system-blood vessel interactions. Immunol. As we speak 14, 500–505 (1993).

    Article 
    CAS 

    Google Scholar
     

  • Chanda, D. et al. Fibronectin on the floor of extracellular vesicles mediates fibroblast invasion. Am. J. Respir. Cell Mol. Biol. 60, 279–288 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Purushothaman, A. et al. Fibronectin on the floor of myeloma cell-derived exosomes mediates exosome-cell interactions. J. Biol. Chem. 291, 1652–1663 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Deng, Z. et al. Tumor cell cross discuss with tumor-associated leukocytes results in induction of tumor exosomal fibronectin and promotes tumor development. Am. J. Pathol. 180, 390–398 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Mertens, G., Cassiman, J. J., Van den Berghe, H., Vermylen, J. & David, G. Cell floor heparan sulfate proteoglycans from human vascular endothelial cells. Core protein characterization and antithrombin III binding properties. J. Biol. Chem. 267, 20435–20443 (1992).

    Article 
    CAS 

    Google Scholar
     

  • Matsumoto, J. et al. Transmission of α-synuclein-containing erythrocyte-derived extracellular vesicles throughout the blood–mind barrier by way of adsorptive mediated transcytosis: one other mechanism for initiation and development of Parkinson’s illness? Acta Neuropathol. Commun. 5, 71 (2017).

    Article 

    Google Scholar
     

  • Banks, W. A. et al. Transport of extracellular vesicles throughout the blood–mind barrier: mind pharmacokinetics and results of irritation. Int. J. Mol. Sci. 21, 4407 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Hervé, F., Ghinea, N. & Scherrmann, J.-M. CNS supply by way of adsorptive transcytosis. AAPS J. 10, 455–472 (2008).

    Article 

    Google Scholar
     

  • Banks, W. A., Kastin, A. J., Brennan, J. M. & Vallance, Okay. L. Adsorptive endocytosis of HIV-1gp120 by blood–mind barrier is enhanced by lipopolysaccharide. Exp. Neurol. 156, 165–171 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Wurdinger, T. et al. Extracellular vesicles and their convergence with viral pathways. Adv. Virol. 2012, 767694 (2012).

    Article 

    Google Scholar
     

  • Banks, W. A. et al. Transport of human immunodeficiency virus sort 1 pseudoviruses throughout the blood–mind barrier: position of envelope proteins and adsorptive endocytosis. J. Virol. 75, 4681–4691 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Ben-Zvi, A. et al. Mfsd2a is important for the formation and performance of the blood–mind barrier. Nature 509, 507–511 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Andreone, B. J. et al. Blood–mind barrier permeability is regulated by lipid transport-dependent suppression of caveolae-mediated transcytosis. Neuron 94, 581–594.e5 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Nguyen, L. N. et al. Mfsd2a is a transporter for the important omega-3 fatty acid docosahexaenoic acid. Nature 509, 503–506 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Busatto, S. et al. Lipoprotein-based drug supply. Adv. Drug Deliv. Rev. 159, 377–390 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Simonsen, J. B. What are we ? Extracellular vesicles, lipoproteins, or each. Circ. Res. 121, 920–922 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Toth, E. A. et al. Formation of a protein corona on the floor of extracellular vesicles in blood plasma. J. Extracell. Vesicles 10, e12140 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Sodar, B. W. et al. Low-density lipoprotein mimics blood plasma-derived exosomes and microvesicles throughout isolation and detection. Sci. Rep. 6, 24316 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Busatto, S. et al. Mind metastases-derived extracellular vesicles induce binding and aggregation of low-density lipoprotein. J. Nanobiotechnol. 18, 162 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Busatto, S. et al. Concerns for extracellular vesicle and lipoprotein interactions in cell tradition assays. J. Extracell. Vesicles 11, e12202 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Lozano-Andrés, E. et al. Bodily affiliation of low density lipoprotein particles and extracellular vesicles unveiled by single particle evaluation. Preprint at https://doi.org/10.1101/2022.08.31.506022 (2022).

  • Pham, M.-T. et al. Endosomal egress and intercellular transmission of hepatic ApoE-containing lipoproteins and its exploitation by the hepatitis C virus. PLoS Pathog. 19, e1011052 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Broad, Okay. et al. Unraveling multilayered extracellular vesicles: hypothesis on trigger. J. Extracell. Vesicles 12, e12309 (2023).

    Article 

    Google Scholar
     

  • Phinney, D. G. et al. Mesenchymal stem cells use extracellular vesicles to outsource mitophagy and shuttle microRNAs. Nat. Commun. 6, 8472 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Dixson, A. C., Dawson, T. R., Di Vizio, D. & Weaver, A. M. Context-specific regulation of extracellular vesicle biogenesis and cargo choice. Nat. Rev. Mol. Cell Biol. 4, 454–476 (2023).

    Article 

    Google Scholar
     

  • Dallas, S. L., Prideaux, M. & Bonewald, L. F. The osteocyte: an endocrine cell … and extra. Endocr. Rev. 34, 658–690 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Abbott, N. J., Ronnback, L. & Hansson, E. Astrocyte–endothelial interactions on the blood–mind barrier. Nat. Rev. Neurosci. 7, 41–53 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Xie, Y., Bagby, T. R., Cohen, M. S. & Forrest, M. L. Drug supply to the lymphatic system: significance in future most cancers prognosis and therapies. Knowledgeable Opin. Drug Deliv. 6, 785–792 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Parker, R. J., Hartman, Okay. D. & Sieber, S. M. Lymphatic absorption and tissue disposition of liposome-entrapped [14C]adriamycin following intraperitoneal administration to rats. Most cancers Res. 41, 1311–1317 (1981).

    CAS 

    Google Scholar
     

  • Fujimoto, Y., Okuhata, Y., Tyngi, S., Namba, Y. & Oku, N. Magnetic resonance lymphography of profundus lymph nodes with liposomal gadolinium-diethylenetriamine pentaacetic acid. Biol. Pharm. Bull. 23, 97–100 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Kang, M., Jordan, V., Blenkiron, C. & Chamley, L. W. Biodistribution of extracellular vesicles following administration into animals: a scientific overview. J. Extracell. Vesicles 10, e12085 (2021).

    Article 

    Google Scholar
     

  • Amruta, A., Iannotta, D., Cheetham, S. W., Lammers, T. & Wolfram, J. Vasculature organotropism in drug supply. Adv. Drug Deliv. Rev. 201, 115054 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Li, C. et al. The position of exosomal miRNAs in most cancers. J. Transl. Med. 20, 6 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Crowl, J. T., Grey, E. E., Pestal, Okay., Volkman, H. E. & Stetson, D. B. Intracellular nucleic acid detection in autoimmunity. Annu. Rev. Immunol. 35, 313–336 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Snaebjornsson, M. T., Janaki-Raman, S. & Schulze, A. Greasing the wheels of the most cancers machine: the position of lipid metabolism in most cancers. Cell Metab. 31, 62–76 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Lei, Okay. et al. Most cancers-cell stiffening by way of ldl cholesterol depletion enhances adoptive T-cell immunotherapy. Nat. Biomed. Eng. 5, 1411–1425 (2021).

    Article 
    CAS 

    Google Scholar
     



  • Supply hyperlink

    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    - Advertisment -
    Google search engine

    Most Popular

    Recent Comments