Novotny, Z. et al. Kinetics of the thermal oxidation of Ir(100) towards IrO2 studied by ambient-pressure X-ray photoelectron spectroscopy. J. Phys. Chem. Lett. 11, 3601–3607 (2020).
van Spronsen, M. A., Frenken, J. W. M. & Groot, I. M. N. Observing the oxidation of platinum. Nat. Commun. 8, 429 (2017).
Nunn, W. et al. Novel synthesis method for “cussed” metals and metallic oxides. Proc. Natl Acad. Sci. USA 118, e2105713118 (2021).
Liu, X. R. et al. Synthesis and digital properties of Ruddlesden–Popper strontium iridate epitaxial skinny movies stabilized by management of progress kinetics. Phys. Rev. Mater. 1, 075004 (2017).
Nair, H. P. et al. Demystifying the expansion of superconducting Sr2RuO4 skinny movies. APL Mater. 6, 101108 (2018).
Nunn, W. et al. Stable-source metal-organic molecular beam epitaxy of epitaxial RuO2. APL Mater. 9, 091112 (2021).
Wakabayashi, Y. Ok. et al. Machine-learning-assisted thin-film progress: Bayesian optimization in molecular beam epitaxy of SrRuO3 skinny movies.APL Mater. 7, 101114 (2019).
Kim, B. J. et al. Section-sensitive commentary of a spin-orbital Mott state in Sr2IrO4. Science 323, 1329–1332 (2009).
Kim, W. J. et al. Pressure engineering of the magnetic multipole moments and anomalous Corridor impact in pyrochlore iridate skinny movies.Sci. Adv. 6, eabb1539 (2020).
Kim, Y. Ok., Sung, N. H., Denlinger, J. D. & Kim, B. J. Commentary of a d-wave hole in electron-doped Sr2IrO4. Nat. Phys. 12, 37–41 (2016).
Kushwaha, P. et al. Almost free electrons in a 5d delafossite oxide metallic. Sci. Adv. 1, e1500692 (2015).
Nelson, J. N. et al. Interfacial cost switch and protracted metallicity of ultrathin SrIrO3/SrRuO3 heterostructures. Sci. Adv. 8, eabj0481 (2022).
Zhu, Z. H. et al. Anomalous antiferromagnetism in metallic RuO2 decided by resonant X-ray scattering. Phys. Rev. Lett. 122, 017202 (2019).
Uchida, M. et al. Subject-direction management of the kind of cost carriers in nonsymmorphic IrO2. Phys. Rev. B 91, 241119 (2015).
Smejkal, L., Gonzalez-Hernandez, R., Jungwirth, T. & Sinova, J. Crystal time-reversal symmetry breaking and spontaneous Corridor impact in collinear antiferromagnets. Sci. Adv. 6, eaaz8809 (2020).
Nelson, J. N. et al. Dirac nodal traces protected in opposition to spin-orbit interplay in IrO2. Phys. Rev. Mater. 3, 064205 (2019).
Ruf, J. P. et al. Pressure-stabilized superconductivity. Nat. Commun. 12, 59 (2021).
Ellingham, H. J. T. Reducibility of oxides and sulphides in metallurgical processes. J. Soc. Chem. Ind. Trans. Commun. 63, 125–160 (1944).
Chambers, S. A. Epitaxial progress and properties of skinny movie oxides. Surf. Sci. Rep. 39, 105–180 (2000).
Prakash, A. et al. Hybrid molecular beam epitaxy for the expansion of stoichiometric BaSnO3. J. Vac. Sci. Technol. A 33, 060608 (2015).
Schlom, D. G. Perspective: oxide molecular-beam epitaxy rocks!. APL Mater. 3, 062403 (2015).
Smith, E. H. et al. Exploiting kinetics and thermodynamics to develop phase-pure advanced oxides by molecular-beam epitaxy beneath steady codeposition. Phys. Rev. Mater. 1, 023403 (2017).
Tune, J. H., Susaki, T. & Hwang, H. Y. Enhanced thermodynamic stability of epitaxial oxide skinny movies. Adv. Mater. 20, 2528–252 (2008).
Petrie, J. R. et al. Pressure management of oxygen vacancies in epitaxial strontium cobaltite movies. Adv. Funct. Mater. 26, 1564–1570 (2016).
Yun, H., Prakash, A., Birol, T., Jalan, B. & Mkhoyan, Ok. A. Dopant segregation inside and outdoors dislocation cores in perovskite BaSnO3 and reconstruction of the native atomic and digital constructions. Nano Lett. 21, 4357–4364 (2021).
Gorbenko, O. Y., Samoilenkov, S. V., Graboy, I. E. & Kaul, A. R. Epitaxial stabilization of oxides in skinny movies. Chem. Mater. 14, 4026–4043 (2002).
Truttmann, T. Ok., Liu, F. D., Garcia-Barriocanal, J., James, R. D. & Jalan, B. Pressure rest through part transformation in high-mobility SrSnO3 movies. ACS Appl. Electron. Mater. 3, 1127–1132 (2021).
Bose, A. et al. Results of anisotropic pressure on spin-orbit torque produced by the Dirac nodal line semimetal IrO2. ACS Appl. Mater. Interfaces 12, 55411–55416 (2020).
Liu, J. et al. Pressure-induced nonsymmorphic symmetry breaking and elimination of Dirac semimetallic nodal line in an orthoperovskite iridate. Phys. Rev. B 93, 085118 (2016).
Hou, X., Takahashi, R., Yamamoto, T. & Lippmaa, M. Microstructure evaluation of IrO2 skinny movies. J. Cryst. Development 462, 24–28 (2017).
Stoerzinger, Ok. A., Qiao, L., Biegalski, M. D. & Shao-Horn, Y. Orientation-dependent oxygen evolution actions of rutile IrO2 and RuO2. J. Phys. Chem. Lett. 5, 1636–1641 (2014).
Abb, M. J. S., Herd, B. & Over, H. Template-assisted progress of ultrathin single-crystalline IrO2(110) movies on RuO2(110)/Ru(0001) and its thermal stability. J. Phys. Chem. C 122, 14725–14732 (2018).
Wang, F. & Senthil, T. Twisted Hubbard mannequin for Sr2IrO4: magnetism and potential excessive temperature superconductivity. Phys. Rev. Lett. 106, 136402 (2011).
Pesin, D. & Balents, L. Mott physics and band topology in supplies with sturdy spin-orbit interplay. Nat. Phys. 6, 376–381 (2010).
Wan, X. G., Turner, A. M., Vishwanath, A. & Savrasov, S. Y. Topological semimetal and Fermi-arc floor states within the digital construction of pyrochlore iridates. Phys. Rev. B 83, 205101 (2011).
Go, A., Witczak-Krempa, W., Jeon, G. S., Park, Ok. & Kim, Y. B. Correlation results on 3D topological phases: from bulk to boundary. Phys. Rev. Lett. 109, 066401 (2012).
Guo, L. et al. Trying to find a path to synthesize in situ epitaxial Pr2Ir2O7 skinny movies with thermodynamic strategies. npj Comput. Mater. 7, 144 (2021).
Gutierrez-Llorente, A., Iglesias, L., Rodriguez-Gonzalez, B. & Rivadulla, F. Epitaxial stabilization of pulsed laser deposited Srn+1IrnO3n+1 skinny movies: entangled impact of progress dynamics and pressure. APL Mater 6, 091101 (2018).
Butler, S. R. & Gillson, J. L. Crystal progress, electrical resistivity and lattice parameters of Ruo2 and Iro2. Mater. Res. Bull. 6, 81–88 (1971).
Solar, Y., Zhang, Y., Liu, C. X., Felser, C. & Yan, B. H. Dirac nodal traces and induced spin Corridor impact in metallic rutile oxides. Phys. Rev. B 95, 235104 (2017).
Kawasaki, J. Ok. et al. Engineering service efficient plenty in ultrathin quantum wells of IrO2. Phys. Rev. Lett. 121, 176802 (2018).
Kawasaki, J. Ok. et al. Rutile IrO2/TiO2 superlattices: a hyperconnected analog to the Ruddlesden–Popper construction. Phys. Rev. Mater. 2, 054206 (2018).
Kawasaki, J. Ok., Uchida, M., Paik, H., Schlom, D. G. & Shen, Ok. M. Evolution of digital correlations throughout the rutile, perovskite, and Ruddlesden-Popper iridates with octahedral connectivity. Phys. Rev. B 94, 121104 (2016).
Morozova, N. B., Semyannikov, P. P., Sysoev, S. V., Grankin, V. M. & Igumenov, I. Ok. Saturated vapor stress of iridium(III) acetylacetonate. J. Therm. Anal. Calorim. 60, 489–495 (2000).
Freakley, S. J., Ruiz-Esquius, J. & Morgan, D. J. The X-ray photoelectron spectra of Ir, IrO2 and IrCl3 revisited. Surf. Interface Anal. 49, 794–799 (2017).
Hohenberg, P. & Kohn, W. Inhomogeneous electron gasoline. Phys. Rev. 136, 7 (1964).
Kohn, W. & Sham, L. J. Self-consistent equations together with trade and correlation results. Phys. Rev. 140, A1133–A1138 (1965).
Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).
Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994).
Kresse, G. & Furthmüller, J. Effectivity of ab-initio whole vitality calculations for metals and semiconductors utilizing a plane-wave foundation set. Comput. Mater. Sci. 6, 15–50 (1996).