Monday, October 23, 2023
HomeNanotechnologyEngineering metallic oxidation utilizing epitaxial pressure

Engineering metallic oxidation utilizing epitaxial pressure


  • Novotny, Z. et al. Kinetics of the thermal oxidation of Ir(100) towards IrO2 studied by ambient-pressure X-ray photoelectron spectroscopy. J. Phys. Chem. Lett. 11, 3601–3607 (2020).

    Article 

    Google Scholar
     

  • van Spronsen, M. A., Frenken, J. W. M. & Groot, I. M. N. Observing the oxidation of platinum. Nat. Commun. 8, 429 (2017).

    Article 

    Google Scholar
     

  • Nunn, W. et al. Novel synthesis method for “cussed” metals and metallic oxides. Proc. Natl Acad. Sci. USA 118, e2105713118 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Liu, X. R. et al. Synthesis and digital properties of Ruddlesden–Popper strontium iridate epitaxial skinny movies stabilized by management of progress kinetics. Phys. Rev. Mater. 1, 075004 (2017).

    Article 

    Google Scholar
     

  • Nair, H. P. et al. Demystifying the expansion of superconducting Sr2RuO4 skinny movies. APL Mater. 6, 101108 (2018).

    Article 

    Google Scholar
     

  • Nunn, W. et al. Stable-source metal-organic molecular beam epitaxy of epitaxial RuO2. APL Mater. 9, 091112 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Wakabayashi, Y. Ok. et al. Machine-learning-assisted thin-film progress: Bayesian optimization in molecular beam epitaxy of SrRuO3 skinny movies.APL Mater. 7, 101114 (2019).

    Article 

    Google Scholar
     

  • Kim, B. J. et al. Section-sensitive commentary of a spin-orbital Mott state in Sr2IrO4. Science 323, 1329–1332 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Kim, W. J. et al. Pressure engineering of the magnetic multipole moments and anomalous Corridor impact in pyrochlore iridate skinny movies.Sci. Adv. 6, eabb1539 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Kim, Y. Ok., Sung, N. H., Denlinger, J. D. & Kim, B. J. Commentary of a d-wave hole in electron-doped Sr2IrO4. Nat. Phys. 12, 37–41 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Kushwaha, P. et al. Almost free electrons in a 5d delafossite oxide metallic. Sci. Adv. 1, e1500692 (2015).

    Article 

    Google Scholar
     

  • Nelson, J. N. et al. Interfacial cost switch and protracted metallicity of ultrathin SrIrO3/SrRuO3 heterostructures. Sci. Adv. 8, eabj0481 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zhu, Z. H. et al. Anomalous antiferromagnetism in metallic RuO2 decided by resonant X-ray scattering. Phys. Rev. Lett. 122, 017202 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Uchida, M. et al. Subject-direction management of the kind of cost carriers in nonsymmorphic IrO2. Phys. Rev. B 91, 241119 (2015).

    Article 

    Google Scholar
     

  • Smejkal, L., Gonzalez-Hernandez, R., Jungwirth, T. & Sinova, J. Crystal time-reversal symmetry breaking and spontaneous Corridor impact in collinear antiferromagnets. Sci. Adv. 6, eaaz8809 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Nelson, J. N. et al. Dirac nodal traces protected in opposition to spin-orbit interplay in IrO2. Phys. Rev. Mater. 3, 064205 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Ruf, J. P. et al. Pressure-stabilized superconductivity. Nat. Commun. 12, 59 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Ellingham, H. J. T. Reducibility of oxides and sulphides in metallurgical processes. J. Soc. Chem. Ind. Trans. Commun. 63, 125–160 (1944).

    CAS 

    Google Scholar
     

  • Chambers, S. A. Epitaxial progress and properties of skinny movie oxides. Surf. Sci. Rep. 39, 105–180 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Prakash, A. et al. Hybrid molecular beam epitaxy for the expansion of stoichiometric BaSnO3. J. Vac. Sci. Technol. A 33, 060608 (2015).

    Article 

    Google Scholar
     

  • Schlom, D. G. Perspective: oxide molecular-beam epitaxy rocks!. APL Mater. 3, 062403 (2015).

    Article 

    Google Scholar
     

  • Smith, E. H. et al. Exploiting kinetics and thermodynamics to develop phase-pure advanced oxides by molecular-beam epitaxy beneath steady codeposition. Phys. Rev. Mater. 1, 023403 (2017).

    Article 

    Google Scholar
     

  • Tune, J. H., Susaki, T. & Hwang, H. Y. Enhanced thermodynamic stability of epitaxial oxide skinny movies. Adv. Mater. 20, 2528–252 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Petrie, J. R. et al. Pressure management of oxygen vacancies in epitaxial strontium cobaltite movies. Adv. Funct. Mater. 26, 1564–1570 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Yun, H., Prakash, A., Birol, T., Jalan, B. & Mkhoyan, Ok. A. Dopant segregation inside and outdoors dislocation cores in perovskite BaSnO3 and reconstruction of the native atomic and digital constructions. Nano Lett. 21, 4357–4364 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Gorbenko, O. Y., Samoilenkov, S. V., Graboy, I. E. & Kaul, A. R. Epitaxial stabilization of oxides in skinny movies. Chem. Mater. 14, 4026–4043 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Truttmann, T. Ok., Liu, F. D., Garcia-Barriocanal, J., James, R. D. & Jalan, B. Pressure rest through part transformation in high-mobility SrSnO3 movies. ACS Appl. Electron. Mater. 3, 1127–1132 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Bose, A. et al. Results of anisotropic pressure on spin-orbit torque produced by the Dirac nodal line semimetal IrO2. ACS Appl. Mater. Interfaces 12, 55411–55416 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Liu, J. et al. Pressure-induced nonsymmorphic symmetry breaking and elimination of Dirac semimetallic nodal line in an orthoperovskite iridate. Phys. Rev. B 93, 085118 (2016).

    Article 

    Google Scholar
     

  • Hou, X., Takahashi, R., Yamamoto, T. & Lippmaa, M. Microstructure evaluation of IrO2 skinny movies. J. Cryst. Development 462, 24–28 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Stoerzinger, Ok. A., Qiao, L., Biegalski, M. D. & Shao-Horn, Y. Orientation-dependent oxygen evolution actions of rutile IrO2 and RuO2. J. Phys. Chem. Lett. 5, 1636–1641 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Abb, M. J. S., Herd, B. & Over, H. Template-assisted progress of ultrathin single-crystalline IrO2(110) movies on RuO2(110)/Ru(0001) and its thermal stability. J. Phys. Chem. C 122, 14725–14732 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Wang, F. & Senthil, T. Twisted Hubbard mannequin for Sr2IrO4: magnetism and potential excessive temperature superconductivity. Phys. Rev. Lett. 106, 136402 (2011).

    Article 

    Google Scholar
     

  • Pesin, D. & Balents, L. Mott physics and band topology in supplies with sturdy spin-orbit interplay. Nat. Phys. 6, 376–381 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Wan, X. G., Turner, A. M., Vishwanath, A. & Savrasov, S. Y. Topological semimetal and Fermi-arc floor states within the digital construction of pyrochlore iridates. Phys. Rev. B 83, 205101 (2011).

    Article 

    Google Scholar
     

  • Go, A., Witczak-Krempa, W., Jeon, G. S., Park, Ok. & Kim, Y. B. Correlation results on 3D topological phases: from bulk to boundary. Phys. Rev. Lett. 109, 066401 (2012).

    Article 

    Google Scholar
     

  • Guo, L. et al. Trying to find a path to synthesize in situ epitaxial Pr2Ir2O7 skinny movies with thermodynamic strategies. npj Comput. Mater. 7, 144 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Gutierrez-Llorente, A., Iglesias, L., Rodriguez-Gonzalez, B. & Rivadulla, F. Epitaxial stabilization of pulsed laser deposited Srn+1IrnO3n+1 skinny movies: entangled impact of progress dynamics and pressure. APL Mater 6, 091101 (2018).

    Article 

    Google Scholar
     

  • Butler, S. R. & Gillson, J. L. Crystal progress, electrical resistivity and lattice parameters of Ruo2 and Iro2. Mater. Res. Bull. 6, 81–88 (1971).

    Article 
    CAS 

    Google Scholar
     

  • Solar, Y., Zhang, Y., Liu, C. X., Felser, C. & Yan, B. H. Dirac nodal traces and induced spin Corridor impact in metallic rutile oxides. Phys. Rev. B 95, 235104 (2017).

    Article 

    Google Scholar
     

  • Kawasaki, J. Ok. et al. Engineering service efficient plenty in ultrathin quantum wells of IrO2. Phys. Rev. Lett. 121, 176802 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Kawasaki, J. Ok. et al. Rutile IrO2/TiO2 superlattices: a hyperconnected analog to the Ruddlesden–Popper construction. Phys. Rev. Mater. 2, 054206 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Kawasaki, J. Ok., Uchida, M., Paik, H., Schlom, D. G. & Shen, Ok. M. Evolution of digital correlations throughout the rutile, perovskite, and Ruddlesden-Popper iridates with octahedral connectivity. Phys. Rev. B 94, 121104 (2016).

    Article 

    Google Scholar
     

  • Morozova, N. B., Semyannikov, P. P., Sysoev, S. V., Grankin, V. M. & Igumenov, I. Ok. Saturated vapor stress of iridium(III) acetylacetonate. J. Therm. Anal. Calorim. 60, 489–495 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Freakley, S. J., Ruiz-Esquius, J. & Morgan, D. J. The X-ray photoelectron spectra of Ir, IrO2 and IrCl3 revisited. Surf. Interface Anal. 49, 794–799 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Hohenberg, P. & Kohn, W. Inhomogeneous electron gasoline. Phys. Rev. 136, 7 (1964).

    Article 

    Google Scholar
     

  • Kohn, W. & Sham, L. J. Self-consistent equations together with trade and correlation results. Phys. Rev. 140, A1133–A1138 (1965).

    Article 

    Google Scholar
     

  • Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    Article 
    CAS 

    Google Scholar
     

  • Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994).

    Article 
    CAS 

    Google Scholar
     

  • Kresse, G. & Furthmüller, J. Effectivity of ab-initio whole vitality calculations for metals and semiconductors utilizing a plane-wave foundation set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article 
    CAS 

    Google Scholar
     



  • Supply hyperlink

    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    - Advertisment -
    Google search engine

    Most Popular

    Recent Comments