Sunday, June 25, 2023
HomeNanotechnologyElectron cooling in graphene enhanced by plasmon–hydron resonance

Electron cooling in graphene enhanced by plasmon–hydron resonance


  • Hwang, H. Y. et al. Nonlinear THz conductivity dynamics in p-type CVD-grown graphene. J. Phys. Chem. B 117, 15819–15824 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Hafez, H. A. et al. Extraordinarily environment friendly terahertz high-harmonic technology in graphene by sizzling Dirac fermions. Nature 561, 507–511 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Liu, M. et al. A graphene-based broadband optical modulator. Nature 474, 64–67 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Romagnoli, M. et al. Graphene-based built-in photonics for next-generation datacom and telecom. Nat. Rev. Mater. 3, 392–414 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Muench, J. E. et al. Waveguide-integrated, plasmonic enhanced graphene photodetectors. Nano Lett. 19, 7632–7644 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Pisana, S. et al. Breakdown of the adiabatic Born–Oppenheimer approximation in graphene. Nat. Mater. 6, 198–201 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Hwang, E. H., Sensarma, R. & Sarma, S. D. Plasmon–phonon coupling in graphene. Phys. Rev. B 82, 195406 (2010).

    Article 

    Google Scholar
     

  • Dai, S. et al. Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial. Nat. Nanotechnol. 10, 682–686 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Koch, R. et al. Strong phonon–plasmon coupling in quasifreestanding graphene on silicon carbide. Phys. Rev. Lett. 116, 106802 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Kavokine, N., Bocquet, M.-L. & Bocquet, L. Fluctuation-induced quantum friction in nanoscale water flows. Nature 602, 84–90 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Bui, A. T., Thiemann, F. L., Michaelides, A. & Cox, S. J. Classical quantum friction at water–carbon interfaces. Nano Lett. 23, 580–587 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Coquinot, B., Bocquet, L. & Kavokine, N. Quantum suggestions on the strong–liquid interface: flow-induced digital present and its adverse contribution to friction. Phys. Rev. X 13, 011019 (2023).

    CAS 

    Google Scholar
     

  • Lizée, M. et al. Sturdy digital winds blowing beneath liquid flows on carbon surfaces. Phys. Rev. X 13, 011020 (2023).


    Google Scholar
     

  • George, P. A. et al. Ultrafast optical-pump terahertz-probe spectroscopy of the service rest and recombination dynamics in epitaxial graphene. Nano Lett. 8, 4248–4251 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Kar, S., Su, Y., Nair, R. R. & Sood, A. Ok. Probing photoexcited carriers in a few-layer MoS2 laminate by time-resolved optical pump terahertz probe spectroscopy. ACS Nano 9, 12004–12010 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Mihnev, M. T. et al. Digital cooling through interlayer Coulomb coupling in multilayer epitaxial graphene. Nat. Commun. 6, 8105 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Mihnev, M. T. et al. Microscopic origins of the terahertz service rest and cooling dynamics in graphene. Nat. Commun. 7, 11617 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Pogna, E. A. et al. Scorching-carrier cooling in high-quality graphene is intrinsically restricted by optical phonons. ACS Nano 15, 11285–11295 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zheng, W. et al. Band transport by massive Fröhlich polarons in MXenes. Nat. Phys. 18, 544–550 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Tielrooij, Ok. J. et al. Out-of-plane warmth switch in van der Waals stacks by electron–hyperbolic phonon coupling. Nat. Nanotechnol. 13, 41–46 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Phillpot, S. R. & McGaughey, A. J. Introduction to thermal transport. Mater. Right now 8, 18–20 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Gutierrez-Varela, O., Merabia, S. & Santamaria, R. Dimension-dependent results of the thermal transport at gold nanoparticle–water interfaces. J. Chem. Phys. 157, 084702 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Herrero, C., Joly, L. & Merabia, S. Extremely-high liquid–strong thermal resistance utilizing nanostructured gold surfaces coated with graphene. Appl. Phys. Lett. 120, 171601 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Volokitin, A. I. & Persson, B. N. Close to-field radiative warmth switch and noncontact friction. Rev. Mod. Phys. 79, 1291–1329 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Biehs, S.-A. et al. Close to-field radiative warmth switch in many-body techniques. Rev. Mod. Phys. 93, 025009 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Maali, A., Cohen-Bouhacina, T. & Kellay, H. Measurement of the slip size of water movement on graphite floor. Appl. Phys. Lett. 92, 053101 (2008).

    Article 

    Google Scholar
     

  • Secchi, E. et al. Huge radius-dependent movement slippage in carbon nanotubes. Nature 537, 210–213 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Xie, Q. et al. Quick water transport in graphene nanofluidic channels. Nat. Nanotechnol. 13, 238–245 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Bistritzer, R. & MacDonald, A. H. Digital cooling in graphene. Phys. Rev. Lett. 102, 206410 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Betz, A. C. et al. Scorching electron cooling by acoustic phonons in graphene. Phys. Rev. Lett. 109, 056805 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Brida, D. et al. Ultrafast collinear scattering and service multiplication in graphene. Nat. Commun. 4, 1987 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Tomadin, A. et al. The ultrafast dynamics and conductivity of photoexcited graphene at totally different Fermi energies. Sci. Adv. 4, eaar5313 (2018).

    Article 

    Google Scholar
     

  • Massicotte, M., Soavi, G., Principi, A. & Tielrooij, Ok. J. Scorching carriers in graphene-fundamentals and functions. Nanoscale 13, 8376–8411 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Mahan, G. D. Many-Particle Physics Ch. 7 (Springer, 2000).

  • Principi, A. et al. Tremendous-Planckian electron cooling in a van der Waals stack. Phys. Rev. Lett. 118, 126804 (2017).

    Article 

    Google Scholar
     

  • Rammer, J. & Smith, H. Quantum field-theoretical strategies in transport principle of metals. Rev. Mod. Phys. 58, 323–359 (1986).

    Article 
    CAS 

    Google Scholar
     

  • Sensible, J. L., Roubinowitz, N., Belzig, W. & Basko, D. M. Signature of resonant modes in radiative warmth present noise spectrum. Phys. Rev. B 106, 165407 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Pendry, J. B. Radiative change of warmth between nanostructures. J. Phys. Condens. Matter 11, 6621–6633 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Volokitin, A. I. & Persson, B. N. J. Radiative warmth switch between nanostructures. Phys. Rev. B 63, 205404 (2001).

    Article 

    Google Scholar
     

  • Wunsch, B., Stauber, T., Sols, F. & Guinea, F. Dynamical polarization of graphene at finite doping. N. J. Phys. 8, 318–318 (2006).

    Article 

    Google Scholar
     

  • Carlson, S., Brunig, F. N., Loche, P., Bonthuis, D. J. & Netz, R. R. Exploring the absorption spectrum of simulated water from MHz to infrared. J. Phys. Chem. A 124, 5599–5605 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Ying, X. & Kamenev, A. Plasmonic tuning of near-field warmth switch between graphene monolayers. Phys. Rev. B 102, 195426 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Tocci, G., Joly, L. & Michaelides, A. Friction of water on graphene and hexagonal boron nitride from ab initio strategies: very totally different slippage regardless of very comparable interface buildings. Nano Lett. 14, 6872–6877 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Tocci, G., Bilichenko, M., Joly, L. & Iannuzzi, M. Ab initio nanofluidics: disentangling the position of the vitality panorama and of density correlations on liquid/strong friction. Nanoscale 12, 10994–11000 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Yang, W. et al. A graphene Zener–Klein transistor cooled by a hyperbolic substrate. Nat. Nanotechnol. 13, 47–52 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Baudin, E., Voisin, C. & Plaçais, B. Hyperbolic phonon polariton electroluminescence as an digital cooling pathway. Adv. Funct. Mater. 30, 1904783 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Bocquet, L. Nanofluidics coming of age. Nat. Mater. 19, 254–256 (2020).

    Article 
    CAS 

    Google Scholar
     



  • Supply hyperlink

    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    - Advertisment -
    Google search engine

    Most Popular

    Recent Comments