Wednesday, August 30, 2023
HomeArtificial IntelligenceEasy Audio Classification with Keras

Easy Audio Classification with Keras


Introduction

On this tutorial we are going to construct a deep studying mannequin to categorise phrases. We are going to use tfdatasets to deal with information IO and pre-processing, and Keras to construct and prepare the mannequin.

We are going to use the Speech Instructions dataset which consists of 65,000 one-second audio recordsdata of individuals saying 30 totally different phrases. Every file comprises a single spoken English phrase. The dataset was launched by Google below CC License.

Our mannequin is a Keras port of the TensorFlow tutorial on Easy Audio Recognition which in flip was impressed by Convolutional Neural Networks for Small-footprint Key phrase Recognizing. There are different approaches to the speech recognition job, like recurrent neural networks, dilated (atrous) convolutions or Studying from Between-class Examples for Deep Sound Recognition.

The mannequin we are going to implement right here isn’t the cutting-edge for audio recognition techniques, that are far more complicated, however is comparatively easy and quick to coach. Plus, we present the way to effectively use tfdatasets to preprocess and serve information.

Audio illustration

Many deep studying fashions are end-to-end, i.e. we let the mannequin be taught helpful representations straight from the uncooked information. Nonetheless, audio information grows very quick – 16,000 samples per second with a really wealthy construction at many time-scales. With a purpose to keep away from having to take care of uncooked wave sound information, researchers often use some type of function engineering.

Each sound wave will be represented by its spectrum, and digitally it may be computed utilizing the Quick Fourier Remodel (FFT).

A standard solution to signify audio information is to interrupt it into small chunks, which often overlap. For every chunk we use the FFT to calculate the magnitude of the frequency spectrum. The spectra are then mixed, aspect by aspect, to kind what we name a spectrogram.

It’s additionally widespread for speech recognition techniques to additional remodel the spectrum and compute the Mel-Frequency Cepstral Coefficients. This transformation takes into consideration that the human ear can’t discern the distinction between two intently spaced frequencies and well creates bins on the frequency axis. An important tutorial on MFCCs will be discovered right here.

By Aquegg - Own work, Public Domain, https://commons.wikimedia.org/w/index.php?curid=5544473

After this process, we’ve a picture for every audio pattern and we will use convolutional neural networks, the usual structure sort in picture recognition fashions.

Downloading

First, let’s obtain information to a listing in our undertaking. You’ll be able to both obtain from this hyperlink (~1GB) or from R with:

dir.create("information")

obtain.file(
  url = "http://obtain.tensorflow.org/information/speech_commands_v0.01.tar.gz", 
  destfile = "information/speech_commands_v0.01.tar.gz"
)

untar("information/speech_commands_v0.01.tar.gz", exdir = "information/speech_commands_v0.01")

Contained in the information listing we may have a folder referred to as speech_commands_v0.01. The WAV audio recordsdata inside this listing are organised in sub-folders with the label names. For instance, all one-second audio recordsdata of individuals talking the phrase “mattress” are contained in the mattress listing. There are 30 of them and a particular one referred to as _background_noise_ which comprises varied patterns that might be blended in to simulate background noise.

Importing

On this step we are going to listing all audio .wav recordsdata right into a tibble with 3 columns:

  • fname: the file title;
  • class: the label for every audio file;
  • class_id: a singular integer quantity ranging from zero for every class – used to one-hot encode the lessons.

This might be helpful to the subsequent step once we will create a generator utilizing the tfdatasets package deal.

Generator

We are going to now create our Dataset, which within the context of tfdatasets, provides operations to the TensorFlow graph with a purpose to learn and pre-process information. Since they’re TensorFlow ops, they’re executed in C++ and in parallel with mannequin coaching.

The generator we are going to create might be accountable for studying the audio recordsdata from disk, creating the spectrogram for every one and batching the outputs.

Let’s begin by creating the dataset from slices of the information.body with audio file names and lessons we simply created.

Now, let’s outline the parameters for spectrogram creation. We have to outline window_size_ms which is the dimensions in milliseconds of every chunk we are going to break the audio wave into, and window_stride_ms, the space between the facilities of adjoining chunks:

window_size_ms <- 30
window_stride_ms <- 10

Now we are going to convert the window measurement and stride from milliseconds to samples. We’re contemplating that our audio recordsdata have 16,000 samples per second (1000 ms).

window_size <- as.integer(16000*window_size_ms/1000)
stride <- as.integer(16000*window_stride_ms/1000)

We are going to receive different portions that might be helpful for spectrogram creation, just like the variety of chunks and the FFT measurement, i.e., the variety of bins on the frequency axis. The operate we’re going to use to compute the spectrogram doesn’t enable us to alter the FFT measurement and as an alternative by default makes use of the primary energy of two higher than the window measurement.

We are going to now use dataset_map which permits us to specify a pre-processing operate for every remark (line) of our dataset. It’s on this step that we learn the uncooked audio file from disk and create its spectrogram and the one-hot encoded response vector.

# shortcuts to used TensorFlow modules.
audio_ops <- tf$contrib$framework$python$ops$audio_ops

ds <- ds %>%
  dataset_map(operate(obs) {
    
    # a great way to debug when constructing tfdatsets pipelines is to make use of a print
    # assertion like this:
    # print(str(obs))
    
    # decoding wav recordsdata
    audio_binary <- tf$read_file(tf$reshape(obs$fname, form = listing()))
    wav <- audio_ops$decode_wav(audio_binary, desired_channels = 1)
    
    # create the spectrogram
    spectrogram <- audio_ops$audio_spectrogram(
      wav$audio, 
      window_size = window_size, 
      stride = stride,
      magnitude_squared = TRUE
    )
    
    # normalization
    spectrogram <- tf$log(tf$abs(spectrogram) + 0.01)
    
    # transferring channels to final dim
    spectrogram <- tf$transpose(spectrogram, perm = c(1L, 2L, 0L))
    
    # remodel the class_id right into a one-hot encoded vector
    response <- tf$one_hot(obs$class_id, 30L)
    
    listing(spectrogram, response)
  }) 

Now, we are going to specify how we wish batch observations from the dataset. We’re utilizing dataset_shuffle since we need to shuffle observations from the dataset, in any other case it might observe the order of the df object. Then we use dataset_repeat with a purpose to inform TensorFlow that we need to hold taking observations from the dataset even when all observations have already been used. And most significantly right here, we use dataset_padded_batch to specify that we wish batches of measurement 32, however they need to be padded, ie. if some remark has a distinct measurement we pad it with zeroes. The padded form is handed to dataset_padded_batch through the padded_shapes argument and we use NULL to state that this dimension doesn’t have to be padded.

ds <- ds %>% 
  dataset_shuffle(buffer_size = 100) %>%
  dataset_repeat() %>%
  dataset_padded_batch(
    batch_size = 32, 
    padded_shapes = listing(
      form(n_chunks, fft_size, NULL), 
      form(NULL)
    )
  )

That is our dataset specification, however we would want to rewrite all of the code for the validation information, so it’s good apply to wrap this right into a operate of the information and different essential parameters like window_size_ms and window_stride_ms. Under, we are going to outline a operate referred to as data_generator that can create the generator relying on these inputs.

data_generator <- operate(df, batch_size, shuffle = TRUE, 
                           window_size_ms = 30, window_stride_ms = 10) {
  
  window_size <- as.integer(16000*window_size_ms/1000)
  stride <- as.integer(16000*window_stride_ms/1000)
  fft_size <- as.integer(2^trunc(log(window_size, 2)) + 1)
  n_chunks <- size(seq(window_size/2, 16000 - window_size/2, stride))
  
  ds <- tensor_slices_dataset(df)
  
  if (shuffle) 
    ds <- ds %>% dataset_shuffle(buffer_size = 100)  
  
  ds <- ds %>%
    dataset_map(operate(obs) {
      
      # decoding wav recordsdata
      audio_binary <- tf$read_file(tf$reshape(obs$fname, form = listing()))
      wav <- audio_ops$decode_wav(audio_binary, desired_channels = 1)
      
      # create the spectrogram
      spectrogram <- audio_ops$audio_spectrogram(
        wav$audio, 
        window_size = window_size, 
        stride = stride,
        magnitude_squared = TRUE
      )
      
      spectrogram <- tf$log(tf$abs(spectrogram) + 0.01)
      spectrogram <- tf$transpose(spectrogram, perm = c(1L, 2L, 0L))
      
      # remodel the class_id right into a one-hot encoded vector
      response <- tf$one_hot(obs$class_id, 30L)
      
      listing(spectrogram, response)
    }) %>%
    dataset_repeat()
  
  ds <- ds %>% 
    dataset_padded_batch(batch_size, listing(form(n_chunks, fft_size, NULL), form(NULL)))
  
  ds
}

Now, we will outline coaching and validation information mills. It’s value noting that executing this gained’t really compute any spectrogram or learn any file. It’s going to solely outline within the TensorFlow graph the way it ought to learn and pre-process information.

set.seed(6)
id_train <- pattern(nrow(df), measurement = 0.7*nrow(df))

ds_train <- data_generator(
  df[id_train,], 
  batch_size = 32, 
  window_size_ms = 30, 
  window_stride_ms = 10
)
ds_validation <- data_generator(
  df[-id_train,], 
  batch_size = 32, 
  shuffle = FALSE, 
  window_size_ms = 30, 
  window_stride_ms = 10
)

To really get a batch from the generator we might create a TensorFlow session and ask it to run the generator. For instance:

sess <- tf$Session()
batch <- next_batch(ds_train)
str(sess$run(batch))
Record of two
 $ : num [1:32, 1:98, 1:257, 1] -4.6 -4.6 -4.61 -4.6 -4.6 ...
 $ : num [1:32, 1:30] 0 0 0 0 0 0 0 0 0 0 ...

Every time you run sess$run(batch) you must see a distinct batch of observations.

Mannequin definition

Now that we all know how we are going to feed our information we will give attention to the mannequin definition. The spectrogram will be handled like a picture, so architectures which can be generally utilized in picture recognition duties ought to work effectively with the spectrograms too.

We are going to construct a convolutional neural community much like what we’ve constructed right here for the MNIST dataset.

The enter measurement is outlined by the variety of chunks and the FFT measurement. Like we defined earlier, they are often obtained from the window_size_ms and window_stride_ms used to generate the spectrogram.

We are going to now outline our mannequin utilizing the Keras sequential API:

mannequin <- keras_model_sequential()
mannequin %>%  
  layer_conv_2d(input_shape = c(n_chunks, fft_size, 1), 
                filters = 32, kernel_size = c(3,3), activation = 'relu') %>% 
  layer_max_pooling_2d(pool_size = c(2, 2)) %>% 
  layer_conv_2d(filters = 64, kernel_size = c(3,3), activation = 'relu') %>% 
  layer_max_pooling_2d(pool_size = c(2, 2)) %>% 
  layer_conv_2d(filters = 128, kernel_size = c(3,3), activation = 'relu') %>% 
  layer_max_pooling_2d(pool_size = c(2, 2)) %>% 
  layer_conv_2d(filters = 256, kernel_size = c(3,3), activation = 'relu') %>% 
  layer_max_pooling_2d(pool_size = c(2, 2)) %>% 
  layer_dropout(fee = 0.25) %>% 
  layer_flatten() %>% 
  layer_dense(models = 128, activation = 'relu') %>% 
  layer_dropout(fee = 0.5) %>% 
  layer_dense(models = 30, activation = 'softmax')

We used 4 layers of convolutions mixed with max pooling layers to extract options from the spectrogram photos and a couple of dense layers on the prime. Our community is relatively easy when in comparison with extra superior architectures like ResNet or DenseNet that carry out very effectively on picture recognition duties.

Now let’s compile our mannequin. We are going to use categorical cross entropy because the loss operate and use the Adadelta optimizer. It’s additionally right here that we outline that we are going to have a look at the accuracy metric throughout coaching.

mannequin %>% compile(
  loss = loss_categorical_crossentropy,
  optimizer = optimizer_adadelta(),
  metrics = c('accuracy')
)

Mannequin becoming

Now, we are going to match our mannequin. In Keras we will use TensorFlow Datasets as inputs to the fit_generator operate and we are going to do it right here.

mannequin %>% fit_generator(
  generator = ds_train,
  steps_per_epoch = 0.7*nrow(df)/32,
  epochs = 10, 
  validation_data = ds_validation, 
  validation_steps = 0.3*nrow(df)/32
)
Epoch 1/10
1415/1415 [==============================] - 87s 62ms/step - loss: 2.0225 - acc: 0.4184 - val_loss: 0.7855 - val_acc: 0.7907
Epoch 2/10
1415/1415 [==============================] - 75s 53ms/step - loss: 0.8781 - acc: 0.7432 - val_loss: 0.4522 - val_acc: 0.8704
Epoch 3/10
1415/1415 [==============================] - 75s 53ms/step - loss: 0.6196 - acc: 0.8190 - val_loss: 0.3513 - val_acc: 0.9006
Epoch 4/10
1415/1415 [==============================] - 75s 53ms/step - loss: 0.4958 - acc: 0.8543 - val_loss: 0.3130 - val_acc: 0.9117
Epoch 5/10
1415/1415 [==============================] - 75s 53ms/step - loss: 0.4282 - acc: 0.8754 - val_loss: 0.2866 - val_acc: 0.9213
Epoch 6/10
1415/1415 [==============================] - 76s 53ms/step - loss: 0.3852 - acc: 0.8885 - val_loss: 0.2732 - val_acc: 0.9252
Epoch 7/10
1415/1415 [==============================] - 75s 53ms/step - loss: 0.3566 - acc: 0.8991 - val_loss: 0.2700 - val_acc: 0.9269
Epoch 8/10
1415/1415 [==============================] - 76s 54ms/step - loss: 0.3364 - acc: 0.9045 - val_loss: 0.2573 - val_acc: 0.9284
Epoch 9/10
1415/1415 [==============================] - 76s 53ms/step - loss: 0.3220 - acc: 0.9087 - val_loss: 0.2537 - val_acc: 0.9323
Epoch 10/10
1415/1415 [==============================] - 76s 54ms/step - loss: 0.2997 - acc: 0.9150 - val_loss: 0.2582 - val_acc: 0.9323

The mannequin’s accuracy is 93.23%. Let’s discover ways to make predictions and try the confusion matrix.

Making predictions

We are able to use thepredict_generator operate to make predictions on a brand new dataset. Let’s make predictions for our validation dataset.
The predict_generator operate wants a step argument which is the variety of instances the generator might be referred to as.

We are able to calculate the variety of steps by understanding the batch measurement, and the dimensions of the validation dataset.

df_validation <- df[-id_train,]
n_steps <- nrow(df_validation)/32 + 1

We are able to then use the predict_generator operate:

predictions <- predict_generator(
  mannequin, 
  ds_validation, 
  steps = n_steps
  )
str(predictions)
num [1:19424, 1:30] 1.22e-13 7.30e-19 5.29e-10 6.66e-22 1.12e-17 ...

It will output a matrix with 30 columns – one for every phrase and n_steps*batch_size variety of rows. Be aware that it begins repeating the dataset on the finish to create a full batch.

We are able to compute the anticipated class by taking the column with the best chance, for instance.

lessons <- apply(predictions, 1, which.max) - 1

A pleasant visualization of the confusion matrix is to create an alluvial diagram:

library(dplyr)
library(alluvial)
x <- df_validation %>%
  mutate(pred_class_id = head(lessons, nrow(df_validation))) %>%
  left_join(
    df_validation %>% distinct(class_id, class) %>% rename(pred_class = class),
    by = c("pred_class_id" = "class_id")
  ) %>%
  mutate(appropriate = pred_class == class) %>%
  depend(pred_class, class, appropriate)

alluvial(
  x %>% choose(class, pred_class),
  freq = x$n,
  col = ifelse(x$appropriate, "lightblue", "purple"),
  border = ifelse(x$appropriate, "lightblue", "purple"),
  alpha = 0.6,
  conceal = x$n < 20
)
Alluvial Plot

We are able to see from the diagram that essentially the most related mistake our mannequin makes is to categorise “tree” as “three”. There are different widespread errors like classifying “go” as “no”, “up” as “off”. At 93% accuracy for 30 lessons, and contemplating the errors we will say that this mannequin is fairly cheap.

The saved mannequin occupies 25Mb of disk area, which is affordable for a desktop however might not be on small gadgets. We might prepare a smaller mannequin, with fewer layers, and see how a lot the efficiency decreases.

In speech recognition duties its additionally widespread to do some type of information augmentation by mixing a background noise to the spoken audio, making it extra helpful for actual functions the place it’s widespread to produce other irrelevant sounds taking place within the setting.

The complete code to breed this tutorial is offered right here.



Supply hyperlink

RELATED ARTICLES

LEAVE A REPLY

Please enter your comment!
Please enter your name here

- Advertisment -
Google search engine

Most Popular

Recent Comments