Spira, F. et al. Cytokinesis in vertebrate cells initiates by contraction of an equatorial actomyosin community composed of randomly oriented filaments. eLife 6, e30867 (2017).
Allard, J. F. & Cytrynbaum, E. N. Power era by a dynamic Z-ring in Escherichia coli cell division. Proc. Natl Acad. Sci. USA 106, 145–150 (2009).
Bisson-Filho, A. W. et al. Treadmilling by FtsZ filaments drives peptidoglycan synthesis and bacterial cell division. Science 355, 739–743 (2017).
Pfitzner, A.-Ok., Moser von Filseck, J. & Roux, A. Ideas of membrane transforming by dynamic ESCRT-III polymers. Tendencies Cell Biol. 31, 856–868 (2021).
Caspi, Y. & Dekker, C. Dividing the archaeal means: the traditional Cdv cell-division equipment. Entrance. Microbiol. 9, 174 (2018).
Bassereau, P. et al. The 2018 biomembrane curvature and transforming roadmap. J. Phys. D: Appl. Phys. 51, 343001 (2018).
Hurley, J. H. ESCRTs are all over the place. EMBO J. 34, 2398–2407 (2015).
Sundborger, A. C. & Hinshaw, J. E. Regulating dynamin dynamics throughout endocytosis. F1000Prime Rep. 6, 85 (2014).
Lemus, L. & Goder, V. Membrane trafficking: ESCRTs act right here, there, and all over the place. Curr. Biol. 32, R292–R294 (2022).
Bohuszewicz, O., Liu, J. & Low, H. H. Membrane remodelling in micro organism. J. Struct. Biol. 196, 3–14 (2016).
Olivi, L. et al. In the direction of an artificial cell cycle. Nat. Commun. 12, 4531 (2021).
Schlimpert, S. et al. Two dynamin-like proteins stabilize FtsZ rings throughout Streptomyces sporulation. Proc. Natl Acad. Sci. USA 114, E6176–E6183 (2017).
Bramkamp, M. Construction and performance of bacterial dynamin-like proteins. Biol. Chem. 393, 1203–1214 (2012).
Guo, L. & Bramkamp, M. Bacterial dynamin-like protein DynA mediates lipid and content material mixing. FASEB J. 33, 11746–11757 (2019).
Bürmann, F., Ebert, N., van Baarle, S. & Bramkamp, M. A bacterial dynamin-like protein mediating nucleotide-independent membrane fusion. Mol. Microbiol. 79, 1294–1304 (2011).
Sawant, P., Eissenberger, Ok., Karier, L., Mascher, T. & Bramkamp, M. A dynamin-like protein concerned in bacterial cell membrane surveillance below environmental stress. Environ. Microbiol. 18, 2705–2720 (2016).
Guo, L., Sattler, L., Shafqat, S., Graumann, P. L. & Bramkamp, M. A bacterial dynamin-like protein confers a novel phage resistance technique on the inhabitants degree in Bacillus subtilis. mBio 13, e0375321 (2022).
De Franceschi, N. et al. Artificial membrane shaper for managed liposome deformation. ACS Nano. 17, 966–978 (2022).
Bhatia, T., Christ, S., Steinkühler, J., Dimova, R. & Lipowsky, R. Easy sugars form big vesicles into multispheres with many membrane necks. Mushy Matter 16, 1246–1258 (2020).
Antonny, B. et al. Membrane fission by dynamin: what we all know and what we have to know. EMBO J. 35, 2270–2284 (2016).
Mattila, J.-P. et al. A hemi-fission intermediate hyperlinks two mechanistically distinct phases of membrane fission. Nature 524, 109–113 (2015).
Dreher, Y., Jahnke, Ok., Schröter, M. & Göpfrich, Ok. Gentle-triggered cargo loading and division of DNA-containing big unilamellar lipid vesicles. Nano Lett. 21, 5952–5957 (2021).
Steinkühler, J. et al. Managed division of cell-sized vesicles by low densities of membrane-bound proteins. Nat. Commun. 11, 905 (2020).
Kozlovsky, Y. & Kozlov, M. M. Membrane fission: mannequin for intermediate buildings. Biophys. J. 85, 85–96 (2003).
Fabrikant, G. et al. Computational mannequin of membrane fission catalyzed by ESCRT-III. PLoS Comput. Biol. 5, e1000575 (2009).
Zhang, G. & Müller, M. Rupturing the hemi-fission intermediate in membrane fission below rigidity: response coordinates, kinetic pathways, and free-energy boundaries. J. Chem. Phys. 147, 064906 (2017).
Gao, M., Huang, X., Track, B. L. & Yang, H. The biogenesis of lipid droplets: lipids take heart stage. Prog. Lipid Res. 75, 100989 (2019).
De Franceschi, N. et al. The ESCRT protein CHMP2B acts as a diffusion barrier on reconstituted membrane necks. J. Cell Sci. 132, jcs217968 (2018).
Bertin, A. et al. Human ESCRT-III polymers assemble on positively curved membranes and induce helical membrane tube formation. Nat. Commun. 11, 2663 (2020).
Pfitzner, A.-Ok. et al. An ESCRT-III polymerization sequence drives membrane deformation and fission. Cell 182, 1140–1155.e18 (2020).
Schöneberg, J. et al. ATP-dependent drive era and membrane scission by ESCRT-III and Vps4. Science 362, 1423–1428 (2018).
Remec Pavlin, M. & Hurley, J. H. The ESCRTs—converging on mechanism. J. Cell Sci. 133, jcs240333 (2020).
Abil, Z. & Danelon, C. Roadmap to constructing a cell: an evolutionary method. Entrance. Bioeng. Biotechnol. 8, 927 (2020).
Cada, A. Ok. et al. Friction-driven membrane scission by the human ESCRT-III proteins CHMP1B and IST1. Proc. Natl Acad. Sci. USA 119, e2204536119 (2022).
Roux, A., Uyhazi, Ok., Frost, A. & de Camilli, P. GTP-dependent twisting of dynamin implicates constriction and rigidity in membrane fission. Nature 441, 528–531 (2006).
Tucker, W. C., Weber, T. & Chapman, E. R. Reconstitution of Ca2+-regulated membrane fusion by synaptotagmin and SNAREs. Science 304, 435–438 (2004).
Ge, Y. et al. Two types of Opa1 cooperate to finish fusion of the mitochondrial inner-membrane. eLife 9, e50973 (2020).
Bramkamp, M. Bacterial dynamin-like proteins reveal mechanism for membrane fusion. Nat. Commun. 9, 3993 (2018).
van de Cauter, L. et al. Optimized cDICE for environment friendly reconstitution of organic programs in big unilamellar vesicles. ACS Synth. Biol. 10, 1690–1702 (2021).