Wednesday, October 11, 2023
HomeNanotechnologyDynamin A as a one-component division equipment for artificial cells

Dynamin A as a one-component division equipment for artificial cells


  • Spira, F. et al. Cytokinesis in vertebrate cells initiates by contraction of an equatorial actomyosin community composed of randomly oriented filaments. eLife 6, e30867 (2017).

    Article 

    Google Scholar
     

  • Allard, J. F. & Cytrynbaum, E. N. Power era by a dynamic Z-ring in Escherichia coli cell division. Proc. Natl Acad. Sci. USA 106, 145–150 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Bisson-Filho, A. W. et al. Treadmilling by FtsZ filaments drives peptidoglycan synthesis and bacterial cell division. Science 355, 739–743 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Pfitzner, A.-Ok., Moser von Filseck, J. & Roux, A. Ideas of membrane transforming by dynamic ESCRT-III polymers. Tendencies Cell Biol. 31, 856–868 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Caspi, Y. & Dekker, C. Dividing the archaeal means: the traditional Cdv cell-division equipment. Entrance. Microbiol. 9, 174 (2018).

    Article 

    Google Scholar
     

  • Bassereau, P. et al. The 2018 biomembrane curvature and transforming roadmap. J. Phys. D: Appl. Phys. 51, 343001 (2018).

    Article 

    Google Scholar
     

  • Hurley, J. H. ESCRTs are all over the place. EMBO J. 34, 2398–2407 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Sundborger, A. C. & Hinshaw, J. E. Regulating dynamin dynamics throughout endocytosis. F1000Prime Rep. 6, 85 (2014).

    Article 

    Google Scholar
     

  • Lemus, L. & Goder, V. Membrane trafficking: ESCRTs act right here, there, and all over the place. Curr. Biol. 32, R292–R294 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Bohuszewicz, O., Liu, J. & Low, H. H. Membrane remodelling in micro organism. J. Struct. Biol. 196, 3–14 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Olivi, L. et al. In the direction of an artificial cell cycle. Nat. Commun. 12, 4531 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Schlimpert, S. et al. Two dynamin-like proteins stabilize FtsZ rings throughout Streptomyces sporulation. Proc. Natl Acad. Sci. USA 114, E6176–E6183 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Bramkamp, M. Construction and performance of bacterial dynamin-like proteins. Biol. Chem. 393, 1203–1214 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Guo, L. & Bramkamp, M. Bacterial dynamin-like protein DynA mediates lipid and content material mixing. FASEB J. 33, 11746–11757 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Bürmann, F., Ebert, N., van Baarle, S. & Bramkamp, M. A bacterial dynamin-like protein mediating nucleotide-independent membrane fusion. Mol. Microbiol. 79, 1294–1304 (2011).

    Article 

    Google Scholar
     

  • Sawant, P., Eissenberger, Ok., Karier, L., Mascher, T. & Bramkamp, M. A dynamin-like protein concerned in bacterial cell membrane surveillance below environmental stress. Environ. Microbiol. 18, 2705–2720 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Guo, L., Sattler, L., Shafqat, S., Graumann, P. L. & Bramkamp, M. A bacterial dynamin-like protein confers a novel phage resistance technique on the inhabitants degree in Bacillus subtilis. mBio 13, e0375321 (2022).

    Article 

    Google Scholar
     

  • De Franceschi, N. et al. Artificial membrane shaper for managed liposome deformation. ACS Nano. 17, 966–978 (2022).

    Article 

    Google Scholar
     

  • Bhatia, T., Christ, S., Steinkühler, J., Dimova, R. & Lipowsky, R. Easy sugars form big vesicles into multispheres with many membrane necks. Mushy Matter 16, 1246–1258 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Antonny, B. et al. Membrane fission by dynamin: what we all know and what we have to know. EMBO J. 35, 2270–2284 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Mattila, J.-P. et al. A hemi-fission intermediate hyperlinks two mechanistically distinct phases of membrane fission. Nature 524, 109–113 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Dreher, Y., Jahnke, Ok., Schröter, M. & Göpfrich, Ok. Gentle-triggered cargo loading and division of DNA-containing big unilamellar lipid vesicles. Nano Lett. 21, 5952–5957 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Steinkühler, J. et al. Managed division of cell-sized vesicles by low densities of membrane-bound proteins. Nat. Commun. 11, 905 (2020).

    Article 

    Google Scholar
     

  • Kozlovsky, Y. & Kozlov, M. M. Membrane fission: mannequin for intermediate buildings. Biophys. J. 85, 85–96 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Fabrikant, G. et al. Computational mannequin of membrane fission catalyzed by ESCRT-III. PLoS Comput. Biol. 5, e1000575 (2009).

    Article 

    Google Scholar
     

  • Zhang, G. & Müller, M. Rupturing the hemi-fission intermediate in membrane fission below rigidity: response coordinates, kinetic pathways, and free-energy boundaries. J. Chem. Phys. 147, 064906 (2017).

    Article 

    Google Scholar
     

  • Gao, M., Huang, X., Track, B. L. & Yang, H. The biogenesis of lipid droplets: lipids take heart stage. Prog. Lipid Res. 75, 100989 (2019).

    Article 
    CAS 

    Google Scholar
     

  • De Franceschi, N. et al. The ESCRT protein CHMP2B acts as a diffusion barrier on reconstituted membrane necks. J. Cell Sci. 132, jcs217968 (2018).

    Article 

    Google Scholar
     

  • Bertin, A. et al. Human ESCRT-III polymers assemble on positively curved membranes and induce helical membrane tube formation. Nat. Commun. 11, 2663 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Pfitzner, A.-Ok. et al. An ESCRT-III polymerization sequence drives membrane deformation and fission. Cell 182, 1140–1155.e18 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Schöneberg, J. et al. ATP-dependent drive era and membrane scission by ESCRT-III and Vps4. Science 362, 1423–1428 (2018).

    Article 

    Google Scholar
     

  • Remec Pavlin, M. & Hurley, J. H. The ESCRTs—converging on mechanism. J. Cell Sci. 133, jcs240333 (2020).

    Article 

    Google Scholar
     

  • Abil, Z. & Danelon, C. Roadmap to constructing a cell: an evolutionary method. Entrance. Bioeng. Biotechnol. 8, 927 (2020).

    Article 

    Google Scholar
     

  • Cada, A. Ok. et al. Friction-driven membrane scission by the human ESCRT-III proteins CHMP1B and IST1. Proc. Natl Acad. Sci. USA 119, e2204536119 (2022).

    Article 

    Google Scholar
     

  • Roux, A., Uyhazi, Ok., Frost, A. & de Camilli, P. GTP-dependent twisting of dynamin implicates constriction and rigidity in membrane fission. Nature 441, 528–531 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Tucker, W. C., Weber, T. & Chapman, E. R. Reconstitution of Ca2+-regulated membrane fusion by synaptotagmin and SNAREs. Science 304, 435–438 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Ge, Y. et al. Two types of Opa1 cooperate to finish fusion of the mitochondrial inner-membrane. eLife 9, e50973 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Bramkamp, M. Bacterial dynamin-like proteins reveal mechanism for membrane fusion. Nat. Commun. 9, 3993 (2018).

    Article 

    Google Scholar
     

  • van de Cauter, L. et al. Optimized cDICE for environment friendly reconstitution of organic programs in big unilamellar vesicles. ACS Synth. Biol. 10, 1690–1702 (2021).

    Article 

    Google Scholar
     



  • Supply hyperlink

    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    - Advertisment -
    Google search engine

    Most Popular

    Recent Comments