Kyriakou, G. et al. Remoted steel atom geometries as a method for selective heterogeneous hydrogenations. Science 335, 1209–1212 (2012).
Chen, S. et al. Propane dehydrogenation on single-site [PtZn4] intermetallic catalysts. Chem 7, 387–405 (2021).
Smit, B. & Maesen, T. L. M. In the direction of a molecular understanding of form selectivity. Nature 451, 671–678 (2008).
Cai, W. et al. Subsurface catalysis-mediated selectivity of dehydrogenation response. Sci. Adv. 4, eaar5418 (2018).
Li, H. et al. Synergetic interplay between neighbouring platinum monomers in CO2 hydrogenation. Nat. Nanotechnol. 13, 411–417 (2018).
Greiner, M. T. et al. Free-atom-like d states in single-atom alloy catalysts. Nat. Chem. 10, 1008–1015 (2018).
Cui, T.-L. et al. Encapsulating palladium nanoparticles inside mesoporous MFI zeolite nanocrystals for shape-selective catalysis. Angew. Chem. Int. Ed. 55, 9178–9182 (2016).
Wang, C. et al. Fischer–Tropsch synthesis to olefins boosted by MFI zeolite nanosheets. Nat. Nanotechnol. 17, 714–720 (2022).
Liu, D., He, Q., Ding, S. & Track, L. Structural regulation and assist coupling impact of single-atom catalysts for heterogeneous catalysis. Adv. Power Mater. 10, 2001482 (2020).
Ma, T. et al. Towards section and catalysis management: monitoring the formation of intermetallic nanoparticles at atomic scale. Chem 5, 1235–1247 (2019).
Guo, W., Wang, Z., Wang, X. & Wu, Y. Common design idea for single-atom catalysts towards heterogeneous catalysis. Adv. Mater. 33, 2004287 (2021).
Somorjai, G. A. & Park, J. Y. Molecular components of catalytic selectivity. Angew. Chem. Int. Ed. 47, 9212–9228 (2008).
Rahim, M. A. et al. Low-temperature liquid platinum catalyst. Nat. Chem. 14, 935–941 (2022).
Zuraiqi, Okay. et al. Liquid metals in catalysis for vitality purposes. Joule 4, 2290–2321 (2020).
Yan, H. et al. Tandem In2O3-Pt/Al2O3 catalyst for coupling of propane dehydrogenation to selective H2 combustion. Science 371, 1257–1260 (2021).
Motagamwala, A. H., Almallahi, R., Wortman, J., Igenegbai, V. O. & Linic, S. Secure and selective catalysts for propane dehydrogenation working at thermodynamic restrict. Science 373, 217–222 (2021).
Tang, J. et al. Low temperature mechano-catalytic biofuel conversion utilizing liquid metals. Chem. Eng. J. 452, 139350 (2023).
Liu, H. et al. Stable–liquid section transition induced electrocatalytic switching from hydrogen evolution to extremely selective CO2 discount. Nat. Catal. 4, 202–211 (2021).
Studt, F. et al. Discovery of a Ni-Ga catalyst for carbon dioxide discount to methanol. Nat. Chem. 6, 320–324 (2014).
Ma, Z. et al. Permeable superelastic liquid-metal fibre mat permits biocompatible and monolithic stretchable electronics. Nat. Mater. 20, 859–868 (2021).
Esrafilzadeh, D. et al. Room temperature CO2 discount to strong carbon species on liquid metals that includes atomically skinny ceria interfaces. Nat. Commun. 10, 865 (2019).
Tang, J. et al. Low temperature nano mechano-electrocatalytic CH4 conversion. ACS Nano 16, 8684–8693 (2022).
Abraham, M. J. et al. GROMACS: excessive efficiency molecular simulations by means of multi-level parallelism from laptops to supercomputers. SoftwareX 1–2, 19–25 (2015).
Tang, J. et al. Distinctive floor patterns rising throughout solidification of liquid steel alloys. Nat. Nanotechnol. 16, 431–439 (2021).
Vanommeslaeghe, Okay. & MacKerell, A. D. Jr. Automation of the CHARMM Common Drive Subject (CGenFF) I: bond notion and atom typing. J. Chem. Inf. Mannequin. 52, 3144–3154 (2012).
Vanommeslaeghe, Okay., Raman, E. P. & MacKerell, A. D. Jr. Automation of the CHARMM Common Drive Subject (CGenFF) II: project of bonded parameters and partial atomic expenses. J. Chem. Inf. Mannequin. 52, 3155–3168 (2012).
Martínez, L., Andrade, R., Birgin, E. G. & Martínez, J. M. PACKMOL: a bundle for constructing preliminary configurations for molecular dynamics simulations. J. Comput. Chem. 30, 2157–2164 (2009).
Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave methodology. Phys. Rev. B 59, 1758–1775 (1999).
Kresse, G. & Furthmüller, J. Environment friendly iterative schemes for ab initio total-energy calculations utilizing a plane-wave foundation set. Phys. Rev. B 54, 11169–11186 (1996).
Blöchl, P. E. Projector augmented-wave methodology. Phys. Rev. B 50, 17953–17979 (1994).
Perdew, J. P., Burke, Okay. & Ernzerhof, M. Generalized gradient approximation made easy. Phys. Rev. Lett. 77, 3865–3868 (1996).
Tang, W., Sanville, E. & Henkelman, G. A grid-based Bader evaluation algorithm with out lattice bias. J. Phys. Condens. Matter 21, 084204 (2009).
Humphrey, W., Dalke, A. & Schulten, Okay. VMD: visible molecular dynamics. J. Mol. Graph. 14, 33–38 (1996).
Giorgino, T. Computing diffusion coefficients in macromolecular simulations: the Diffusion Coefficient Device for VMD. J. Open Supply Softw. 4, 1698 (2019).