Friday, November 10, 2023
HomeNanotechnologyDynamic configurations of metallic atoms within the liquid state for selective propylene...

Dynamic configurations of metallic atoms within the liquid state for selective propylene synthesis


  • Kyriakou, G. et al. Remoted steel atom geometries as a method for selective heterogeneous hydrogenations. Science 335, 1209–1212 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Chen, S. et al. Propane dehydrogenation on single-site [PtZn4] intermetallic catalysts. Chem 7, 387–405 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Smit, B. & Maesen, T. L. M. In the direction of a molecular understanding of form selectivity. Nature 451, 671–678 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Cai, W. et al. Subsurface catalysis-mediated selectivity of dehydrogenation response. Sci. Adv. 4, eaar5418 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Li, H. et al. Synergetic interplay between neighbouring platinum monomers in CO2 hydrogenation. Nat. Nanotechnol. 13, 411–417 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Greiner, M. T. et al. Free-atom-like d states in single-atom alloy catalysts. Nat. Chem. 10, 1008–1015 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Cui, T.-L. et al. Encapsulating palladium nanoparticles inside mesoporous MFI zeolite nanocrystals for shape-selective catalysis. Angew. Chem. Int. Ed. 55, 9178–9182 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Wang, C. et al. Fischer–Tropsch synthesis to olefins boosted by MFI zeolite nanosheets. Nat. Nanotechnol. 17, 714–720 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Liu, D., He, Q., Ding, S. & Track, L. Structural regulation and assist coupling impact of single-atom catalysts for heterogeneous catalysis. Adv. Power Mater. 10, 2001482 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Ma, T. et al. Towards section and catalysis management: monitoring the formation of intermetallic nanoparticles at atomic scale. Chem 5, 1235–1247 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Guo, W., Wang, Z., Wang, X. & Wu, Y. Common design idea for single-atom catalysts towards heterogeneous catalysis. Adv. Mater. 33, 2004287 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Somorjai, G. A. & Park, J. Y. Molecular components of catalytic selectivity. Angew. Chem. Int. Ed. 47, 9212–9228 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Rahim, M. A. et al. Low-temperature liquid platinum catalyst. Nat. Chem. 14, 935–941 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zuraiqi, Okay. et al. Liquid metals in catalysis for vitality purposes. Joule 4, 2290–2321 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Yan, H. et al. Tandem In2O3-Pt/Al2O3 catalyst for coupling of propane dehydrogenation to selective H2 combustion. Science 371, 1257–1260 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Motagamwala, A. H., Almallahi, R., Wortman, J., Igenegbai, V. O. & Linic, S. Secure and selective catalysts for propane dehydrogenation working at thermodynamic restrict. Science 373, 217–222 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Tang, J. et al. Low temperature mechano-catalytic biofuel conversion utilizing liquid metals. Chem. Eng. J. 452, 139350 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Liu, H. et al. Stable–liquid section transition induced electrocatalytic switching from hydrogen evolution to extremely selective CO2 discount. Nat. Catal. 4, 202–211 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Studt, F. et al. Discovery of a Ni-Ga catalyst for carbon dioxide discount to methanol. Nat. Chem. 6, 320–324 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Ma, Z. et al. Permeable superelastic liquid-metal fibre mat permits biocompatible and monolithic stretchable electronics. Nat. Mater. 20, 859–868 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Esrafilzadeh, D. et al. Room temperature CO2 discount to strong carbon species on liquid metals that includes atomically skinny ceria interfaces. Nat. Commun. 10, 865 (2019).

    Article 

    Google Scholar
     

  • Tang, J. et al. Low temperature nano mechano-electrocatalytic CH4 conversion. ACS Nano 16, 8684–8693 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Abraham, M. J. et al. GROMACS: excessive efficiency molecular simulations by means of multi-level parallelism from laptops to supercomputers. SoftwareX 1–2, 19–25 (2015).

    Article 

    Google Scholar
     

  • Tang, J. et al. Distinctive floor patterns rising throughout solidification of liquid steel alloys. Nat. Nanotechnol. 16, 431–439 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Vanommeslaeghe, Okay. & MacKerell, A. D. Jr. Automation of the CHARMM Common Drive Subject (CGenFF) I: bond notion and atom typing. J. Chem. Inf. Mannequin. 52, 3144–3154 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Vanommeslaeghe, Okay., Raman, E. P. & MacKerell, A. D. Jr. Automation of the CHARMM Common Drive Subject (CGenFF) II: project of bonded parameters and partial atomic expenses. J. Chem. Inf. Mannequin. 52, 3155–3168 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Martínez, L., Andrade, R., Birgin, E. G. & Martínez, J. M. PACKMOL: a bundle for constructing preliminary configurations for molecular dynamics simulations. J. Comput. Chem. 30, 2157–2164 (2009).

    Article 

    Google Scholar
     

  • Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave methodology. Phys. Rev. B 59, 1758–1775 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Kresse, G. & Furthmüller, J. Environment friendly iterative schemes for ab initio total-energy calculations utilizing a plane-wave foundation set. Phys. Rev. B 54, 11169–11186 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Blöchl, P. E. Projector augmented-wave methodology. Phys. Rev. B 50, 17953–17979 (1994).

    Article 

    Google Scholar
     

  • Perdew, J. P., Burke, Okay. & Ernzerhof, M. Generalized gradient approximation made easy. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Tang, W., Sanville, E. & Henkelman, G. A grid-based Bader evaluation algorithm with out lattice bias. J. Phys. Condens. Matter 21, 084204 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Humphrey, W., Dalke, A. & Schulten, Okay. VMD: visible molecular dynamics. J. Mol. Graph. 14, 33–38 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Giorgino, T. Computing diffusion coefficients in macromolecular simulations: the Diffusion Coefficient Device for VMD. J. Open Supply Softw. 4, 1698 (2019).

    Article 

    Google Scholar
     



  • Supply hyperlink

    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    - Advertisment -
    Google search engine

    Most Popular

    Recent Comments