Monday, October 23, 2023
HomeNanotechnologyDistinctive factors and non-Hermitian photonics on the nanoscale

Distinctive factors and non-Hermitian photonics on the nanoscale


  • Bender, C. M. & Boettcher, S. Actual spectra in non-Hermitian Hamiltonians having PT symmetry. Phys. Rev. Lett. 80, 5243–5246 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Mostafazadeh, A. Pseudo-Hermiticity versus PT symmetry: the mandatory situation for the fact of the spectrum of a non-Hermitian Hamiltonian. J. Math. Phys. 43, 205–214 (2002).

    Article 

    Google Scholar
     

  • Mostafazadeh, A. Pseudo-Hermiticity versus PT-symmetry. II. An entire characterization of non-Hermitian Hamiltonians with an actual spectrum. J. Math. Phys. 43, 2814–2816 (2002).

    Article 

    Google Scholar
     

  • Bender, C. M., Boettcher, S. & Meisinger, P. N. PT-symmetric quantum mechanics. J. Math. Phys. 40, 2201–2229 (1999).

    Article 

    Google Scholar
     

  • Kato, T. Perturbation Teory of Linear Operators (Springer, 1966).

  • Berry, M. V. & Wilkinson, M. Diabolical factors within the spectra of triangles. Proc. R. Soc. Lond. A 392, 15–43 (1984).

    Article 

    Google Scholar
     

  • Keck, F., Korsch, H. J. & Mossmann, S. Unfolding a diabolic level: a generalized crossing state of affairs. J. Phys. A 36, 2125–2137 (2003).

    Article 

    Google Scholar
     

  • Yang, J. et al. Diabolical factors in coupled energetic cavities with quantum emitters. Mild. Sci. Appl. 9, 6 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Heiss, W. D. Repulsion of resonance states and distinctive factors. Phys. Rev. E 61, 929–932 (2000).

    Article 
    CAS 

    Google Scholar
     

  • El-Ganainy, R., Makris, Okay. G., Christodoulides, D. N. & Musslimani, Z. H. Idea of coupled optical PT-symmetric constructions. Decide. Lett. 32, 2632–2634 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Guo, A. et al. Statement of PT-symmetry breaking in complicated optical potentials. Phys. Rev. Lett. 103, 093902 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Rüter, C. E. et al. Statement of parity–time symmetry in optics. Nat. Phys. 6, 192–195 (2010).

    Article 

    Google Scholar
     

  • Kottos, T. Damaged symmetry makes gentle work. Nat. Phys. 6, 166–167 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Miri, M.-A. & Alù, A. Distinctive factors in optics and photonics. Science 363, eaar7709 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Özdemir, Ş. Okay., Rotter, S., Nori, F. & Yang, L. Parity–time symmetry and distinctive factors in photonics. Nat. Mater. 18, 783–798 (2019).

    Article 

    Google Scholar
     

  • Hokmabadi, M. P., Schumer, A., Christodoulides, D. N. & Khajavikhan, M. Non-Hermitian ring laser gyroscopes with enhanced Sagnac sensitivity. Nature 576, 70–74 (2019).

    Article 

    Google Scholar
     

  • Track, W. et al. Breakup and restoration of topological zero modes in finite non-Hermitian optical lattices. Phys. Rev. Lett. 123, 165701 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Feng, L., El-Ganainy, R. & Ge, L. Non-Hermitian photonics based mostly on parity–time symmetry. Nat. Photon. 11, 752–762 (2017).

    Article 
    CAS 

    Google Scholar
     

  • El-Ganainy, R. et al. Non-Hermitian physics and PT symmetry. Nat. Phys. 14, 11–19 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Wang, C. et al. Electromagnetically induced transparency at a chiral distinctive level. Nat. Phys. 16, 334–340 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, F., Feng, Y., Chen, X., Ge, L. & Wan, W. Artificial snti-PT symmetry in a single microcavity. Phys. Rev. Lett. 124, 053901 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, H. et al. Breaking anti-PT symmetry by spinning a resonator. Nano Lett. 20, 7594–7599 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Maayani, S. et al. Flying couplers above spinning resonators generate irreversible refraction. Nature 558, 569–572 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Park, S. H., Xia, S., Oh, S.-H., Avouris, P. & Low, T. Accessing the distinctive factors in a graphene plasmon–vibrational mode coupled system. ACS Photon. 8, 3241–3248 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Bergman, A. et al. Statement of anti-parity–time-symmetry, section transitions and distinctive factors in an optical fibre. Nat. Commun. 12, 486 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Öztürk, F. E. et al. Statement of a non-Hermitian section transition in an optical quantum fuel. Science 372, 88–91 (2021).

    Article 

    Google Scholar
     

  • Hlushchenko, A. V., Novitsky, D. V., Shcherbinin, V. I. & Tuz, V. R. Multimode PT-symmetry thresholds and third-order distinctive factors in coupled dielectric waveguides with loss and acquire. J. Decide. 23, 125002 (2021).

    Article 

    Google Scholar
     

  • Xia, S. et al. Increased-order distinctive level and Landau–Zener Bloch oscillations in pushed non-Hermitian photonic Lieb lattices. APL Photon. 6, 126106 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Laha, A., Beniwal, D., Dey, S., Biswas, A. & Ghosh, S. Third-order distinctive level and successive switching amongst three states in an optical microcavity. Phys. Rev. A 101, 063829 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Habler, N. & Scheuer, J. Increased-order distinctive factors: a route for flat-top optical filters. Phys. Rev. A 101, 043828 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, H. et al. Statement of bulk Fermi arc and polarization half cost from paired distinctive factors. Science 359, 1009–1012 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Xiao, Z. & Alù, A. Tailoring distinctive factors in a hybrid PT-symmetric and anti-PT-symmetric scattering system. Nanophotonics 10, 3723–3733 (2021).

    Article 

    Google Scholar
     

  • Chen, W., Yang, Q., Chen, Y. & Liu, W. Evolution and world cost conservation for polarization singularities rising from non-Hermitian degeneracies. Proc. Natl Acad. Sci. USA 118, e2019578118 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Bauer, T. et al. Statement of optical polarization Möbius strips. Science 347, 964–966 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Miyai, E. et al. Lasers producing tailor-made beams. Nature 441, 946–946 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Ding, Okay., Ma, G., Zhang, Z. Q. & Chan, C. T. Experimental demonstration of an anisotropic distinctive level. Phys. Rev. Lett. 121, 085702 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Liao, Q. et al. Experimental measurement of the divergent quantum metric of an distinctive level. Phys. Rev. Lett. 127, 107402 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, S. M., Zhang, X. Z., Jin, L. & Track, Z. Excessive-order distinctive factors in supersymmetric arrays. Phys. Rev. A 101, 033820 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Jin, L., Wu, H. C., Wei, B.-B. & Track, Z. Hybrid distinctive level created from type-III Dirac level. Phys. Rev. B 101, 045130 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Liu, T., He, J. J., Yang, Z. & Nori, F. Increased-order Weyl-exceptional-ring semimetals. Phys. Rev. Lett. 127, 196801 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Ma, Y., Dong, B. & Lee, C. Progress of infrared guided-wave nanophotonic sensors and gadgets. Nano Converg. 7, 12 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Shakoor, A., Grant, J., Grande, M. & Cumming, D. R. S. In the direction of moveable nanophotonic sensors. Sensors 19, 1715 (2019).

    Article 

    Google Scholar
     

  • Karabchevsky, A., Katiyi, A., Ang, A. S. & Hazan, A. On-chip nanophotonics and future challenges. Nanophotonics 9, 3733–3753 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Sreekanth, Okay. V. et al. Excessive sensitivity biosensing platform based mostly on hyperbolic metamaterials. Nat. Mater. 15, 621–627 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Meng, Y. et al. Optical meta-waveguides for built-in photonics and past. Mild. Sci. Appl. 10, 235 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Oh, S.-H. et al. Nanophotonic biosensors harnessing van der Waals supplies. Nat. Commun. 12, 3824 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Warning, L. A. et al. Nanophotonic approaches for chirality sensing. ACS Nano 15, 15538–15566 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Soler, M., Estevez, M. C., Cardenosa-Rubio, M., Astua, A. & Lechuga, L. M. How nanophotonic label-free biosensors can contribute to fast and large diagnostics of respiratory virus infections: COVID-19 case. ACS Sens. 5, 2663–2678 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Fedyanin, D. Y. & Stebunov, Y. V. All-nanophotonic NEMS biosensor on a chip. Sci. Rep. 5, 10968 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Kaushik, V. et al. On-chip nanophotonic broadband wavelength detector with 2D-electron fuel: nanophotonic platform for wavelength detection in seen spectral area. Nanophotonics 11, 289–296 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Yu, X.-C. et al. Optically sizing single atmospheric particulates with a 10-nm decision utilizing a powerful evanescent subject. Mild. Sci. Appl. 7, 18003–18003 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Yan, Y.-Z. et al. Packaged silica microsphere-taper coupling system for sturdy thermal sensing software. Decide. Categorical 19, 5753–5759 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Yao, B. et al. Graphene-enhanced brillouin optomechanical microresonator for ultrasensitive fuel detection. Nano Lett. 17, 4996–5002 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Katō, T. Perturbation Idea for Linear Operators (Springer, 1995).

  • Berry, M. V. Physics of nonhermitian degeneracies. Czech. J. Phys. 54, 1039–1047 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Zhu, J. et al. On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator. Nat. Photon. 4, 46–49 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Wiersig, J. Enhancing the sensitivity of frequency and vitality splitting detection through the use of distinctive factors: software to microcavity sensors for single-particle detection. Phys. Rev. Lett. 112, 203901 (2014).

    Article 

    Google Scholar
     

  • Wiersig, J. Sensors working at distinctive factors: normal principle. Phys. Rev. A 93, 033809 (2016).

    Article 

    Google Scholar
     

  • Wiersig, J. Overview of outstanding point-based sensors. Photon. Res. 8, 1457–1467 (2020).

    Article 

    Google Scholar
     

  • Chen, W., Kaya Ozdemir, S., Zhao, G., Wiersig, J. & Yang, L. Distinctive factors improve sensing in an optical microcavity. Nature 548, 192–196 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Carlo, M. D., Leonardis, F. D., Soref, R. A. & Passaro, V. M. N. Design of a trap-assisted exceptional-surface-enhanced silicon-on-insulator particle sensor. J. Lightwave Technol. 40, 6021–6029 (2022).

    Article 

    Google Scholar
     

  • Li, J. et al. Distinctive level of nanocylinder-loaded silicon microring for single nanoparticle detection. Proc. SPIE 11979, 1197903 (2022).

  • Jiang, S. et al. Enhanced nanoparticle sensing by mode depth in a non-reciprocally coupled microcavity. J. Appl. Phys. 131, 103106 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zhong, Q. et al. Sensing with distinctive surfaces with a view to mix sensitivity with robustness. Phys. Rev. Lett. 122, 153902 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Hodaei, H. et al. Enhanced sensitivity at higher-order distinctive factors. Nature 548, 187–191 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Farhat, M., Yang, M., Ye, Z. & Chen, P.-Y. PT-symmetric absorber-laser allows electromagnetic sensors with unprecedented sensitivity. ACS Photon.7, 2080–2088 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Park, J.-H. et al. Symmetry-breaking-induced plasmonic distinctive factors and nanoscale sensing. Nat. Phys. 16, 462–468 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Jiang, H. et al. Distinctive factors and enhanced nanoscale sensing with a plasmon–exciton hybrid system. Photon. Res. 10, 557–563 (2022).

    Article 

    Google Scholar
     

  • Feng, Z. & Solar, X. Big enhancement of rotation sensing with PT-symmetric round bragg lasers. Phys. Rev. Appl. 13, 054078 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Li, W. et al. Distinctive-surface-enhanced rotation sensing with robustness in a whispering-gallery-mode microresonator. Phys. Rev. A 104, 033505 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Lai, Y.-H., Lu, Y.-Okay., Suh, M.-G., Yuan, Z. & Vahala, Okay. Statement of the exceptional-point-enhanced Sagnac impact. Nature 576, 65–69 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, H., Peng, M., Xu, X.-W. & Jing, H. Anti-PT-symmetric Kerr gyroscope. Chin. Phys. B 31, 14215–014215 (2022).

    Article 

    Google Scholar
     

  • Wu, Y., Zhou, P., Li, T., Wan, W. & Zou, Y. Excessive-order distinctive level based mostly optical sensor. Decide. Categorical 29, 6080–6091 (2021).

    Article 

    Google Scholar
     

  • Soper, A., Leefmans, C., Parto, M., Williams, J. & Marandi, A. Experimental realization of a sixty fourth order distinctive level on a time-multiplexed photonic resonator community. Proc. SPIE https://doi.org/10.1117/12.2613404 (2022).

  • Khanbekyan, M. & Scheel, S. Enantiomer-discriminating sensing utilizing optical cavities at distinctive factors. Phys. Rev. A 105, 053711 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Chen, L. Measuring Newtonian fixed of gravitation at an distinctive level in an optomechanical system. Decide. Commun. 520, 128534 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Mortensen, N. A. et al. Fluctuations and noise-limited sensing close to the distinctive level of parity–time-symmetric resonator programs. Optica 5, 1342–1346 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Xiao, Z., Li, H., Kottos, T. & Alù, A. Enhanced sensing and nondegraded thermal noise efficiency based mostly on PT-symmetric digital circuits with a sixth-order distinctive level. Phys. Rev. Lett. 123, 213901 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Wang, H., Lai, Y.-H., Yuan, Z., Suh, M.-G. & Vahala, Okay. Petermann-factor sensitivity restrict close to an distinctive level in a Brillouin ring laser gyroscope. Nat. Commun. 11, 1610 (2020).

    Article 

    Google Scholar
     

  • Wiersig, J. Prospects and basic limits in distinctive point-based sensing. Nat. Commun. 11, 2454 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Kononchuk, R., Feinberg, J., Knee, J. & Kottos, T. Enhanced avionic sensing based mostly on Wigners cusp anomalies. Sci. Adv. 7, eabg8118 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Wiersig, J. Robustness of exceptional-point-based sensors in opposition to parametric noise: the position of Hamiltonian and Liouvillian degeneracies. Phys. Rev. A 101, 053846 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Duggan, R., A. Mann, S. & Alù, A. Limitations of sensing at an distinctive level. ACS Photon. 9, 1554–1566 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wolff, C., Tserkezis, C. & Mortensen, N. A. On the time evolution at a fluctuating distinctive level. Nanophotonics 8, 1319–1326 (2019).

    Article 

    Google Scholar
     

  • Langbein, W. No distinctive precision of exceptional-point sensors. Phys. Rev. A 98, 023805 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Grant, M. J. & Digonnet, M. J. F. Rotation sensitivity and shot-noise-limited detection in an exceptional-point coupled-ring gyroscope. Decide. Lett. 46, 2936–2939 (2021).

    Article 

    Google Scholar
     

  • Kim, J. et al. Sensible lineshape of a laser working close to an distinctive level. Sci. Rep. 11, 6164 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Lau, H.-Okay. & Clerk, A. A. Elementary limits and non-reciprocal approaches in non-Hermitian quantum sensing. Nat. Commun. 9, 4320 (2018).

    Article 

    Google Scholar
     

  • Chen, C., Jin, L. & Liu, R.-B. Sensitivity of parameter estimation close to the distinctive level of a non-Hermitian system. New J. Phys. 21, 083002 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Peters, Okay. J. H. & Rodriguez, S. R. Okay. Distinctive precision of a nonlinear optical sensor at a square-root singularity. Phys. Rev. Lett. 129, 013901 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Smith, D. D., Chang, H., Mikhailov, E. E. & Shahriar, S. M. Past the Petermann restrict: prospect of accelerating sensor precision close to distinctive factors. Phys. Rev. A 106, 013520 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Dembowski, C. et al. Encircling an distinctive level. Phys. Rev. E 69, 056216 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Gao, T. et al. Statement of non-Hermitian degeneracies in a chaotic exciton–polariton billiard. Nature 526, 554–558 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Milburn, T. J. et al. Normal description of quasiadiabatic dynamical phenomena close to distinctive factors. Phys. Rev. A 92, 052124 (2015).

    Article 

    Google Scholar
     

  • Doppler, J. et al. Dynamically encircling an distinctive level for uneven mode switching. Nature 537, 76–79 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, X.-L., Jiang, T. & Chan, C. T. Dynamically encircling an distinctive level in anti-parity–time symmetric programs: uneven mode switching for symmetry-broken modes. Mild. Sci. Appl. 8, 88 (2019).

    Article 

    Google Scholar
     

  • Yoon, J. W. et al. Time-asymmetric loop round an distinctive level over the complete optical communications band. Nature 562, 86–90 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Liu, Q. et al. Environment friendly mode switch on a compact silicon chip by encircling shifting distinctive factors. Phys. Rev. Lett. 124, 153903 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Li, A. et al. Hamiltonian hopping for environment friendly chiral mode switching in encircling distinctive factors. Phys. Rev. Lett. 125, 187403 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Shu, X. et al. Quick encirclement of an distinctive level for extremely environment friendly and compact chiral mode converters. Nat. Commun. 13, 2123 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wei, Y. et al. Anti-parity–time symmetry enabled on-chip chiral polarizer. Photon. Res. 10, 76–83 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, X.-L. & Chan, C. T. Dynamically encircling distinctive factors in a three-mode waveguide system. Commun. Phys. 2, 63 (2019).

    Article 

    Google Scholar
     

  • Yu, F., Zhang, X.-L., Tian, Z.-N., Chen, Q.-D. & Solar, H.-B. Normal guidelines governing the dynamical encircling of an arbitrary variety of distinctive factors. Phys. Rev. Lett. 127, 253901 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Hassan, A. U. et al. Chiral state conversion with out encircling an distinctive level. Phys. Rev. A 96, 052129 (2017).

    Article 

    Google Scholar
     

  • Liu, Q., Liu, J., Zhao, D. & Wang, B. On-chip experiment for chiral mode switch with out enclosing an distinctive level. Phys. Rev. A 103, 023531 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Nasari, H. et al. Statement of chiral state switch with out encircling an distinctive level. Nature 605, 256–261 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Khurgin, J. B. et al. Emulating exceptional-point encirclements utilizing imperfect (leaky) photonic parts: uneven mode-switching and omni-polarizer motion. Optica 8, 563–569 (2021).

    Article 

    Google Scholar
     

  • Schumer, A. et al. Topological modes in a laser cavity by means of distinctive state switch. Science 375, 884–888 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, J.-Q. et al. Topological optomechanical amplifier in artificial PT-symmetry. Nanophotonics 11, 1149–1158 (2022).

    Article 

    Google Scholar
     

  • Wang, H., Assawaworrarit, S. & Fan, S. Dynamics for encircling an distinctive level in a nonlinear non-Hermitian system. Decide. Lett. 44, 638–641 (2019).

    Article 

    Google Scholar
     

  • Wang, Okay., Dutt, A., Wojcik, C. C. & Fan, S. Topological complex-energy braiding of non-Hermitian bands. Nature 598, 59–64 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Wojcik, C. C., Wang, Okay., Dutt, A., Zhong, J. & Fan, S. Eigenvalue topology of non-Hermitian band constructions in two and three dimensions. Phys. Rev. B 106, L161401 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Konotop, V. V., Yang, J. & Zezyulin, D. A. Nonlinear waves in PT-symmetric programs. Rev. Mod. Phys. 88, 035002 (2016).

    Article 

    Google Scholar
     

  • Liu, Z. et al. Excessive-Q quasibound states within the continuum for nonlinear metasurfaces. Phys. Rev. Lett. 123, 253901 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Hu, G. et al. Coherent steering of nonlinear chiral valley photons with an artificial Au–WS2 metasurface. Nat. Photon. 13, 467–472 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Choi, Y., Hahn, C., Yoon, J. W., Track, S. H. & Berini, P. Extraordinarily broadband, on-chip optical nonreciprocity enabled by mimicking nonlinear anti-adiabatic quantum jumps close to distinctive factors. Nat. Commun. 8, 14154 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Ramezanpour, S. & Bogdanov, A. Tuning distinctive factors with Kerr nonlinearity. Phys. Rev. A 103, 043510 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Suwunnarat, S. et al. Non-linear coherent good absorption within the proximity of outstanding factors. Commun. Phys. 5, 5 (2022).

    Article 

    Google Scholar
     

  • Assawaworrarit, S., Yu, X. & Fan, S. Sturdy wi-fi energy switch utilizing a nonlinear parity–time-symmetric circuit. Nature 546, 387–390 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Hassan, A. U., Hodaei, H., Miri, M.-A., Khajavikhan, M. & Christodoulides, D. N. Nonlinear reversal of the PT-symmetric section transition in a system of coupled semiconductor microring resonators. Phys. Rev. A 92, 063807 (2015).

    Article 

    Google Scholar
     

  • Qin, L., Grasp, C. & Huang, G. Controllable PT section transition and uneven soliton scattering in atomic gases with linear and nonlinear potentials. Phys. Rev. A 99, 043832 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Laha, A., Dey, S., Gandhi, H. Okay., Biswas, A. & Ghosh, S. Distinctive level and towards mode-selective optical isolation. ACS Photon. 7, 967–974 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Li, T., Gao, Z. & Xia, Okay. Nonlinear-dissipation-induced nonreciprocal distinctive factors. Decide. Categorical 29, 17613–17627 (2021).

    Article 

    Google Scholar
     

  • McIsaac, P. R. Mode orthogonality in reciprocal and nonreciprocal waveguides. IEEE Trans. Microw. Idea Tech. 39, 1808–1816 (1991).

    Article 

    Google Scholar
     

  • Lahini, Y. et al. Impact of nonlinearity on adiabatic evolution of sunshine. Phys. Rev. Lett. 101, 193901 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Suwunnarat, S. et al. Enhanced nonlinear instabilities in photonic circuits with distinctive level degeneracies. Photon. Res. 8, 737–744 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Miri, M.-A. & Alù, A. Nonlinearity-induced PT-symmetry with out materials acquire. New J. Phys. 18, 065001 (2016).

    Article 

    Google Scholar
     

  • Shi, Y., Yu, Z. & Fan, S. Limitations of nonlinear optical isolators on account of dynamic reciprocity. Nat. Photon. 9, 388–392 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Ge, L. & El-Ganainy, R. Nonlinear modal interactions in parity–time (PT) symmetric lasers. Sci. Rep. 6, 24889 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Khanikaev, A. B. & Shvets, G. Two-dimensional topological photonics. Nat. Photon. 11, 763–773 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Ozawa, T. et al. Topological photonics. Rev. Mod. Phys. 91, 015006 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Yang, Y. et al. Terahertz topological photonics for on-chip communication. Nat. Photon. 14, 446–451 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Dai, T. et al. Topologically protected quantum entanglement emitters. Nat. Photon. 16, 248–257 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Midya, B., Zhao, H. & Feng, L. Non-Hermitian photonics guarantees distinctive topology of sunshine. Nat. Commun. 9, 2674 (2018).

    Article 

    Google Scholar
     

  • Weimann, S. et al. Topologically protected certain states in photonic parity–time-symmetric crystals. Nat. Mater. 16, 433–438 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Zeuner, J. M. et al. Statement of a topological transition within the bulk of a non-Hermitian system. Phys. Rev. Lett. 115, 040402 (2015).

    Article 

    Google Scholar
     

  • Pan, M., Zhao, H., Miao, P., Longhi, S. & Feng, L. Photonic zero mode in a non-Hermitian photonic lattice. Nat. Commun. 9, 1308 (2018).

    Article 

    Google Scholar
     

  • Ni, X. et al. PT section transitions of edge states at PT symmetric interfaces in non-Hermitian topological insulators. Phys. Rev. B 98, 165129 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Kremer, M. et al. Demonstration of a two-dimensional PT-symmetric crystal. Nat. Commun. 10, 435 (2019).

    Article 

    Google Scholar
     

  • Ao, Y. et al. Topological section transition within the non-Hermitian coupled resonator array. Phys. Rev. Lett. 125, 013902 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Okay. et al. Producing arbitrary topological windings of a non-Hermitian band. Science 371, 1240–1245 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zhen, B. et al. Spawning rings of outstanding factors out of Dirac cones. Nature 525, 354–358 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Yao, S. & Wang, Z. Edge states and topological invariants of non-Hermitian programs. Phys. Rev. Lett. 121, 086803 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Track, Y. et al. Two-dimensional non-Hermitian pores and skin impact in an artificial photonic lattice. Phys. Rev. Appl. 14, 064076 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Weidemann, S. et al. Topological funneling of sunshine. Science 368, 311–314 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Zhu, X. et al. Photonic non-Hermitian pores and skin impact and non-Bloch bulk-boundary correspondence. Phys. Rev. Res. 2, 013280 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Zhu, B. et al. Anomalous single-mode lasing induced by nonlinearity and the non-Hermitian pores and skin impact. Phys. Rev. Lett. 129, 013903 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Cerjan, A. et al. Experimental realization of a Weyl distinctive ring. Nat. Photon. 13, 623–628 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Harari, G. et al. Topological insulator laser: principle. Science 359, eaar4003 (2018).

    Article 

    Google Scholar
     

  • Bandres, M. A. et al. Topological insulator laser: experiments. Science 359, eaar4005 (2018).

    Article 

    Google Scholar
     

  • Bahari, B. et al. Nonreciprocal lasing in topological cavities of arbitrary geometries. Science 358, 636–640 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Zeng, Y. et al. Electrically pumped topological laser with valley edge modes. Nature 578, 246–250 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Shao, Z.-Okay. et al. A high-performance topological bulk laser based mostly on band-inversion-induced reflection. Nat. Nanotechnol. 15, 67–72 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Contractor, R. et al. Scalable single-mode floor emitting laser through open-Dirac singularities. Nature 608, 692–698 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zhao, H. et al. Non-Hermitian topological gentle steering. Science 365, 1163–1166 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Gorlach, M. A. et al. Far-field probing of leaky topological states in all-dielectric metasurfaces. Nat. Commun. 9, 909 (2018).

    Article 

    Google Scholar
     

  • Smirnova, D. et al. Third-harmonic technology in photonic topological metasurfaces. Phys. Rev. Lett. 123, 103901 (2019).

    Article 
    CAS 

    Google Scholar
     

  • You, J. W., Lan, Z. & Panoiu, N. C. 4-wave mixing of topological edge plasmons in graphene metasurfaces. Sci. Adv. 6, eaaz3910 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Park, S. H. et al. Statement of an distinctive level in a non-Hermitian metasurface. Nanophotonics 9, 1031–1039 (2020).

    Article 

    Google Scholar
     

  • Li, Z. et al. Non-hermitian electromagnetic metasurfaces at distinctive factors. Prog. Electromagn. Res. 171, 1–20 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Yang, F. et al. Non-Hermitian metasurface with non-trivial topology. Nanophotonics 11, 1159–1165 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Track, Q., Odeh, M., Zúñiga-Pérez, J., Kanté, B. & Genevet, P. Plasmonic topological metasurface by encircling an distinctive level. Science 373, 1133–1137 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Smirnova, D., Leykam, D., Chong, Y. & Kivshar, Y. Nonlinear topological photonics. Appl. Phys. Rev. 7, 021306 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Parto, M., Liu, Y. G. N., Bahari, B., Khajavikhan, M. & Christodoulides, D. N. Non-Hermitian and topological photonics: optics at an distinctive level. Nanophotonics 10, 403–423 (2021).

    Article 

    Google Scholar
     

  • Xia, S. et al. Nonlinear tuning of PT symmetry and non-Hermitian topological states. Science 372, 72–76 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Soleymani, S. et al. Chiral and degenerate good absorption on distinctive surfaces. Nat. Commun. 13, 599 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Yulaev, A. et al. Distinctive factors in lossy media result in deep polynomial wave penetration with spatially uniform energy loss. Nat. Nanotechnol. 17, 583–589 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Li, A. et al. Riemann-encircling distinctive factors for environment friendly uneven polarization-locked gadgets. Phys. Rev. Lett. 129, 127401 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Hokmabadi, M. P., Nye, N. S., El-Ganainy, R., Christodoulides, D. N. & Khajavikhan, M. Supersymmetric laser arrays. Science 363, 623–626 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Kang, M., Chen, J. & Chong, Y. D. Chiral distinctive factors in metasurfaces. Phys. Rev. A 94, 033834 (2016).

    Article 

    Google Scholar
     

  • Ezawa, M. Nonlinear non-Hermitian higher-order topological laser. Phys. Rev. Res. 4, 013195 (2022).

    Article 
    CAS 

    Google Scholar
     



  • Supply hyperlink

    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    - Advertisment -
    Google search engine

    Most Popular

    Recent Comments