Ekimov, A. I., Efros, Al. L. & Onushchenko, A. A. Quantum dimension impact in semiconductor microcrystals. Strong State Commun. 56, 921–924 (1985).
Brus, L. Digital wave capabilities in semiconductor clusters: experiment and idea. J. Phys. Chem. 90, 2555–2560 (1986).
Colvin, V., Schlamp, M. & Alivisatos, A. P. Mild-emitting diodes constituted of cadmium selenide nanocrystals and a semiconducting polymer. Nature 370, 354–357 (1994).
Mueller, A. H. et al. Multicolor light-emitting diodes primarily based on semiconductor nanocrystals encapsulated in GaN cost injection layers. Nano Lett. 5, 1039–1044 (2005).
Pietryga, J. M. et al. Spectroscopic and machine elements of nanocrystal quantum dots. Chem. Rev. 116, 10513–10622 (2016).
Kwak, J. et al. Vibrant and environment friendly full-color colloidal quantum dot light-emitting diodes utilizing an inverted machine construction. Nano Lett. 12, 2362–2366 (2012).
Coe, S., Woo, W.-Okay., Bawendi, M. & Bulović, V. Electroluminescence from single monolayers of nanocrystals in molecular natural gadgets. Nature 420, 800–803 (2002).
Steckel, J. S. et al. Quantum dots: the final word down‐conversion materials for LCD shows. J. Soc. Inf. Disp. 23, 294–305 (2015).
Bourzac, Okay. Quantum dots go on show. Nature 493, 283–283 (2013).
Yang, J. et al. Towards full-color electroluminescent quantum dot shows. Nano Lett. 21, 26–33 (2021).
Yang, J. et al. Excessive-resolution patterning of colloidal quantum dots by way of non-destructive, light-driven ligand crosslinking. Nat. Commun. 11, 2874 (2020).
Meng, T. et al. Ultrahigh-resolution quantum-dot light-emitting diodes. Nat. Photon. 16, 297–303 (2022).
Kim, T.-H. et al. Full-colour quantum dot shows fabricated by switch printing. Nat. Photon. 5, 176–182 (2011).
Zhao, J. et al. Giant-area patterning of full-color quantum dot arrays past 1,000 pixels per inch by selective electrophoretic deposition. Nat. Commun. 12, 4603 (2021).
Triana, M. A., Hsiang, E.-L., Zhang, C., Dong, Y. & Wu, S.-T. Luminescent nanomaterials for energy-efficient show and healthcare. ACS Vitality Lett. 7, 1001–1020 (2022).
Cakmakci, O. & Rolland, J. Head-worn shows: a evaluation. J. Disp. Technol. 2, 199–216 (2006).
Jang, H. J., Lee, J. Y., Baek, G. W., Kwak, J. & Park, J.-H. Progress within the growth of the show efficiency of AR, VR, QLED and OLED gadgets lately. J. Inf. Disp. 23, 1–17 (2022).
Nam, T. W. et al. Thermodynamic-driven polychromatic quantum dot patterning for light-emitting diodes past eye-limiting decision. Nat. Commun. 11, 3040 (2020).
Choi, M. Okay. et al. Wearable pink–inexperienced–blue quantum dot light-emitting diode array utilizing high-resolution intaglio switch printing. Nat. Commun. 6, 7149 (2015).
Keum, H. et al. Photoresist contact patterning of quantum dot movies. ACS Nano 12, 10024–10031 (2018).
Hahm, D. et al. Floor engineered colloidal quantum dots for full inexperienced course of. ACS Appl. Mater. Interfaces 12, 10563–10570 (2020).
Azzellino, G., Freyria, F. S., Nasilowski, M., Bawendi, M. G. & Bulović, V. Micron-scale patterning of excessive quantum yield quantum dot leds. Adv. Mater. Technol. 4, 1800727 (2019).
Wooden, V. et al. Inkjet‐printed quantum dot–polymer composites for full‐coloration a.c.‐pushed shows. Adv. Mater. 21, 2151–2155 (2009).
Yang, P., Zhang, L., Kang, D. J., Strahl, R. & Kraus, T. Excessive‐decision inkjet printing of quantum dot mild‐emitting microdiode arrays. Adv. Optical Mater. 8, 1901429 (2020).
Roh, H. et al. Enhanced efficiency of pixelated quantum dot mild‐emitting diodes by inkjet printing of quantum dot–polymer composites. Adv. Optical Mater. 9, 2002129 (2021).
Chen, M. et al. Excessive efficiency inkjet-printed QLEDs with 18.3% EQE: enhancing interfacial contact by novel halogen-free binary solvent system. Nano Res. 14, 4125–4131 (2021).
Tekin, E., Smith, P. J. & Schubert, U. S. Inkjet printing as a deposition and patterning software for polymers and inorganic particles. Tender Matter 4, 703–713 (2008).
Ahn, J. et al. Ink-lithography for property engineering and patterning of nanocrystal skinny movies. ACS Nano 15, 15667–15675 (2021).
Kim, G.-H. et al. Excessive-resolution colloidal quantum dot movie photolithography by way of atomic layer deposition of ZnO. ACS Appl. Mater. Interfaces 13, 43075–43084 (2021).
Mei, W. et al. Excessive-resolution, full-color quantum dot light-emitting diode show fabricated by way of photolithography strategy. Nano Res. 13, 2485–2491 (2020).
Park, J.-S. et al. Various patterning course of for realization of large-area, full-color, lively quantum dot show. Nano Lett. 16, 6946–6953 (2016).
Wang, Y., Fedin, I., Zhang, H. & Talapin, D. V. Direct optical lithography of practical inorganic nanomaterials. Science 357, 385–388 (2017).
Wang, Y., Pan, J.-A., Wu, H. & Talapin, D. V. Direct wavelength-selective optical and electron-beam lithography of practical inorganic nanomaterials. ACS Nano 13, 13917–13931 (2019).
Cho, H. et al. Direct optical patterning of quantum dot mild‐emitting diodes by way of in situ ligand trade. Adv. Mater. 32, 2003805 (2020).
Ahn, S., Chen, W. & Vazquez-Mena, O. Excessive decision patterning of PbS quantum dots/graphene photodetectors with excessive responsivity by way of photolithography with a prime graphene layer to guard floor ligands. Nanoscale Adv. 3, 6206–6212 (2021).
Pan, J.-A., Ondry, J. C. & Talapin, D. V. Direct optical lithography of CsPbX3 nanocrystals by way of photoinduced ligand cleavage with postpatterning chemical modification and digital coupling. Nano Lett. 21, 7609–7616 (2021).
Mattoussi, H. et al. Self-assembly of CdSe−ZnS quantum dot bioconjugates utilizing an engineered recombinant protein. J. Am. Chem. Soc. 122, 12142–12150 (2000).
Jeong, B. G. et al. Colourful opaque photovoltaic modules with down-converting InP/ZnSexS1–x quantum dot layers. Nano Vitality 77, 105169 (2020).
Sanai, Y., Kagami, S. & Kubota, Okay. Cross-linking photopolymerization of monoacrylate initiated by benzophenone. J. Polym. Sci. Half A: Polym. Chem. 56, 1545–1553 (2018).
Virkar, A., Ling, M.-M., Locklin, J. & Bao, Z. Oligothiophene primarily based natural semiconductors with cross-linkable benzophenone moieties. Synth. Met. 158, 958–963 (2008).
Qu, B., Xu, Y., Ding, L. & Rånby, B. A brand new mechanism of benzophenone photoreduction in photoinitiated crosslinking of polyethylene and its mannequin compounds. J. Polym. Sci. Half A: Polym. Chem. 38, 999–1005 (2000).
Boscá, F. & Miranda, M. A. New developments in photobiology (invited evaluation) photosensitizing medication containing the benzophenone chromophore. J. Photochem. Photobiol. B 43, 1–26 (1998).
Dorman, G., Nakamura, H., Pulsipher, A. & Prestwich, G. D. The lifetime of pi star: exploring the thrilling and forbidden worlds of the benzophenone photophore. Chem. Rev. 116, 15284–15398 (2016).
Ko, J. et al. Direct photolithographic patterning of colloidal quantum dots enabled by UV-crosslinkable and hole-transporting polymer ligands. ACS Appl. Mater. Interfaces 12, 42153–42160 (2020).
Han, J. et al. Towards high-resolution, inkjet-printed, quantum dot light-emitting diodes for next-generation shows. J. Soc. Inf. Disp. 24, 545–551 (2016).
Kim, B. H. et al. Excessive-resolution patterns of quantum dots shaped by electrohydrodynamic jet printing for light-emitting diodes. Nano Lett. 15, 969–973 (2015).
Nallan, H. C., Sadie, J. A., Kitsomboonloha, R., Volkman, S. Okay. & Subramanian, V. Systematic design of jettable nanoparticle-based inkjet inks: rheology, acoustics, and jettability. Langmuir 30, 13470–13477 (2014).
Chung, S., Cho, Okay. & Lee, T. Latest progress in inkjet‐printed skinny‐movie transistors. Adv. Sci. 6, 1801445 (2019).
Hahm, D. et al. Design precept for vivid, sturdy, and color-pure InP/ZnSexS1–x/ZnS heterostructures. Chem. Mater. 31, 3476–3484 (2019).
Jeong, B. G. et al. Interface polarization in heterovalent core–shell nanocrystals. Nat. Mater. 21, 246–252 (2022).