Ji B. In direction of environment-sustainable wastewater therapy and reclamation by the non-aerated microalgal-bacterial granular sludge course of: latest advances and future instructions. Sci Whole Environ. 2022;806: 150707. https://doi.org/10.1016/j.scitotenv.2021.150707.
Del Prado-Audelo ML, García Kerdan I, Escutia-Guadarrama L, Reyna-González JM, Magaña JJ, Leyva-Gómez G. Nanoremediation: nanomaterials and nanotechnologies for environmental cleanup. Entrance Environ Sci. 2021;9:1–7. https://doi.org/10.3389/fenvs.2021.793765.
González-Martín J, Kraakman NJR, Pérez C, Lebrero R, Muñoz R. A state–of–the-art evaluate on indoor air air pollution and techniques for indoor air air pollution management. Chemosphere. 2021. https://doi.org/10.1016/j.chemosphere.2020.128376.
Ju MJ, Oh J, Choi YH. Adjustments in air air pollution ranges after COVID-19 outbreak in Korea. Sci Whole Environ. 2021;750: 141521. https://doi.org/10.1016/j.scitotenv.2020.141521.
Lu F, Astruc D. Nanocatalysts and different nanomaterials for water remediation from natural pollution. Coord Chem Rev. 2020;408: 213180. https://doi.org/10.1016/j.ccr.2020.213180.
Visa M. Synthesis and characterization of latest zeolite supplies obtained from fly ash for heavy metals elimination in superior wastewater therapy. Powder Technol. 2016;294:338–47. https://doi.org/10.1016/j.powtec.2016.02.019.
Al-Saydeh SA, El-Naas MH, Zaidi SJ. Copper elimination from industrial wastewater: a complete evaluate. J Ind Eng Chem. 2017;56:35–44. https://doi.org/10.1016/j.jiec.2017.07.026.
Almomani F, Bhosale R, Khraisheh M, Kumar A, Almomani T. Heavy steel ions elimination from industrial wastewater utilizing magnetic nanoparticles (MNP). Appl Surf Sci. 2020;506: 144924. https://doi.org/10.1016/j.apsusc.2019.144924.
Alvarez PJJ, Chan CK, Elimelech M, Halas NJ, Villagrán D. Rising alternatives for nanotechnology to reinforce water safety. Nat Nanotechnol. 2018;13:634–41. https://doi.org/10.1038/s41565-018-0203-2.
Liu X, Tian J, Li Y, Solar N, Mi S, Xie Y, Chen Z. Enhanced dyes adsorption from wastewater by way of Fe3O4 nanoparticles functionalized activated carbon. J Hazard Mater. 2019;373:397–407. https://doi.org/10.1016/j.jhazmat.2019.03.103.
Singh A, Pal DB, Mohammad A, Alhazmi A, Haque S, Yoon T, Srivastava N, Gupta VK. Organic remediation applied sciences for dyes and heavy metals in wastewater therapy: new perception. Bioresour Technol. 2022;343: 126154. https://doi.org/10.1016/j.biortech.2021.126154.
Cheriyamundath S, Vavilala SL. Nanotechnology-based wastewater therapy. Water Environ J. 2021;35:123–32. https://doi.org/10.1111/wej.12610.
Najafpoor A, Norouzian-Ostad R, Alidadi H, Rohani-Bastami T, Davoudi M, Barjasteh-Askari F, Zanganeh J. Impact of magnetic nanoparticles and silver-loaded magnetic nanoparticles on superior wastewater therapy and disinfection. J Mol Liq. 2020;303: 112640. https://doi.org/10.1016/j.molliq.2020.112640.
Xue S, Xiao Y, Wang G, Fan J, Wan Okay, He Q, Gao M, Miao Z. Adsorption of heavy metals in water by modifying Fe3O4 nanoparticles with oxidized humic acid. Colloids Surf A Physicochem Eng Asp. 2021;616: 126333. https://doi.org/10.1016/j.colsurfa.2021.126333.
Corsi I, Winther-Nielsen M, Sethi R, Punta C, Della Torre C, Libralato G, Lofrano G, Sabatini L, Aiello M, Fiordi L, Cinuzzi F, Caneschi A, Pellegrini D, Buttino I. Ecofriendly nanotechnologies and nanomaterials for environmental purposes: key challenge and consensus suggestions for sustainable and ecosafe nanoremediation. Ecotoxicol Environ Saf. 2018;154:237–44. https://doi.org/10.1016/j.ecoenv.2018.02.037.
Abouzeid RE, Khiari R, El-Wakil N, Dufresne A. Present state and new tendencies in the usage of cellulose nanomaterials for wastewater therapy. Biomacromol. 2019;20:573–97. https://doi.org/10.1021/acs.biomac.8b00839.
Willner MR, Vikesland PJ. Nanomaterial enabled sensors for environmental contaminants Prof Ueli Aebi, Prof Peter Gehr. J Nanobiotechnol. 2018;16:1–16. https://doi.org/10.1186/s12951-018-0419-1.
Magudieshwaran R, Ishii J, Raja KCN, Terashima C, Venkatachalam R, Fujishima A, Pitchaimuthu S. Inexperienced and chemical synthesized CeO2 nanoparticles for photocatalytic indoor air pollutant degradation. Mater Lett. 2019;239:40–4. https://doi.org/10.1016/j.matlet.2018.11.172.
Bourdrel T, Annesi-Maesano I, Alahmad B, Maesano CN, Bind MA. The impression of out of doors air air pollution on covid-19: a evaluate of proof from in vitro, animal, and human research. Eur Respir Rev. 2021;30:1–18. https://doi.org/10.1183/16000617.0242-2020.
Sadegh H, Ali GAM, Gupta VK, Makhlouf ASH, Shahryari-ghoshekandi R, Nadagouda MN, Sillanpää M, Megiel E. The function of nanomaterials as efficient adsorbents and their purposes in wastewater therapy. J Nanostruct Chem. 2017;7:1–14. https://doi.org/10.1007/s40097-017-0219-4.
Rafatullah M, Sulaiman O, Hashim R, Ahmad A. Adsorption of methylene blue on low-cost adsorbents: a evaluate. J Hazard Mater. 2010;177:70–80. https://doi.org/10.1016/j.jhazmat.2009.12.047.
B. Ward. Growth, synthesis and characterization of multifunctional nanomaterials, 2014. https://www.researchgate.web/profile/Ward-Brullot/publication/263723744_Development_synthesis_and_characterization_of_multifunctional_nanomaterials/hyperlinks/0f31753bbff1c9014b000000/Growth-synthesis-and-characterization-of-multifunctional-nanomaterials.
Ivanova N, Gugleva V, Dobreva M, Pehlivanov I, Stefanov S, Andonova V. We’re IntechOpen, the world’s main writer of Open Entry books Constructed by scientists, for scientists TOP 1 %. INTECH. 2016;i:13.
Tang Y, Xin H, Yang F, Lengthy X. A historic evaluate and bibliometric evaluation of nanoparticles toxicity on algae. J Nanopart Res. 2018. https://doi.org/10.1007/s11051-018-4196-4.
Badawi AK, Salama RS, Mostafa MMM. Pure-based coagulants/flocculants as sustainable market-valued merchandise for industrial wastewater therapy: a evaluate of latest developments. RSC Adv. 2023;13:19335–55. https://doi.org/10.1039/d3ra01999c.
Wang B, Music Z, Solar L. A evaluate: Comparability of multi-air-pollutant elimination by superior oxidation processes—industrial implementation for catalytic oxidation processes. Chem Eng J. 2021. https://doi.org/10.1016/j.cej.2020.128136.
Han Y, Wang Y, Li W, Chen X, Xue T, Chen W, Fan Y, Qiu X, Zhu T. Susceptibility of prediabetes to the well being impact of air air pollution: a community-based panel examine with a nested case-control design. Environ Well being. 2019;18:1–9. https://doi.org/10.1186/s12940-019-0502-6.
Rashid R, Shafiq I, Akhter P, Iqbal MJ, Hussain M. A state-of-the-art evaluate on wastewater therapy strategies: the effectiveness of adsorption technique. Environ Sci Pollut Res. 2021;28:9050–66. https://doi.org/10.1007/s11356-021-12395-x.
Baigorria E, Galhardi JA, Fraceto LF. Tendencies in polymers networks utilized to the elimination of aqueous pollution: a evaluate. J Clear Prod. 2021;295: 126451. https://doi.org/10.1016/j.jclepro.2021.126451.
Garcia-Segura S, Ocon JD, Chong MN. Electrochemical oxidation remediation of actual wastewater effluents—a evaluate. Course of Saf Environ Prot. 2018;113:48–67. https://doi.org/10.1016/j.psep.2017.09.014.
Elgarahy AM, Elwakeel KZ, Akhdhar A, Hamza MF. Latest advances in greenly synthesized nanoengineered supplies for water/wastewater remediation: an summary. Nanotechnol Environ Eng. 2021;6:1–24. https://doi.org/10.1007/s41204-021-00104-5.
Guesmi A, Cherif MM, Baaloudj O, Kenfoud H, Badawi AK, Elfalleh W, Hamadi NB, Khezami L, Assadi AA. Disinfection of corona and myriad viruses in water by non-thermal plasma: a evaluate. Environ Sci Pollut Res. 2022;29(37):55321–35. https://doi.org/10.1007/s11356-022-21160-7.
Badawi AK, Zaher Okay. Hybrid therapy system for actual textile wastewater remediation based mostly on coagulation/flocculation, adsorption and filtration processes: efficiency and financial analysis. J Water Course of Eng. 2021;40: 101963. https://doi.org/10.1016/j.jwpe.2021.101963.
Jawed A, Saxena V, Pandey LM. Engineered nanomaterials and their floor functionalization for the elimination of heavy metals: a evaluate. J Water Course of Eng. 2020;33:101009.
Suresh R, Rajendran S, Kumar PS, Vo DVN, Cornejo-Ponce L. Latest developments of spinel ferrite based mostly binary nanocomposite photocatalysts in wastewater therapy. Chemosphere. 2021;274: 129734. https://doi.org/10.1016/j.chemosphere.2021.129734.
Al-Anazi A, Abdelraheem WH, Scheckel Okay, Nadagouda MN, O’Shea Okay, Dionysiou DD. Novel franklinite-like artificial zinc-ferrite redox nanomaterial: synthesis, and analysis for degradation of diclofenac in water. Appl Catal B. 2020;275: 119098. https://doi.org/10.1016/j.apcatb.2020.119098.
Huang C, Mou W, Li J, Liu Y. Extraordinarily well-dispersed zinc oxide nanofluids with glorious antibacterial, antifungal, and formaldehyde and toluene elimination properties. Ind Eng Chem Res. 2022;61:3973–82. https://doi.org/10.1021/acs.iecr.2c00369.
Asghar N, Nguyen DA, Jang A. Software of MnFe2O4 magnetic silica-covered ethylenediaminetetraacetic acid-functionalized nanomaterials to the draw answer in ahead osmosis. Chemosphere. 2023;330: 138735. https://doi.org/10.1016/j.chemosphere.2023.138735.
Wu Y, Liu Y, Chen R, Zhang WH, Ge Q. A pH-responsive supramolecular draw solute that achieves high-performance in arsenic elimination by way of ahead osmosis. Water Res. 2019;165: 114993. https://doi.org/10.1016/j.watres.2019.114993.
Sheoran Okay, Kaur H, Siwal SS, Saini AK, Vo DVN, Thakur VK. Latest advances of carbon-based nanomaterials (CBNMs) for wastewater therapy: synthesis and utility. Chemosphere. 2022;299: 134364. https://doi.org/10.1016/j.chemosphere.2022.134364.
Akbari A, Amini M, Tarassoli A, Eftekhari-Sis B, Ghasemian N, Jabbari E. Transition steel oxide nanoparticles as environment friendly catalysts in oxidation reactions. Nano-Struct Nano-Objects. 2018;14:19–48. https://doi.org/10.1016/j.nanoso.2018.01.006.
Santhosh C, Velmurugan V, Jacob G, Jeong SK, Grace AN, Bhatnagar A. Position of nanomaterials in water therapy purposes: a evaluate. Chem Eng J. 2016;306:1116–37. https://doi.org/10.1016/j.cej.2016.08.053.
Hojjati-Najafabadi A, Mansoorianfar M, Liang T, Shahin Okay, Wen Y, Bahrami A, Karaman C, Zare N, Karimi-Maleh H, Vasseghian Y. Magnetic-MXene-based nanocomposites for water and wastewater therapy: a evaluate. J Water Course of Eng. 2022;47: 102696. https://doi.org/10.1016/j.jwpe.2022.102696.
Cervantes-Avilés P, Keller AA. Incidence of metal-based nanoparticles within the typical wastewater therapy course of. Water Res. 2021. https://doi.org/10.1016/j.watres.2020.116603.
Kane A, Assadi AA, El Jery A, Badawi AK, Kenfoud H, Baaloudj O, Assadi AA. Superior photocatalytic therapy of wastewater utilizing immobilized titanium dioxide as a photocatalyst in a pilot-scale reactor: course of intensification. Supplies. 2022. https://doi.org/10.3390/ma15134547.
Hussain F, Roy S, Narasimhan Okay, Vengadassalam Okay, Lu H. E-glass-polypropylene pultruded nanocomposite: manufacture, characterization, thermal and mechanical properties. J Thermoplast Compos Mater. 2007;20:411–34. https://doi.org/10.1177/0892705707079604.
Guo F, Aryana S, Han Y, Jiao Y. A evaluate of the synthesis and purposes of polymer-nanoclay composites. Appl Sci (Switzerland). 2018;8:1–29. https://doi.org/10.3390/app8091696.
Yu J, Zeng X, Wu S, Wang L, Liu G. Preparation and properties of montmorillonite modified asphalts. Mater Sci Eng, A. 2007;447:233–8. https://doi.org/10.1016/j.msea.2006.10.037.
You Z, Mills-Beale J, Foley JM, Roy S, Odegard GM, Dai Q, Goh SW. Nanoclay-modified asphalt supplies: preparation and characterization. Constr Construct Mater. 2011;25(2):1072–8.
You Z, Mills-Beale J, Foley JM, Roy S, Odegard GM, Dai Q, Goh SW. Nanoclay-modified asphalt supplies: preparation and characterization. Constr Construct Mater. 2011;25:1072–8. https://doi.org/10.1016/j.conbuildmat.2010.06.070.
Chan ML, Lau KT, Wong TT, Ho MP, Hui D. Mechanism of reinforcement in a nanoclay/polymer composite. Compos B Eng. 2011;42:1708–12. https://doi.org/10.1016/j.compositesb.2011.03.011.
Rong Okay, Wang J, Zhang Z, Zhang J. Inexperienced synthesis of iron nanoparticles utilizing Korla aromatic pear peel extracts for the elimination of aqueous Cr(VI). Ecol Eng. 2020;149: 105793. https://doi.org/10.1016/j.ecoleng.2020.105793.
Soni R, Pal AK, Tripathi P, Lal JA, Kesari Okay, Tripathi V. An summary of nanoscale supplies on the elimination of wastewater contaminants. Appl Water Sci. 2020;10:1–9. https://doi.org/10.1007/s13201-020-01275-3.
Sarkar B, Mandal S, Tsang YF, Kumar P, Kim KH, Okay YS. Designer carbon nanotubes for contaminant elimination in water and wastewater: a essential evaluate. Sci Whole Environ. 2018;612:561–81. https://doi.org/10.1016/j.scitotenv.2017.08.132.
Yu G, Wang X, Liu J, Jiang P, You S, Ding N, Guo Q, Lin F. Functions of nanomaterials for heavy steel elimination from water and soil: a evaluate. Sustainability (Switzerland). 2021;13:1–14. https://doi.org/10.3390/SU13020713.
Pumera M. Graphene-based nanomaterials and their electrochemistry. Chem Soc Rev. 2010;39:4146–57. https://doi.org/10.1039/C002690P.
Perreault F, Fonseca De Faria A, Elimelech M. Environmental purposes of graphene-based nanomaterials. Chem Soc Rev. 2015;44:5861–96. https://doi.org/10.1039/C5CS00021A.
Jung W, Lee JS, Han S, Ko SH, Kim T, Kim YH. An environment friendly decreased graphene-oxide filter for PM2.5 elimination. J Mater Chem A Mater. 2018;6:16975–82. https://doi.org/10.1039/c8ta04587a.
Shahzad W, Badawi AK, Rehan ZA, Khan AM, Khan RA, Shah F, Ali S, Ismail B. Enhanced seen gentle photocatalytic efficiency of Sr0.3(Ba, Mn)0.7ZrO3 perovskites anchored on graphene oxide. Ceram Int. 2022;48:24979–88. https://doi.org/10.1016/j.ceramint.2022.05.151.
Guo M, Wang J, Wang C, Robust PJ, Jiang P, Okay YS, Wang H. Carbon nanotube-grafted chitosan and its adsorption capability for phenol in aqueous answer. Sci Whole Environ. 2019;682:340–7. https://doi.org/10.1016/j.scitotenv.2019.05.148.
Manimegalai S, Vickram S, Deena SR, Rohini Okay, Thanigaivel S, Manikandan S, Subbaiya R, Karmegam N, Kim W, Govarthanan M. Carbon-based nanomaterial intervention and environment friendly elimination of varied contaminants from effluents—a evaluate. Chemosphere. 2023;312: 137319. https://doi.org/10.1016/J.CHEMOSPHERE.2022.137319.
Child R, Saifullah B, Hussein MZ. Carbon nanomaterials for the therapy of heavy metal-contaminated water and environmental remediation. Nanoscale Res Lett. 2019;2019(14):1–17. https://doi.org/10.1186/S11671-019-3167-8.
Das R, Bandyopadhyay R, Pramanik P. Carbon quantum dots from pure useful resource: a evaluate. Mater Immediately Chem. 2018;8:96–109. https://doi.org/10.1016/J.MTCHEM.2018.03.003.
Tian L, Li Z, Wang P, Zhai X, Wang X, Li T. Carbon quantum dots for superior electrocatalysis. J Vitality Chem. 2021;55:279–94. https://doi.org/10.1016/J.JECHEM.2020.06.057.
Ying Lim S, Shen W, Gao Z. Carbon quantum dots and their purposes. Chem Soc Rev. 2015;44(1):362–81. https://doi.org/10.1039/C4CS00269E.
Xu Y, Liu J, Gao C, Wang E. Functions of carbon quantum dots in electrochemiluminescence: a mini evaluate. Electrochem Commun. 2014;48:151–4.
Shen J, Zhu Y, Yang X, Li C. Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic gadgets. Chem Commun. 2012;48:3686–99. https://doi.org/10.1039/C2CC00110A.
Li L, Wu G, Yang G, Peng J, Zhao J, Zhu JJ. Specializing in luminescent graphene quantum dots: present standing and future views. Nanoscale. 2013;5:4015–39. https://doi.org/10.1039/C3NR33849E.
Ding HM, Ma YQ. Computational approaches to cell-nanomaterial interactions: retaining steadiness between therapeutic effectivity and cytotoxicity. Nanoscale Horiz. 2018;3:6–27. https://doi.org/10.1039/c7nh00138j.
Silva S, Almeida AJ, Vale N. Mixture of cell-penetrating peptides with nanoparticles for therapeutic utility: a evaluate. Biomolecules. 2019. https://doi.org/10.3390/biom9010022.
Singh AP, Biswas A, Shukla A, Maiti P. Focused remedy in power ailments utilizing nanomaterial-based drug supply autos. Sign Transduct Goal Ther. 2019;4:1–21. https://doi.org/10.1038/s41392-019-0068-3.
Lin Y, Jin X, Khan NI, Owens G, Chen Z. Bimetallic Fe/Ni nanoparticles derived from inexperienced synthesis for the elimination of arsenic (V) in mine wastewater. J Environ Handle. 2022;301: 113838. https://doi.org/10.1016/j.jenvman.2021.113838.
Kumari S, Mankotia D, Chauhan GS. Crosslinked cellulose dialdehyde for Congo purple elimination from its aqueous options. J Environ Chem Eng. 2016;4:1126–36. https://doi.org/10.1016/j.jece.2016.01.008.
Liu Y, Gordeyeva Okay, Bergström L. Regular-shear and viscoelastic properties of cellulose nanofibril–nanoclay dispersions. Cellulose. 2017;24:1815–24. https://doi.org/10.1007/s10570-017-1211-3.
Kadam A, Saratale RG, Shinde S, Yang J, Hwang Okay, Mistry B, Saratale GD, Lone S, Kim DY, Sung JS, Ghodake G. Adsorptive remediation of cobalt oxide nanoparticles by magnetized Α-cellulose fibers from waste paper biomass. Bioresour Technol. 2019;273:386–93. https://doi.org/10.1016/j.biortech.2018.11.041.
Upton BM, Kasko AM. Methods for the conversion of lignin to high-value polymeric supplies: evaluate and perspective. Chem Rev. 2016;116:2275–306. https://doi.org/10.1021/acs.chemrev.5b00345.
Faruk O, Bledzki AK, Fink HP, Sain M. Biocomposites bolstered with pure fibers: 2000–2010. Prog Polym Sci. 2012;37:1552–96. https://doi.org/10.1016/j.progpolymsci.2012.04.003.
Alahmadi NS, Betts JW, Cheng F, Francesconi MG, Kelly SM, Kornherr A, Prior TJ, Wadhawan JD. Synthesis and antibacterial results of cobalt-cellulose magnetic nanocomposites. RSC Adv. 2017;7:20020–6. https://doi.org/10.1039/C7RA00920H.
Miao C, Hamad WY. Cellulose bolstered polymer composites and nanocomposites: a essential evaluate. Cellulose. 2013;20:2221–62. https://doi.org/10.1007/s10570-013-0007-3.
Berglund J, Mikkelsen D, Flanagan BM, Dhital S, Gaunitz S, Henriksson G, Lindström ME, Yakubov GE, Gidley MJ, Vilaplana F. Wooden hemicelluloses exert distinct biomechanical contributions to cellulose fibrillar networks. Nat Commun. 2020;11:1–16. https://doi.org/10.1038/s41467-020-18390-z.
Martínez-Abad A, Giummarella N, Lawoko M, Vilaplana F. Variations in extractability below subcritical water reveal interconnected hemicellulose and lignin recalcitrance in birch hardwoods. Inexperienced Chem. 2018;20:2534–46. https://doi.org/10.1039/c8gc00385h.
Li P, Lv W, Ai S. Inexperienced and delicate synthesis of Cu2O nanoparticles utilizing lignin as lowering and capping reagent with antibacterial properties. J Exp Nanosci. 2016;11:18–27. https://doi.org/10.1080/17458080.2015.1015462.
Ge Y, Li Z. Software of lignin and its derivatives in adsorption of heavy steel ions in water: a evaluate. ACS Maintain Chem Eng. 2018;6:7181–92. https://doi.org/10.1021/acssuschemeng.8b01345.
Adewuyi A, Pereira FV. Floor modification of cellulose remoted from Sesamun indicum underutilized seed: a method of enhancing cellulose hydrophobicity. J Sci Adv Mater Units. 2017;2:326–32. https://doi.org/10.1016/j.jsamd.2017.07.007.
Aulenta F, Hayes W, Rannard S. Dendrimers: a brand new class of nanoscopic containers and supply gadgets. Eur Polym J. 2003;39:1741–71. https://doi.org/10.1016/S0014-3057(03)00100-9.
Sherje AP, Jadhav M, Dravyakar BR, Kadam D. Dendrimers: a flexible nanocarrier for drug supply and concentrating on. Int J Pharm. 2018;548:707–20. https://doi.org/10.1016/j.ijpharm.2018.07.030.
Aigbe UO, Ukhurebor KE, Onyancha RB, Ama OM, Osibote OA, Kusuma HS, Okanigbuan PN, Azi SO, Osifo PO. Dendrimers for environmental remediation. Nanotechnol Environ Remediat. 2022. https://doi.org/10.1002/9783527834143.ch13.
Zhang F, Wang B, He S, Man R. Preparation of graphene-oxide/polyamidoamine dendrimers and their adsorption properties towards some heavy steel ions. J Chem Eng Knowledge. 2014;59:1719–26. https://doi.org/10.1021/je500219e.
Algarra M, Vázquez MI, Alonso B, Casado CM, Casado J, Benavente J. Characterization of an engineered cellulose based mostly membrane by thiol dendrimer for heavy metals elimination. Chem Eng J. 2014;253:472–7. https://doi.org/10.1016/j.cej.2014.05.082.
Madaan Okay, Kumar S, Poonia N, Lather V, Pandita D. Dendrimers in drug supply and concentrating on: drug-dendrimer interactions and toxicity points. J Pharm Bioallied Sci. 2014;6:139–50. https://doi.org/10.4103/0975-7406.130965.
Rego RM, Kuriya G, Kurkuri MD, Kigga M. MOF based mostly engineered supplies in water remediation: latest tendencies. J Hazard Mater. 2021;403: 123605. https://doi.org/10.1016/j.jhazmat.2020.123605.
Li X, Zhu QL. MOF-based supplies for photo- and electrocatalytic CO2 discount. EnergyChem. 2020;2: 100033. https://doi.org/10.1016/j.enchem.2020.100033.
Dhaka S, Kumar R, Deep A, Kurade MB, Ji SW, Jeon BH. Steel–natural frameworks (MOFs) for the elimination of rising contaminants from aquatic environments. Coord Chem Rev. 2019;380:330–52. https://doi.org/10.1016/j.ccr.2018.10.003.
Ha J, Moon HR. Synthesis of MOF-on-MOF architectures within the context of interfacial lattice matching. CrystEngComm. 2021;23:2337–54. https://doi.org/10.1039/d0ce01883j.
Ahmed I, Jhung SH. Composites of metal-organic frameworks: preparation and utility in adsorption. Mater Immediately. 2014;17:136–46. https://doi.org/10.1016/j.mattod.2014.03.002.
Fahmy SA, Preis E, Bakowsky U, Azzazy HMES. Platinum nanoparticles: inexperienced synthesis and biomedical purposes. Molecules. 2020;25:1–17. https://doi.org/10.3390/molecules25214981.
Kumar H, Bhardwaj Okay, Kuča Okay, Kalia A, Nepovimova E, Verma R, Kumar D. Flower-based inexperienced synthesis of metallic nanoparticles: purposes past perfume. Nanomaterials. 2020. https://doi.org/10.3390/nano10040766.
Nguyen DA, Nguyen DV, Jeong G, Asghar N, Jang A. Essential analysis of hybrid metal-organic framework composites for environment friendly therapy of arsenic-contaminated options by adsorption and membrane-separation course of. Chem Eng Jl. 2023. https://doi.org/10.1016/j.cej.2023.141789.
Guan T, Yao M. Use of carbon nanotube filter in eradicating bioaerosols. J Aerosol Sci. 2010;41:611–20. https://doi.org/10.1016/j.jaerosci.2010.03.002.
Anjum M, Miandad R, Waqas M, Gehany F, Barakat MA. Remediation of wastewater utilizing varied nano-materials. Arab J Chem. 2019;12:4897–919. https://doi.org/10.1016/j.arabjc.2016.10.004.
Lv Y, Liu H, Wang Z, Liu S, Hao L, Sang Y, Liu D, Wang J, Boughton RI. Silver nanoparticle-decorated porous ceramic composite for water therapy. J Memb Sci. 2009;331:50–6. https://doi.org/10.1016/j.memsci.2009.01.007.
de Freitas Rosa P, Aguiar ML, Bernardo A. Modification of cotton materials with silver nanoparticles to be used in conditioner air to reduce the bioaerosol focus in indoor environments. Water Air Soil Pollut. 2017. https://doi.org/10.1007/s11270-017-3429-y.
Glencross DA, Ho TR, Camiña N, Hawrylowicz CM, Pfeffer PE. Air air pollution and its results on the immune system. Free Radic Biol Med. 2020;151:56–68. https://doi.org/10.1016/j.freeradbiomed.2020.01.179.
Ibrahim RK, Hayyan M, AlSaadi MA, Hayyan A, Ibrahim S. Environmental utility of nanotechnology: air, soil, and water. Environ Sci Pollut Res. 2016. https://doi.org/10.1007/s11356-016-6457-z.
Nasir AM, Goh PS, Abdullah MS, Ng BC, Ismail AF. Adsorptive nanocomposite membranes for heavy steel remediation: latest progresses and challenges. Chemosphere. 2019;232:96–112. https://doi.org/10.1016/j.chemosphere.2019.05.174.
Tang W, Meng Y, Yang B, He D, Li Y, Li B, Shi Z, Zhao C. Preparation of hollow-fiber nanofiltration membranes of excessive efficiency for efficient elimination of PFOA and excessive resistance to BSA fouling. J Environ Sci (China). 2022;122:14–24. https://doi.org/10.1016/j.jes.2021.10.004.
Cheng XQ, Zhang YL, Wang ZX, Guo ZH, Bai YP, Shao L. Latest advances in polymeric solvent-resistant nanofiltration membranes. Adv Polym Technol. 2014;33:1–24. https://doi.org/10.1002/adv.21455.
Nayab SS, Abbas MA, Mushtaq S, Niazi BK, Batool M, Shehnaz G, Ahmad N, Ahmad NM. Anti-foulant ultrafiltration polymer composite membranes integrated with composite activated carbon/chitosan and activated carbon/thiolated chitosan with enhanced hydrophilicity. Membranes (Basel). 2021. https://doi.org/10.3390/membranes11110827.
Wang P, Hu S, Xiang J, Su S, Solar L, Cao F, Xiao X, Zhang A. Evaluation of mercury species over CuO-MnO2-Fe2O3/γ-Al2O3 catalysts by thermal desorption. Proc Combust Inst. 2015;35:2847–53. https://doi.org/10.1016/j.proci.2014.06.054.
Zhang R, Lu Okay, Zong L, Tong S, Wang X, Zhou J, Lu ZH, Feng G. Management synthesis of CeO2 nanomaterials supported gold for catalytic oxidation of carbon monoxide. Mol Catal. 2017;442:173–80. https://doi.org/10.1016/j.mcat.2017.09.024.
Shen B, Zhu S, Zhang X, Chi G, Patel D, Si M, Wu C. Simultaneous elimination of NO and Hg0 utilizing Fe and Co co-doped Mn-Ce/TiO2 catalysts. Gasoline. 2018;224:241–9. https://doi.org/10.1016/j.gas.2018.03.080.
Music Z, Wang B, Yu J, Ma C, Chen T, Yang W, Liu S, Solar L. Impact of Ti doping on heterogeneous oxidation of NO over Fe3O4 (1 1 1) floor by H2O2: a density useful examine. Chem Eng J. 2018;354:517–24. https://doi.org/10.1016/j.cej.2018.08.042.
Ali A, Pan M, Tilly TB, Zia M, Wu CY. Efficiency of silver, zinc, and iron nanoparticles-doped cotton filters towards airborne E. coli to reduce bioaerosol publicity. Air Qual Atmos Well being. 2018;11:1233–42. https://doi.org/10.1007/s11869-018-0622-0.
Chen L, Xu Z, He C, Wang Y, Liang Z, Zhao Q, Lu Q. Gasoline-phase whole oxidation of nitric oxide utilizing hydrogen peroxide vapor over Pt/TiO 2. Appl Surf Sci. 2018;457:821–30. https://doi.org/10.1016/j.apsusc.2018.07.032.
Zhao Y, Ma X, Xu P, Wang H, Liu Y, He A. Elemental mercury elimination from flue fuel by CoFe2O4 catalyzed peroxymonosulfate. J Hazard Mater. 2018;341:228–37. https://doi.org/10.1016/j.jhazmat.2017.07.047.
Sharif HMA, Cheng HY, Haider MR, Khan Okay, Yang L, Wang AJ. NO elimination with environment friendly restoration of N 2 O by utilizing recyclable Fe 3 O 4 @EDTA@Fe(II) complicated: a novel method towards useful resource restoration from flue fuel. Environ Sci Technol. 2019;53:1004–13. https://doi.org/10.1021/acs.est.8b03934.
Zhao Y, Yuan B, Zheng Z, Hao R. Elimination of multi-pollutant from flue fuel using ammonium persulfate answer catalyzed by Fe/ZSM-5. J Hazard Mater. 2019;362:266–74. https://doi.org/10.1016/j.jhazmat.2018.08.071.
Bortolassi ACC, Nagarajan S, de Araújo Lima B, Guerra VG, Aguiar ML, Huon V, Soussan L, Cornu D, Miele P, Bechelany M. Environment friendly nanoparticles elimination and bactericidal motion of electrospun nanofibers membranes for air filtration. Mater Sci Eng C. 2019;102:718–29. https://doi.org/10.1016/j.msec.2019.04.094.
Huy NN, Thanh Thuy VT, Thang NH, Thuy NT, Quynh LT, Khoi TT, Van Thanh D. Facile one-step synthesis of zinc oxide nanoparticles by ultrasonic-assisted precipitation technique and its utility for H2S adsorption in air. J Phys Chem Solids. 2019;132:99–103. https://doi.org/10.1016/j.jpcs.2019.04.018.
Faghihi-Zarandi A, Rakhtshah J, BahramiYarahmadi B, Shirkhanloo H. A speedy elimination of xylene vapor from environmental air based mostly on bismuth oxide coupled to heterogeneous graphene/graphene oxide by UV photo-catalectic degradation-adsorption process. J Environ Chem Eng. 2020;8: 104193. https://doi.org/10.1016/j.jece.2020.104193.
Zhang X, Shi Q, Shen B, Hu Z, Zhang X. MIL-100(Fe) supported Mn-based catalyst and its habits in Hg0 elimination from flue fuel. J Hazard Mater. 2020;381: 121003. https://doi.org/10.1016/j.jhazmat.2019.121003.
Zarandi AF, Shirkhanloo H, Paydar P. A novel technique based mostly on functionalized bimodal mesoporous silica nanoparticles for environment friendly elimination of lead aerosols air pollution from air by solid-liquid gas-phase extraction 03 Chemical Sciences 0306 Bodily Chemistry (incl. Structural). J Environ Well being Sci Eng. 2020;18:177–88. https://doi.org/10.1007/s40201-020-00450-7.
Jang S, Jung S, Music S, Lee S, Lee H, Cho E, Lee HJ, Park S, Youn B, Park KH. Preparation and characterization of multifunctional nanofibers containing metal-organic frameworks and Cu2O nanoparticles: particulate matter seize and antibacterial exercise. Environ Sci NANO. 2021;8:1226–35. https://doi.org/10.1039/d1en00032b.
Li J, Li B, Sui G, Du L, Zhuang Y, Zhang Y, Zou Y. Elimination of risky natural compounds from air utilizing supported ionic liquid membrane containing ultraviolet-visible light-driven Nd-TiO2 nanoparticles. J Mol Struct. 2021;1231:2–10. https://doi.org/10.1016/j.molstruc.2021.130023.
Inomata Y, Kubota H, Hata S, Kiyonaga E, Morita Okay, Yoshida Okay, Sakaguchi N, Toyao T, IchiShimizu Okay, Ishikawa S, Ueda W, Haruta M, Murayama T. Bulk tungsten-substituted vanadium oxide for low-temperature NOx elimination within the presence of water. Nat Commun. 2021;12:1–11. https://doi.org/10.1038/s41467-020-20867-w.
Shirkhanloo H, Faghihi-Zarandi A, Mobarake MD. Thiol modified bimodal mesoporous silica nanoparticles for elimination and willpower poisonous vanadium from air and human organic samples in petrochemical staff. NanoImpact. 2021;23: 100339. https://doi.org/10.1016/j.impression.2021.100339.
Zhang H, Zhang X, Wang P, Chen R, Gu G, Hu S, Tian R. Laminated polyacrylonitrile nanofiber membrane codoped with boehmite nanoparticles for environment friendly electrostatic seize of particulate issues. Nanotechnology. 2021. https://doi.org/10.1088/1361-6528/abeadc.
Bembibre A, Benamara M, Hjiri M, Gómez E, Alamri HR, Dhahri R, Serrà A. Seen-light pushed sonophotocatalytic elimination of tetracycline utilizing Ca-doped ZnO nanoparticles. Chem Eng J. 2022. https://doi.org/10.1016/j.cej.2021.132006.
Hernández-Fontes C, Pfeiffer H. Unraveling the CO and CO2 reactivity on Li2MnO3: sorption and catalytic analyses. Chem Eng J. 2022. https://doi.org/10.1016/j.cej.2021.131998.
Qu Y, Zheng X, Ma Okay, He W, Wang S, Zhang P. Facile coating of MnO2 nanoparticles onto polymer fibers by way of friction-heating adhesion for environment friendly formaldehyde elimination. Chem Eng J. 2022;430: 132954. https://doi.org/10.1016/j.cej.2021.132954.
Zhou Y, He Y, Xiang Y, Meng S, Liu X, Yu J, Yang J, Zhang J, Qin P, Luo L. Single and simultaneous adsorption of pefloxacin and Cu(II) ions from aqueous options by oxidized multiwalled carbon nanotube. Sci Whole Environ. 2019;646:29–36. https://doi.org/10.1016/j.scitotenv.2018.07.267.
Xia Okay, Guo Y, Shao Q, Zan Q, Bai R. Elimination of Mercury (II) by EDTA-functionalized magnetic CoFe 2 O 4 @SiO 2 nanomaterial with core-shell construction. Nanomaterials. 2019. https://doi.org/10.3390/nano9111532.
Dai S, Wang N, Qi C, Wang X, Ma Y, Yang L, Liu X, Huang Q, Nie C, Hu B, Wang X. Preparation of core-shell construction Fe3O4@C@MnO2 nanoparticles for environment friendly elimination of U(VI) and Eu(III) ions. Sci Whole Environ. 2019;685:986–96. https://doi.org/10.1016/j.scitotenv.2019.06.292.
Yang C, Zhang J, Zhu X, Liu Y, Chen Y, Wang C. Deep and environment friendly elimination of vanadium from molybdate answer utilizing magnetic γ-Fe2O3 nanoparticles. Appl Surf Sci. 2020;529: 147060. https://doi.org/10.1016/j.apsusc.2020.147060.
Feng G, Ma J, Zhang X, Zhang Q, Xiao Y, Ma Q, Wang S. Magnetic pure composite Fe3O4-chitosan@bentonite for elimination of heavy metals from acid mine drainage. J Colloid Interface Sci. 2019;538:132–41. https://doi.org/10.1016/j.jcis.2018.11.087.
Wang W, Wu G, Zhu T, Yang Y, Zhang Y. Synthesis of -thiazole Schiff base modified SBA-15 mesoporous silica for selective Pb(II) adsorption. J Taiwan Inst Chem Eng. 2021;125:349–59. https://doi.org/10.1016/j.jtice.2021.06.004.
Reghioua A, Barkat D, Jawad AH, Abdulhameed AS, Rangabhashiyam S, Khan MR, Alothman ZA. Magnetic chitosan-glutaraldehyde/zinc oxide/Fe3O4 nanocomposite: optimization and adsorptive mechanism of remazol sensible blue R dye elimination. J Polym Environ. 2021;29:3932–47. https://doi.org/10.1007/s10924-021-02160-z.
BoHuo J, Yu G, Wang J. Magnetic zeolitic imidazolate frameworks composite as an environment friendly adsorbent for arsenic elimination from aqueous answer. J Hazard Mater. 2021;412: 125298. https://doi.org/10.1016/j.jhazmat.2021.125298.
Zhang J, Feng L, Jian Y, Luo G, Wang M, Hu B, Liu T, Li J, Yuan Y, Wang N. Interlayer spacing adjusted zirconium phosphate with 2D ion channels for extremely environment friendly elimination of uranium contamination in radioactive effluent. Chem Eng J. 2022;429: 132265. https://doi.org/10.1016/j.cej.2021.132265.
Mahmoud ME, Saad SR, El-Ghanam AM, Mohamed RHA. Developed magnetic Fe3O4–MoO3-AC nanocomposite for efficient elimination of ciprofloxacin from water. Mater Chem Phys. 2021;257: 123454. https://doi.org/10.1016/j.matchemphys.2020.123454.
Guo T, Lei Y, Hu X, Yang G, Liang J, Huang Q, Li X, Liu M, Zhang X, Wei Y. Hydrothermal synthesis of MXene-MoS2 composites for extremely environment friendly elimination of pesticides. Appl Surf Sci. 2022;588: 152597. https://doi.org/10.1016/j.apsusc.2022.152597.
Sharma R, Zhou Z, Themelis T, Van Assche TRC, Eeltink S, Denayer JFM. Elimination of low hint ppb-level perfluorooctanesulfonic acid (PFOS) with ZIF-8 coatings involving adsorbent degradation. Langmuir. 2023;39:3341–9. https://doi.org/10.1021/acs.langmuir.2c03209.
Chang PH, Mukhopadhyay R, Zhong B, Yang QY, Zhou S, Tzou YM, Sarkar B. Synthesis and characterization of PCN-222 steel natural framework and its utility for eradicating perfluorooctane sulfonate from water. J Colloid Interface Sci. 2023;636:459–69. https://doi.org/10.1016/j.jcis.2023.01.032.
Njaramba LK, Kim M, Yea Y, Yoon Y, Park CM. Environment friendly adsorption of naproxen and ibuprofen by gelatin/zirconium-based steel–natural framework/sepiolite aerogels by way of synergistic mechanisms. Chem Eng J. 2023;452: 139426. https://doi.org/10.1016/j.cej.2022.139426.
Arya S, Mahajan P, Mahajan S, Khosla A, Datt R, Gupta V, Younger S-J, Oruganti SK. Overview—affect of processing parameters to manage morphology and optical properties of sol-gel synthesized ZnO nanoparticles. ECS J Strong State Sci Technol. 2021;10: 023002. https://doi.org/10.1149/2162-8777/abe095.
Zahmatkesh S, Hajiaghaei-Keshteli M, Bokhari A, Sundaramurthy S, Panneerselvam B, Rezakhani Y. Wastewater therapy with nanomaterials for the long run: a state-of-the-art evaluate. Environ Res. 2023;216: 114652. https://doi.org/10.1016/j.envres.2022.114652.
Mater Y, Kamel M, Karam A, Bakhoum E. ANN-Python prediction mannequin for the compressive energy of inexperienced concrete. Constr Innov. 2023;23:340–59. https://doi.org/10.1108/CI-08-2021-0145.
Olajire AA, Bamigbade LA. Inexperienced synthesis of chitosan-based iron@silver nanocomposite as adsorbent for wastewater therapy. Water Resour Ind. 2021;26: 100158. https://doi.org/10.1016/j.wri.2021.100158.
Zarrabi A, Ghasemi-Fasaei R. Preparation of inexperienced synthesized copper oxide nanoparticles for environment friendly elimination of lead from wastewaters. Int J Phytoremediat. 2021. https://doi.org/10.1080/15226514.2021.1984385.
Xu Q, Li W, Ma L, Cao D, Owens G, Chen Z. Simultaneous elimination of ammonia and phosphate utilizing inexperienced synthesized iron oxide nanoparticles dispersed onto zeolite. Sci Whole Environ. 2020. https://doi.org/10.1016/j.scitotenv.2019.135002.
Singh P, Kim YJ, Zhang D, Yang DC. Organic synthesis of nanoparticles from vegetation and microorganisms. Tendencies Biotechnol. 2016;34:588–99. https://doi.org/10.1016/j.tibtech.2016.02.006.
Jeyaraj M, Gurunathan S, Qasim M, Kang MH, Kim JH. A complete evaluate on the synthesis, characterization, and biomedical utility of platinum nanoparticles. Nanomaterials. 2019. https://doi.org/10.3390/nano9121719.
Abdullah FH, Abu Bakar NHH, Abu Bakar M. Comparative examine of chemically synthesized and low temperature bio-inspired Musa acuminata peel extract mediated zinc oxide nanoparticles for enhanced visible-photocatalytic degradation of natural contaminants in wastewater therapy. J Hazard Mater. 2021;406: 124779. https://doi.org/10.1016/j.jhazmat.2020.124779.
Ali I, Afshinb S, Poureshgh Y, Azari A, Rashtbari Y, Feizizadeh A, Hamzezadeh A, Fazlzadeh M. Inexperienced preparation of activated carbon from pomegranate peel coated with zero-valent iron nanoparticles (nZVI) and isotherm and kinetic research of amoxicillin elimination in water. Environ Sci Pollut Res. 2020;27:36732–43. https://doi.org/10.1007/s11356-020-09310-1.
Oruganti RK, Pal D, Panda TK, Shee D, Bhattacharyya D. Inexperienced synthesis of calcium oxide nanoparticles impregnated activated carbon from algal–bacterial activated sludge: its utility in ciprofloxacin elimination. Int J Environ Sci Technol. 2022. https://doi.org/10.1007/s13762-022-04662-2.
Hadi S, Taheri E, Amin MM, Fatehizadeh A. Fabrication of activated carbon from pomegranate husk by twin consecutive chemical activation for 4-chlorophenol adsorption. Environ Sci Pollut Res. 2021;28:13919–30.
Amirsadat Okay, Sharififard H. Adsorption of nitrate from municipal wastewater by synthesized chitosan / iron / activated carbon of orange peel composite. Biomass Convers Biorefin. 2022. https://doi.org/10.1007/s13399-022-03198-2.
Getahun Y, Gardea-Torresdey J, Manciu FS, Li X, El-Gendy AA. Inexperienced synthesized superparamagnetic iron oxide nanoparticles for water therapy with various recyclability. J Mol Liq. 2022;356: 118983. https://doi.org/10.1016/j.molliq.2022.118983.
Galan CR, Silva MF, Mantovani D, Bergamasco R, Vieira MF. Inexperienced synthesis of copper oxide nanoparticles impregnated on activated carbon utilizing Moringa oleifera leaves extract for the elimination of nitrates from water. Can J Chem Eng. 2018;96:2378–86. https://doi.org/10.1002/cjce.23185.
Goutam SP, Saxena G, Singh V, Yadav AK, Bharagava RN, Thapa KB. Inexperienced synthesis of TiO2 nanoparticles utilizing leaf extract of Jatropha curcas L. for photocatalytic degradation of tannery wastewater. Chem Eng J. 2018;336:386–96. https://doi.org/10.1016/j.cej.2017.12.029.
Sadiq H, Sher F, Sehar S, Lima EC, Zhang S, Iqbal HMN, Zafar F, Nuhanović M. Inexperienced synthesis of ZnO nanoparticles from Syzygium Cumini leaves extract with sturdy photocatalysis purposes. J Mol Liq. 2021. https://doi.org/10.1016/j.molliq.2021.116567.
Al-Qahtani KM. Cadmium elimination from aqueous answer by inexperienced synthesis zero valent silver nanoparticles with Benjamina leaves extract. Egypt J Aquat Res. 2017;43:269–74. https://doi.org/10.1016/j.ejar.2017.10.003.
Gindaba GT, Demsash HD, Jayakumar M. Inexperienced synthesis, characterization, and utility of steel oxide nanoparticles for mercury elimination from aqueous answer. Environ Monit Assess. 2023. https://doi.org/10.1007/s10661-022-10586-8.
Singh S, Naik TSSK, Thamaraiselvan C, Behera SK, Pavithra N, Bidisha Nath P, Dwivedi P, Singh J, Ramamurthy PC. Applicability of latest sustainable and environment friendly inexperienced metal-based nanoparticles for elimination of Cr(VI): adsorption anti-microbial, and DFT research. Environ Pollut. 2023;320:121105. https://doi.org/10.1016/j.envpol.2023.121105.
Mukherjee D, Ghosh S, Majumdar S, Annapurna Okay. Inexperienced synthesis of α-Fe2O3 nanoparticles for arsenic(V) remediation with a novel facet for sludge administration. J Environ Chem Eng. 2016;4:639–50. https://doi.org/10.1016/j.jece.2015.12.010.
Dihingia H, Tiwari D. Inexperienced and facile synthesis of heterojunction nanocatalyst: insights and mechanism of antibiotics elimination. Sep Purif Technol. 2023;306: 122641. https://doi.org/10.1016/j.seppur.2022.122641.
Iqbal A, Haq AU, Cerrón-Calle GA, Naqvi SAR, Westerhoff P, Garcia-Segura S. Inexperienced synthesis of flower-shaped copper oxide and nickel oxide nanoparticles by way of capparis decidua leaf extract for synergic adsorption-photocatalytic degradation of pesticides. Catalysts. 2021. https://doi.org/10.3390/catal11070806.
Militao IM, Roddick F, Fan L, Zepeda LC, Parthasarathy R, Bergamasco R. PFAS elimination from water by adsorption with alginate-encapsulated plant albumin and rice straw-derived biochar. J Water Course of Eng. 2023. https://doi.org/10.1016/j.jwpe.2023.103616.
Ali I, Al-Othman ZA, Alwarthan A. Inexperienced synthesis of functionalized iron nano particles and molecular liquid section adsorption of ametryn from water. J Mol Liq. 2016;221:1168–74. https://doi.org/10.1016/j.molliq.2016.06.089.
Marimuthu S, Antonisamy AJ, Malayandi S, Rajendran Okay, Tsai P-C, Pugazhendhi A, KumarPonnusamy V, Metropolis CM, Nam V. Silver nanoparticles in dye effluent therapy: a evaluate on synthesis, therapy strategies, mechanisms, photocatalytic degradation, poisonous results and mitigation of toxicity. J Photochem Photobiol B Biol. 2020. https://doi.org/10.1016/j.jphotobiol.2020.111823.
Maleki A, Hayati B, Najafi F, Gharibi F, Joo SW. Heavy steel adsorption from industrial wastewater by PAMAM/TiO 2 nanohybrid: preparation, characterization and adsorption research. J Mol Liquids. 2016. https://doi.org/10.1016/j.molliq.2016.09.060.
Qiu H, Lv L, Pan BC, Zhang QJ, Zhang WM, Zhang QX. Essential evaluate in adsorption kinetic fashions. J Zhejiang Univ Sci A. 2009;10:716–24. https://doi.org/10.1631/JZUS.A0820524/METRICS.
Qu X, Alvarez PJJ, Li Q. Functions of nanotechnology in water and wastewater therapy. Water Res. 2013;47:3931–46. https://doi.org/10.1016/j.watres.2012.09.058.
Nassar NN. The applying of nanoparticles for wastewater remediation. In: Van der Bruggen B, editor. Functions of nanomaterials for water high quality. London: Future Science Ltd; 2013. p. 52–65. https://doi.org/10.4155/ebo.13.373.
Anh Nguyen D, Viet Nguyen D, Jeong G, Asghar N, Jang A. Essential analysis of hybrid steel–natural framework composites for environment friendly therapy of arsenic–contaminated options by adsorption and membrane–separation course of. Chem Eng J. 2023. https://doi.org/10.1016/j.cej.2023.141789.
Kaur S, Sundarrajan S, Rana D, Sridhar R, Gopal R, Matsuura T, Ramakrishna S. Overview: the characterization of electrospun nanofibrous liquid filtration membranes. J Mater Sci. 2014;49:6143–59. https://doi.org/10.1007/S10853-014-8308-Y/FIGURES/20.
Athanasekou CP, Romanos GE, Katsaros FK, Kordatos Okay, Likodimos V, Falaras P. Very environment friendly composite titania membranes in hybrid ultrafiltration/photocatalysis water therapy processes. J Memb Sci. 2012;392–393:192–203. https://doi.org/10.1016/J.MEMSCI.2011.12.028.
Athanasekou CP, Moustakas NG, Morales-Torres S, Pastrana-Martínez LM, Figueiredo JL, Faria JL, Silva AMT, Dona-Rodriguez JM, Romanos GE, Falaras P. Ceramic photocatalytic membranes for water filtration below UV and visual gentle. Appl Catal B. 2015;178:12–9. https://doi.org/10.1016/J.APCATB.2014.11.021.
Zhang X, Du AJ, Lee P, Solar DD, Leckie JO. TiO2 nanowire membrane for concurrent filtration and photocatalytic oxidation of humic acid in water. J Memb Sci. 2008;313:44–51. https://doi.org/10.1016/J.MEMSCI.2007.12.045.
Athanasekou CP, Romanos GE, Katsaros FK, Kordatos Okay, Likodimos V, Falaras P. Very environment friendly composite titania membranes in hybrid ultrafiltration/photocatalysis water therapy processes. J Memb Sci. 2012;392:192–203. https://doi.org/10.1016/j.memsci.2011.12.028.
Ma N, Zhang Y, Quan X, Fan X, Zhao H. Performing a microfiltration built-in with photocatalysis utilizing an Ag-TiO2/HAP/Al2O3 composite membrane for water therapy: evaluating effectiveness for humic acid elimination and anti-fouling properties. Water Res. 2010;44(20):6104–14.
Yu H, Guo J, Zhu S, Li Y, Zhang Q, Zhu M. Preparation of steady alumina nanofibers by way of electrospinning of PAN/DMF answer. Mater Lett. 2012;74:247–9. https://doi.org/10.1016/J.MATLET.2012.01.077.
Nasreen SAAN, Sundarrajan S, Nizar SAS, Balamurugan R, Ramakrishna S. Development in electrospun nanofibrous membranes modification and their utility in water therapy. Membranes. 2013;3:266–84. https://doi.org/10.3390/MEMBRANES3040266.
Pichel N, Vivar M, Fuentes M. The issue of ingesting water entry: a evaluate of disinfection applied sciences with an emphasis on photo voltaic therapy strategies. Chemosphere. 2018;218:1014–30. https://doi.org/10.1016/j.chemosphere.2018.11.205.
Das SK, Motiar M, Khan R, Parandhaman T, Laffir F, Guha AK, Sekaran G, Mandal AB. Nano-silica fabricated with silver nanoparticles: antifouling adsorbent for environment friendly dye elimination, efficient water disinfection and biofouling management. Nanoscale. 2013;5(12):5549. https://doi.org/10.1039/c3nr00856h.
Hamdan M, Darabee S. Enhancement of photo voltaic water disinfection utilizing nanotechnology. Int J Thermal Environ Eng. 2017;15:111–6. https://doi.org/10.5383/ijtee.15.02.005.
Yunus IS, Harwin A, Kurniawan D, Adityawarman AI. Nanotechnologies in water and air air pollution therapy. Environ Technol Rev. 2012;1:136–48. https://doi.org/10.1080/21622515.2012.733966.
KumarBhardwaj A, Sundaram S, Yadav KK, Srivastav AL. An summary of silver nano-particles as promising supplies for water disinfection. Environ Technol Innov. 2021;23: 101721. https://doi.org/10.1016/j.eti.2021.101721.
Asuncion Dimapilis ES, Hsu C-S, Marie Mendoza RO, Lu M-C. Zinc oxide nanoparticles for water disinfection. Maintain Environ Res. 2018. https://doi.org/10.1016/j.serj.2017.10.001.
Zhang Y, Cheng Y, Qi H. Synergistic degradation of natural pollution on CoFe2O4/rGO nanocomposites by peroxymonosulfate activation below LED irradiation. Appl Surf Sci. 2022;579: 152151. https://doi.org/10.1016/j.apsusc.2021.152151.
Baaloudj O, Badawi AK, Kenfoud H, Benrighi Y, Hassan R, Nasrallah N, Assadi AA. Techno-economic research for a pilot-scale Bi12TiO20 based mostly photocatalytic system for pharmaceutical wastewater therapy: from laboratory research to commercial-scale purposes. J Water Course of Eng. 2022;48: 102847. https://doi.org/10.1016/j.jwpe.2022.102847.
Peng C, Yu D, Wang L, Yu X, Zhao Z. Latest advances within the preparation and catalytic efficiency of Mn-based oxide catalysts with particular morphologies for the elimination of air pollution. J Mater Chem A Mater. 2021;9:12947–80. https://doi.org/10.1039/d1ta00911g.
Saleh TS, Badawi AK, Salama RS, Mostafa MMM. Design and growth of novel composites containing nickel ferrites supported on activated carbon derived from agricultural wastes and its utility in water remediation. Supplies. 2023. https://doi.org/10.3390/ma16062170.
Baaloudj O, Nasrallah N, Kenfoud H, Bourkeb KW, Badawi AK. Polyaniline/Bi12TiO20 hybrid system for cefixime elimination by combining adsorption and photocatalytic degradation. ChemEngineering. 2023. https://doi.org/10.3390/chemengineering7010004.
Mahmoudi F, Saravanakumar Okay, Maheskumar V, KamandeNjaramba L, Yoon Y, Park CM, Park CM. Software of perovskite oxides and their composites for degrading natural pollution from wastewater utilizing superior oxidation processes: evaluate of the latest progress. J Hazard Mater. 2022. https://doi.org/10.1016/j.jhazmat.2022.129074.
Neumann S, Gutmann T, Buntkowsky G, Paul S, Thiele G, Sievers H, Bäumer M, Kunz S. Insights into the response mechanism and particle measurement results of CO oxidation over supported Pt nanoparticle catalysts. J Catal. 2019;377:662–72. https://doi.org/10.1016/J.JCAT.2019.07.049.
Li L, Yang A, He X, Liu J, Ma Y, Niu J, Luo B. Indoor air air pollution from strong fuels and hypertension: a scientific evaluate and meta-analysis. Environ Pollut. 2020;259: 113914. https://doi.org/10.1016/j.envpol.2020.113914.
Jabbar ZH, Ebrahim SE. Latest advances in nano-semiconductors photocatalysis for degrading natural contaminants and microbial disinfection in wastewater: a complete evaluate. Environ Nanotechnol Monit Manag. 2022;17: 100666. https://doi.org/10.1016/j.enmm.2022.100666.
Rezaee A, Rangkooy H, Khavanin A, Jafari AJ. Excessive photocatalytic decomposition of the air pollutant formaldehyde utilizing nano-ZnO on bone char. Environ Chem Lett. 2014;12:353–7. https://doi.org/10.1007/s10311-014-0453-7.
Park JH, Yoon KY, Kim YS, Byeon JH, Hwang J. Elimination of submicron aerosol particles and bioaerosols utilizing carbon fiber ionizer assisted fibrous medium filter media. J Mech Sci Technol. 2009;23:1846–51. https://doi.org/10.1007/s12206-009-0613-z.