Friday, January 12, 2024
HomeNanotechnologyDevelopment in nanomaterials for environmental pollution remediation: a scientific evaluate on bibliometrics...

Development in nanomaterials for environmental pollution remediation: a scientific evaluate on bibliometrics evaluation, materials varieties, synthesis pathways, and associated mechanisms | Journal of Nanobiotechnology


  • Ji B. In direction of environment-sustainable wastewater therapy and reclamation by the non-aerated microalgal-bacterial granular sludge course of: latest advances and future instructions. Sci Whole Environ. 2022;806: 150707. https://doi.org/10.1016/j.scitotenv.2021.150707.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Del Prado-Audelo ML, García Kerdan I, Escutia-Guadarrama L, Reyna-González JM, Magaña JJ, Leyva-Gómez G. Nanoremediation: nanomaterials and nanotechnologies for environmental cleanup. Entrance Environ Sci. 2021;9:1–7. https://doi.org/10.3389/fenvs.2021.793765.

    Article 

    Google Scholar
     

  • González-Martín J, Kraakman NJR, Pérez C, Lebrero R, Muñoz R. A state–of–the-art evaluate on indoor air air pollution and techniques for indoor air air pollution management. Chemosphere. 2021. https://doi.org/10.1016/j.chemosphere.2020.128376.

    Article 
    PubMed 

    Google Scholar
     

  • Ju MJ, Oh J, Choi YH. Adjustments in air air pollution ranges after COVID-19 outbreak in Korea. Sci Whole Environ. 2021;750: 141521. https://doi.org/10.1016/j.scitotenv.2020.141521.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu F, Astruc D. Nanocatalysts and different nanomaterials for water remediation from natural pollution. Coord Chem Rev. 2020;408: 213180. https://doi.org/10.1016/j.ccr.2020.213180.

    Article 
    CAS 

    Google Scholar
     

  • Visa M. Synthesis and characterization of latest zeolite supplies obtained from fly ash for heavy metals elimination in superior wastewater therapy. Powder Technol. 2016;294:338–47. https://doi.org/10.1016/j.powtec.2016.02.019.

    Article 
    CAS 

    Google Scholar
     

  • Al-Saydeh SA, El-Naas MH, Zaidi SJ. Copper elimination from industrial wastewater: a complete evaluate. J Ind Eng Chem. 2017;56:35–44. https://doi.org/10.1016/j.jiec.2017.07.026.

    Article 
    CAS 

    Google Scholar
     

  • Almomani F, Bhosale R, Khraisheh M, Kumar A, Almomani T. Heavy steel ions elimination from industrial wastewater utilizing magnetic nanoparticles (MNP). Appl Surf Sci. 2020;506: 144924. https://doi.org/10.1016/j.apsusc.2019.144924.

    Article 
    CAS 

    Google Scholar
     

  • Alvarez PJJ, Chan CK, Elimelech M, Halas NJ, Villagrán D. Rising alternatives for nanotechnology to reinforce water safety. Nat Nanotechnol. 2018;13:634–41. https://doi.org/10.1038/s41565-018-0203-2.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu X, Tian J, Li Y, Solar N, Mi S, Xie Y, Chen Z. Enhanced dyes adsorption from wastewater by way of Fe3O4 nanoparticles functionalized activated carbon. J Hazard Mater. 2019;373:397–407. https://doi.org/10.1016/j.jhazmat.2019.03.103.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Singh A, Pal DB, Mohammad A, Alhazmi A, Haque S, Yoon T, Srivastava N, Gupta VK. Organic remediation applied sciences for dyes and heavy metals in wastewater therapy: new perception. Bioresour Technol. 2022;343: 126154. https://doi.org/10.1016/j.biortech.2021.126154.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheriyamundath S, Vavilala SL. Nanotechnology-based wastewater therapy. Water Environ J. 2021;35:123–32. https://doi.org/10.1111/wej.12610.

    Article 
    CAS 

    Google Scholar
     

  • Najafpoor A, Norouzian-Ostad R, Alidadi H, Rohani-Bastami T, Davoudi M, Barjasteh-Askari F, Zanganeh J. Impact of magnetic nanoparticles and silver-loaded magnetic nanoparticles on superior wastewater therapy and disinfection. J Mol Liq. 2020;303: 112640. https://doi.org/10.1016/j.molliq.2020.112640.

    Article 
    CAS 

    Google Scholar
     

  • Xue S, Xiao Y, Wang G, Fan J, Wan Okay, He Q, Gao M, Miao Z. Adsorption of heavy metals in water by modifying Fe3O4 nanoparticles with oxidized humic acid. Colloids Surf A Physicochem Eng Asp. 2021;616: 126333. https://doi.org/10.1016/j.colsurfa.2021.126333.

    Article 
    CAS 

    Google Scholar
     

  • Corsi I, Winther-Nielsen M, Sethi R, Punta C, Della Torre C, Libralato G, Lofrano G, Sabatini L, Aiello M, Fiordi L, Cinuzzi F, Caneschi A, Pellegrini D, Buttino I. Ecofriendly nanotechnologies and nanomaterials for environmental purposes: key challenge and consensus suggestions for sustainable and ecosafe nanoremediation. Ecotoxicol Environ Saf. 2018;154:237–44. https://doi.org/10.1016/j.ecoenv.2018.02.037.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abouzeid RE, Khiari R, El-Wakil N, Dufresne A. Present state and new tendencies in the usage of cellulose nanomaterials for wastewater therapy. Biomacromol. 2019;20:573–97. https://doi.org/10.1021/acs.biomac.8b00839.

    Article 
    CAS 

    Google Scholar
     

  • Willner MR, Vikesland PJ. Nanomaterial enabled sensors for environmental contaminants Prof Ueli Aebi, Prof Peter Gehr. J Nanobiotechnol. 2018;16:1–16. https://doi.org/10.1186/s12951-018-0419-1.

    Article 
    CAS 

    Google Scholar
     

  • Magudieshwaran R, Ishii J, Raja KCN, Terashima C, Venkatachalam R, Fujishima A, Pitchaimuthu S. Inexperienced and chemical synthesized CeO2 nanoparticles for photocatalytic indoor air pollutant degradation. Mater Lett. 2019;239:40–4. https://doi.org/10.1016/j.matlet.2018.11.172.

    Article 
    CAS 

    Google Scholar
     

  • Bourdrel T, Annesi-Maesano I, Alahmad B, Maesano CN, Bind MA. The impression of out of doors air air pollution on covid-19: a evaluate of proof from in vitro, animal, and human research. Eur Respir Rev. 2021;30:1–18. https://doi.org/10.1183/16000617.0242-2020.

    Article 

    Google Scholar
     

  • Sadegh H, Ali GAM, Gupta VK, Makhlouf ASH, Shahryari-ghoshekandi R, Nadagouda MN, Sillanpää M, Megiel E. The function of nanomaterials as efficient adsorbents and their purposes in wastewater therapy. J Nanostruct Chem. 2017;7:1–14. https://doi.org/10.1007/s40097-017-0219-4.

    Article 
    CAS 

    Google Scholar
     

  • Rafatullah M, Sulaiman O, Hashim R, Ahmad A. Adsorption of methylene blue on low-cost adsorbents: a evaluate. J Hazard Mater. 2010;177:70–80. https://doi.org/10.1016/j.jhazmat.2009.12.047.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • B. Ward. Growth, synthesis and characterization of multifunctional nanomaterials, 2014. https://www.researchgate.web/profile/Ward-Brullot/publication/263723744_Development_synthesis_and_characterization_of_multifunctional_nanomaterials/hyperlinks/0f31753bbff1c9014b000000/Growth-synthesis-and-characterization-of-multifunctional-nanomaterials.

  • Ivanova N, Gugleva V, Dobreva M, Pehlivanov I, Stefanov S, Andonova V. We’re IntechOpen, the world’s main writer of Open Entry books Constructed by scientists, for scientists TOP 1 %. INTECH. 2016;i:13.


    Google Scholar
     

  • Tang Y, Xin H, Yang F, Lengthy X. A historic evaluate and bibliometric evaluation of nanoparticles toxicity on algae. J Nanopart Res. 2018. https://doi.org/10.1007/s11051-018-4196-4.

    Article 

    Google Scholar
     

  • Badawi AK, Salama RS, Mostafa MMM. Pure-based coagulants/flocculants as sustainable market-valued merchandise for industrial wastewater therapy: a evaluate of latest developments. RSC Adv. 2023;13:19335–55. https://doi.org/10.1039/d3ra01999c.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang B, Music Z, Solar L. A evaluate: Comparability of multi-air-pollutant elimination by superior oxidation processes—industrial implementation for catalytic oxidation processes. Chem Eng J. 2021. https://doi.org/10.1016/j.cej.2020.128136.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han Y, Wang Y, Li W, Chen X, Xue T, Chen W, Fan Y, Qiu X, Zhu T. Susceptibility of prediabetes to the well being impact of air air pollution: a community-based panel examine with a nested case-control design. Environ Well being. 2019;18:1–9. https://doi.org/10.1186/s12940-019-0502-6.

    Article 
    CAS 

    Google Scholar
     

  • Rashid R, Shafiq I, Akhter P, Iqbal MJ, Hussain M. A state-of-the-art evaluate on wastewater therapy strategies: the effectiveness of adsorption technique. Environ Sci Pollut Res. 2021;28:9050–66. https://doi.org/10.1007/s11356-021-12395-x.

    Article 
    CAS 

    Google Scholar
     

  • Baigorria E, Galhardi JA, Fraceto LF. Tendencies in polymers networks utilized to the elimination of aqueous pollution: a evaluate. J Clear Prod. 2021;295: 126451. https://doi.org/10.1016/j.jclepro.2021.126451.

    Article 
    CAS 

    Google Scholar
     

  • Garcia-Segura S, Ocon JD, Chong MN. Electrochemical oxidation remediation of actual wastewater effluents—a evaluate. Course of Saf Environ Prot. 2018;113:48–67. https://doi.org/10.1016/j.psep.2017.09.014.

    Article 
    CAS 

    Google Scholar
     

  • Elgarahy AM, Elwakeel KZ, Akhdhar A, Hamza MF. Latest advances in greenly synthesized nanoengineered supplies for water/wastewater remediation: an summary. Nanotechnol Environ Eng. 2021;6:1–24. https://doi.org/10.1007/s41204-021-00104-5.

    Article 
    CAS 

    Google Scholar
     

  • Guesmi A, Cherif MM, Baaloudj O, Kenfoud H, Badawi AK, Elfalleh W, Hamadi NB, Khezami L, Assadi AA. Disinfection of corona and myriad viruses in water by non-thermal plasma: a evaluate. Environ Sci Pollut Res. 2022;29(37):55321–35. https://doi.org/10.1007/s11356-022-21160-7.

    Article 
    CAS 

    Google Scholar
     

  • Badawi AK, Zaher Okay. Hybrid therapy system for actual textile wastewater remediation based mostly on coagulation/flocculation, adsorption and filtration processes: efficiency and financial analysis. J Water Course of Eng. 2021;40: 101963. https://doi.org/10.1016/j.jwpe.2021.101963.

    Article 

    Google Scholar
     

  • Jawed A, Saxena V, Pandey LM. Engineered nanomaterials and their floor functionalization for the elimination of heavy metals: a evaluate. J Water Course of Eng. 2020;33:101009.

    Article 

    Google Scholar
     

  • Suresh R, Rajendran S, Kumar PS, Vo DVN, Cornejo-Ponce L. Latest developments of spinel ferrite based mostly binary nanocomposite photocatalysts in wastewater therapy. Chemosphere. 2021;274: 129734. https://doi.org/10.1016/j.chemosphere.2021.129734.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Al-Anazi A, Abdelraheem WH, Scheckel Okay, Nadagouda MN, O’Shea Okay, Dionysiou DD. Novel franklinite-like artificial zinc-ferrite redox nanomaterial: synthesis, and analysis for degradation of diclofenac in water. Appl Catal B. 2020;275: 119098. https://doi.org/10.1016/j.apcatb.2020.119098.

    Article 
    CAS 

    Google Scholar
     

  • Huang C, Mou W, Li J, Liu Y. Extraordinarily well-dispersed zinc oxide nanofluids with glorious antibacterial, antifungal, and formaldehyde and toluene elimination properties. Ind Eng Chem Res. 2022;61:3973–82. https://doi.org/10.1021/acs.iecr.2c00369.

    Article 
    CAS 

    Google Scholar
     

  • Asghar N, Nguyen DA, Jang A. Software of MnFe2O4 magnetic silica-covered ethylenediaminetetraacetic acid-functionalized nanomaterials to the draw answer in ahead osmosis. Chemosphere. 2023;330: 138735. https://doi.org/10.1016/j.chemosphere.2023.138735.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu Y, Liu Y, Chen R, Zhang WH, Ge Q. A pH-responsive supramolecular draw solute that achieves high-performance in arsenic elimination by way of ahead osmosis. Water Res. 2019;165: 114993. https://doi.org/10.1016/j.watres.2019.114993.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sheoran Okay, Kaur H, Siwal SS, Saini AK, Vo DVN, Thakur VK. Latest advances of carbon-based nanomaterials (CBNMs) for wastewater therapy: synthesis and utility. Chemosphere. 2022;299: 134364. https://doi.org/10.1016/j.chemosphere.2022.134364.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Akbari A, Amini M, Tarassoli A, Eftekhari-Sis B, Ghasemian N, Jabbari E. Transition steel oxide nanoparticles as environment friendly catalysts in oxidation reactions. Nano-Struct Nano-Objects. 2018;14:19–48. https://doi.org/10.1016/j.nanoso.2018.01.006.

    Article 
    CAS 

    Google Scholar
     

  • Santhosh C, Velmurugan V, Jacob G, Jeong SK, Grace AN, Bhatnagar A. Position of nanomaterials in water therapy purposes: a evaluate. Chem Eng J. 2016;306:1116–37. https://doi.org/10.1016/j.cej.2016.08.053.

    Article 
    CAS 

    Google Scholar
     

  • Hojjati-Najafabadi A, Mansoorianfar M, Liang T, Shahin Okay, Wen Y, Bahrami A, Karaman C, Zare N, Karimi-Maleh H, Vasseghian Y. Magnetic-MXene-based nanocomposites for water and wastewater therapy: a evaluate. J Water Course of Eng. 2022;47: 102696. https://doi.org/10.1016/j.jwpe.2022.102696.

    Article 

    Google Scholar
     

  • Cervantes-Avilés P, Keller AA. Incidence of metal-based nanoparticles within the typical wastewater therapy course of. Water Res. 2021. https://doi.org/10.1016/j.watres.2020.116603.

    Article 
    PubMed 

    Google Scholar
     

  • Kane A, Assadi AA, El Jery A, Badawi AK, Kenfoud H, Baaloudj O, Assadi AA. Superior photocatalytic therapy of wastewater utilizing immobilized titanium dioxide as a photocatalyst in a pilot-scale reactor: course of intensification. Supplies. 2022. https://doi.org/10.3390/ma15134547.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hussain F, Roy S, Narasimhan Okay, Vengadassalam Okay, Lu H. E-glass-polypropylene pultruded nanocomposite: manufacture, characterization, thermal and mechanical properties. J Thermoplast Compos Mater. 2007;20:411–34. https://doi.org/10.1177/0892705707079604.

    Article 
    CAS 

    Google Scholar
     

  • Guo F, Aryana S, Han Y, Jiao Y. A evaluate of the synthesis and purposes of polymer-nanoclay composites. Appl Sci (Switzerland). 2018;8:1–29. https://doi.org/10.3390/app8091696.

    Article 
    CAS 

    Google Scholar
     

  • Yu J, Zeng X, Wu S, Wang L, Liu G. Preparation and properties of montmorillonite modified asphalts. Mater Sci Eng, A. 2007;447:233–8. https://doi.org/10.1016/j.msea.2006.10.037.

    Article 
    CAS 

    Google Scholar
     

  • You Z, Mills-Beale J, Foley JM, Roy S, Odegard GM, Dai Q, Goh SW. Nanoclay-modified asphalt supplies: preparation and characterization. Constr Construct Mater. 2011;25(2):1072–8.

    Article 

    Google Scholar
     

  • You Z, Mills-Beale J, Foley JM, Roy S, Odegard GM, Dai Q, Goh SW. Nanoclay-modified asphalt supplies: preparation and characterization. Constr Construct Mater. 2011;25:1072–8. https://doi.org/10.1016/j.conbuildmat.2010.06.070.

    Article 

    Google Scholar
     

  • Chan ML, Lau KT, Wong TT, Ho MP, Hui D. Mechanism of reinforcement in a nanoclay/polymer composite. Compos B Eng. 2011;42:1708–12. https://doi.org/10.1016/j.compositesb.2011.03.011.

    Article 
    CAS 

    Google Scholar
     

  • Rong Okay, Wang J, Zhang Z, Zhang J. Inexperienced synthesis of iron nanoparticles utilizing Korla aromatic pear peel extracts for the elimination of aqueous Cr(VI). Ecol Eng. 2020;149: 105793. https://doi.org/10.1016/j.ecoleng.2020.105793.

    Article 

    Google Scholar
     

  • Soni R, Pal AK, Tripathi P, Lal JA, Kesari Okay, Tripathi V. An summary of nanoscale supplies on the elimination of wastewater contaminants. Appl Water Sci. 2020;10:1–9. https://doi.org/10.1007/s13201-020-01275-3.

    Article 
    CAS 

    Google Scholar
     

  • Sarkar B, Mandal S, Tsang YF, Kumar P, Kim KH, Okay YS. Designer carbon nanotubes for contaminant elimination in water and wastewater: a essential evaluate. Sci Whole Environ. 2018;612:561–81. https://doi.org/10.1016/j.scitotenv.2017.08.132.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu G, Wang X, Liu J, Jiang P, You S, Ding N, Guo Q, Lin F. Functions of nanomaterials for heavy steel elimination from water and soil: a evaluate. Sustainability (Switzerland). 2021;13:1–14. https://doi.org/10.3390/SU13020713.

    Article 
    CAS 

    Google Scholar
     

  • Pumera M. Graphene-based nanomaterials and their electrochemistry. Chem Soc Rev. 2010;39:4146–57. https://doi.org/10.1039/C002690P.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Perreault F, Fonseca De Faria A, Elimelech M. Environmental purposes of graphene-based nanomaterials. Chem Soc Rev. 2015;44:5861–96. https://doi.org/10.1039/C5CS00021A.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jung W, Lee JS, Han S, Ko SH, Kim T, Kim YH. An environment friendly decreased graphene-oxide filter for PM2.5 elimination. J Mater Chem A Mater. 2018;6:16975–82. https://doi.org/10.1039/c8ta04587a.

    Article 
    CAS 

    Google Scholar
     

  • Shahzad W, Badawi AK, Rehan ZA, Khan AM, Khan RA, Shah F, Ali S, Ismail B. Enhanced seen gentle photocatalytic efficiency of Sr0.3(Ba, Mn)0.7ZrO3 perovskites anchored on graphene oxide. Ceram Int. 2022;48:24979–88. https://doi.org/10.1016/j.ceramint.2022.05.151.

    Article 
    CAS 

    Google Scholar
     

  • Guo M, Wang J, Wang C, Robust PJ, Jiang P, Okay YS, Wang H. Carbon nanotube-grafted chitosan and its adsorption capability for phenol in aqueous answer. Sci Whole Environ. 2019;682:340–7. https://doi.org/10.1016/j.scitotenv.2019.05.148.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Manimegalai S, Vickram S, Deena SR, Rohini Okay, Thanigaivel S, Manikandan S, Subbaiya R, Karmegam N, Kim W, Govarthanan M. Carbon-based nanomaterial intervention and environment friendly elimination of varied contaminants from effluents—a evaluate. Chemosphere. 2023;312: 137319. https://doi.org/10.1016/J.CHEMOSPHERE.2022.137319.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Child R, Saifullah B, Hussein MZ. Carbon nanomaterials for the therapy of heavy metal-contaminated water and environmental remediation. Nanoscale Res Lett. 2019;2019(14):1–17. https://doi.org/10.1186/S11671-019-3167-8.

    Article 

    Google Scholar
     

  • Das R, Bandyopadhyay R, Pramanik P. Carbon quantum dots from pure useful resource: a evaluate. Mater Immediately Chem. 2018;8:96–109. https://doi.org/10.1016/J.MTCHEM.2018.03.003.

    Article 
    CAS 

    Google Scholar
     

  • Tian L, Li Z, Wang P, Zhai X, Wang X, Li T. Carbon quantum dots for superior electrocatalysis. J Vitality Chem. 2021;55:279–94. https://doi.org/10.1016/J.JECHEM.2020.06.057.

    Article 
    CAS 

    Google Scholar
     

  • Ying Lim S, Shen W, Gao Z. Carbon quantum dots and their purposes. Chem Soc Rev. 2015;44(1):362–81. https://doi.org/10.1039/C4CS00269E.

    Article 

    Google Scholar
     

  • Xu Y, Liu J, Gao C, Wang E. Functions of carbon quantum dots in electrochemiluminescence: a mini evaluate. Electrochem Commun. 2014;48:151–4.

    Article 
    CAS 

    Google Scholar
     

  • Shen J, Zhu Y, Yang X, Li C. Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic gadgets. Chem Commun. 2012;48:3686–99. https://doi.org/10.1039/C2CC00110A.

    Article 
    CAS 

    Google Scholar
     

  • Li L, Wu G, Yang G, Peng J, Zhao J, Zhu JJ. Specializing in luminescent graphene quantum dots: present standing and future views. Nanoscale. 2013;5:4015–39. https://doi.org/10.1039/C3NR33849E.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ding HM, Ma YQ. Computational approaches to cell-nanomaterial interactions: retaining steadiness between therapeutic effectivity and cytotoxicity. Nanoscale Horiz. 2018;3:6–27. https://doi.org/10.1039/c7nh00138j.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Silva S, Almeida AJ, Vale N. Mixture of cell-penetrating peptides with nanoparticles for therapeutic utility: a evaluate. Biomolecules. 2019. https://doi.org/10.3390/biom9010022.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Singh AP, Biswas A, Shukla A, Maiti P. Focused remedy in power ailments utilizing nanomaterial-based drug supply autos. Sign Transduct Goal Ther. 2019;4:1–21. https://doi.org/10.1038/s41392-019-0068-3.

    Article 
    CAS 

    Google Scholar
     

  • Lin Y, Jin X, Khan NI, Owens G, Chen Z. Bimetallic Fe/Ni nanoparticles derived from inexperienced synthesis for the elimination of arsenic (V) in mine wastewater. J Environ Handle. 2022;301: 113838. https://doi.org/10.1016/j.jenvman.2021.113838.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kumari S, Mankotia D, Chauhan GS. Crosslinked cellulose dialdehyde for Congo purple elimination from its aqueous options. J Environ Chem Eng. 2016;4:1126–36. https://doi.org/10.1016/j.jece.2016.01.008.

    Article 
    CAS 

    Google Scholar
     

  • Liu Y, Gordeyeva Okay, Bergström L. Regular-shear and viscoelastic properties of cellulose nanofibril–nanoclay dispersions. Cellulose. 2017;24:1815–24. https://doi.org/10.1007/s10570-017-1211-3.

    Article 
    CAS 

    Google Scholar
     

  • Kadam A, Saratale RG, Shinde S, Yang J, Hwang Okay, Mistry B, Saratale GD, Lone S, Kim DY, Sung JS, Ghodake G. Adsorptive remediation of cobalt oxide nanoparticles by magnetized Α-cellulose fibers from waste paper biomass. Bioresour Technol. 2019;273:386–93. https://doi.org/10.1016/j.biortech.2018.11.041.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Upton BM, Kasko AM. Methods for the conversion of lignin to high-value polymeric supplies: evaluate and perspective. Chem Rev. 2016;116:2275–306. https://doi.org/10.1021/acs.chemrev.5b00345.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Faruk O, Bledzki AK, Fink HP, Sain M. Biocomposites bolstered with pure fibers: 2000–2010. Prog Polym Sci. 2012;37:1552–96. https://doi.org/10.1016/j.progpolymsci.2012.04.003.

    Article 
    CAS 

    Google Scholar
     

  • Alahmadi NS, Betts JW, Cheng F, Francesconi MG, Kelly SM, Kornherr A, Prior TJ, Wadhawan JD. Synthesis and antibacterial results of cobalt-cellulose magnetic nanocomposites. RSC Adv. 2017;7:20020–6. https://doi.org/10.1039/C7RA00920H.

    Article 

    Google Scholar
     

  • Miao C, Hamad WY. Cellulose bolstered polymer composites and nanocomposites: a essential evaluate. Cellulose. 2013;20:2221–62. https://doi.org/10.1007/s10570-013-0007-3.

    Article 
    CAS 

    Google Scholar
     

  • Berglund J, Mikkelsen D, Flanagan BM, Dhital S, Gaunitz S, Henriksson G, Lindström ME, Yakubov GE, Gidley MJ, Vilaplana F. Wooden hemicelluloses exert distinct biomechanical contributions to cellulose fibrillar networks. Nat Commun. 2020;11:1–16. https://doi.org/10.1038/s41467-020-18390-z.

    Article 
    CAS 

    Google Scholar
     

  • Martínez-Abad A, Giummarella N, Lawoko M, Vilaplana F. Variations in extractability below subcritical water reveal interconnected hemicellulose and lignin recalcitrance in birch hardwoods. Inexperienced Chem. 2018;20:2534–46. https://doi.org/10.1039/c8gc00385h.

    Article 
    CAS 

    Google Scholar
     

  • Li P, Lv W, Ai S. Inexperienced and delicate synthesis of Cu2O nanoparticles utilizing lignin as lowering and capping reagent with antibacterial properties. J Exp Nanosci. 2016;11:18–27. https://doi.org/10.1080/17458080.2015.1015462.

    Article 
    CAS 

    Google Scholar
     

  • Ge Y, Li Z. Software of lignin and its derivatives in adsorption of heavy steel ions in water: a evaluate. ACS Maintain Chem Eng. 2018;6:7181–92. https://doi.org/10.1021/acssuschemeng.8b01345.

    Article 
    CAS 

    Google Scholar
     

  • Adewuyi A, Pereira FV. Floor modification of cellulose remoted from Sesamun indicum underutilized seed: a method of enhancing cellulose hydrophobicity. J Sci Adv Mater Units. 2017;2:326–32. https://doi.org/10.1016/j.jsamd.2017.07.007.

    Article 

    Google Scholar
     

  • Aulenta F, Hayes W, Rannard S. Dendrimers: a brand new class of nanoscopic containers and supply gadgets. Eur Polym J. 2003;39:1741–71. https://doi.org/10.1016/S0014-3057(03)00100-9.

    Article 
    CAS 

    Google Scholar
     

  • Sherje AP, Jadhav M, Dravyakar BR, Kadam D. Dendrimers: a flexible nanocarrier for drug supply and concentrating on. Int J Pharm. 2018;548:707–20. https://doi.org/10.1016/j.ijpharm.2018.07.030.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aigbe UO, Ukhurebor KE, Onyancha RB, Ama OM, Osibote OA, Kusuma HS, Okanigbuan PN, Azi SO, Osifo PO. Dendrimers for environmental remediation. Nanotechnol Environ Remediat. 2022. https://doi.org/10.1002/9783527834143.ch13.

    Article 

    Google Scholar
     

  • Zhang F, Wang B, He S, Man R. Preparation of graphene-oxide/polyamidoamine dendrimers and their adsorption properties towards some heavy steel ions. J Chem Eng Knowledge. 2014;59:1719–26. https://doi.org/10.1021/je500219e.

    Article 
    CAS 

    Google Scholar
     

  • Algarra M, Vázquez MI, Alonso B, Casado CM, Casado J, Benavente J. Characterization of an engineered cellulose based mostly membrane by thiol dendrimer for heavy metals elimination. Chem Eng J. 2014;253:472–7. https://doi.org/10.1016/j.cej.2014.05.082.

    Article 
    CAS 

    Google Scholar
     

  • Madaan Okay, Kumar S, Poonia N, Lather V, Pandita D. Dendrimers in drug supply and concentrating on: drug-dendrimer interactions and toxicity points. J Pharm Bioallied Sci. 2014;6:139–50. https://doi.org/10.4103/0975-7406.130965.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rego RM, Kuriya G, Kurkuri MD, Kigga M. MOF based mostly engineered supplies in water remediation: latest tendencies. J Hazard Mater. 2021;403: 123605. https://doi.org/10.1016/j.jhazmat.2020.123605.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li X, Zhu QL. MOF-based supplies for photo- and electrocatalytic CO2 discount. EnergyChem. 2020;2: 100033. https://doi.org/10.1016/j.enchem.2020.100033.

    Article 

    Google Scholar
     

  • Dhaka S, Kumar R, Deep A, Kurade MB, Ji SW, Jeon BH. Steel–natural frameworks (MOFs) for the elimination of rising contaminants from aquatic environments. Coord Chem Rev. 2019;380:330–52. https://doi.org/10.1016/j.ccr.2018.10.003.

    Article 
    CAS 

    Google Scholar
     

  • Ha J, Moon HR. Synthesis of MOF-on-MOF architectures within the context of interfacial lattice matching. CrystEngComm. 2021;23:2337–54. https://doi.org/10.1039/d0ce01883j.

    Article 
    CAS 

    Google Scholar
     

  • Ahmed I, Jhung SH. Composites of metal-organic frameworks: preparation and utility in adsorption. Mater Immediately. 2014;17:136–46. https://doi.org/10.1016/j.mattod.2014.03.002.

    Article 
    CAS 

    Google Scholar
     

  • Fahmy SA, Preis E, Bakowsky U, Azzazy HMES. Platinum nanoparticles: inexperienced synthesis and biomedical purposes. Molecules. 2020;25:1–17. https://doi.org/10.3390/molecules25214981.

    Article 
    CAS 

    Google Scholar
     

  • Kumar H, Bhardwaj Okay, Kuča Okay, Kalia A, Nepovimova E, Verma R, Kumar D. Flower-based inexperienced synthesis of metallic nanoparticles: purposes past perfume. Nanomaterials. 2020. https://doi.org/10.3390/nano10040766.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nguyen DA, Nguyen DV, Jeong G, Asghar N, Jang A. Essential analysis of hybrid metal-organic framework composites for environment friendly therapy of arsenic-contaminated options by adsorption and membrane-separation course of. Chem Eng Jl. 2023. https://doi.org/10.1016/j.cej.2023.141789.

    Article 

    Google Scholar
     

  • Guan T, Yao M. Use of carbon nanotube filter in eradicating bioaerosols. J Aerosol Sci. 2010;41:611–20. https://doi.org/10.1016/j.jaerosci.2010.03.002.

    Article 
    CAS 

    Google Scholar
     

  • Anjum M, Miandad R, Waqas M, Gehany F, Barakat MA. Remediation of wastewater utilizing varied nano-materials. Arab J Chem. 2019;12:4897–919. https://doi.org/10.1016/j.arabjc.2016.10.004.

    Article 
    CAS 

    Google Scholar
     

  • Lv Y, Liu H, Wang Z, Liu S, Hao L, Sang Y, Liu D, Wang J, Boughton RI. Silver nanoparticle-decorated porous ceramic composite for water therapy. J Memb Sci. 2009;331:50–6. https://doi.org/10.1016/j.memsci.2009.01.007.

    Article 
    CAS 

    Google Scholar
     

  • de Freitas Rosa P, Aguiar ML, Bernardo A. Modification of cotton materials with silver nanoparticles to be used in conditioner air to reduce the bioaerosol focus in indoor environments. Water Air Soil Pollut. 2017. https://doi.org/10.1007/s11270-017-3429-y.

    Article 

    Google Scholar
     

  • Glencross DA, Ho TR, Camiña N, Hawrylowicz CM, Pfeffer PE. Air air pollution and its results on the immune system. Free Radic Biol Med. 2020;151:56–68. https://doi.org/10.1016/j.freeradbiomed.2020.01.179.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ibrahim RK, Hayyan M, AlSaadi MA, Hayyan A, Ibrahim S. Environmental utility of nanotechnology: air, soil, and water. Environ Sci Pollut Res. 2016. https://doi.org/10.1007/s11356-016-6457-z.

    Article 

    Google Scholar
     

  • Nasir AM, Goh PS, Abdullah MS, Ng BC, Ismail AF. Adsorptive nanocomposite membranes for heavy steel remediation: latest progresses and challenges. Chemosphere. 2019;232:96–112. https://doi.org/10.1016/j.chemosphere.2019.05.174.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tang W, Meng Y, Yang B, He D, Li Y, Li B, Shi Z, Zhao C. Preparation of hollow-fiber nanofiltration membranes of excessive efficiency for efficient elimination of PFOA and excessive resistance to BSA fouling. J Environ Sci (China). 2022;122:14–24. https://doi.org/10.1016/j.jes.2021.10.004.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng XQ, Zhang YL, Wang ZX, Guo ZH, Bai YP, Shao L. Latest advances in polymeric solvent-resistant nanofiltration membranes. Adv Polym Technol. 2014;33:1–24. https://doi.org/10.1002/adv.21455.

    Article 
    CAS 

    Google Scholar
     

  • Nayab SS, Abbas MA, Mushtaq S, Niazi BK, Batool M, Shehnaz G, Ahmad N, Ahmad NM. Anti-foulant ultrafiltration polymer composite membranes integrated with composite activated carbon/chitosan and activated carbon/thiolated chitosan with enhanced hydrophilicity. Membranes (Basel). 2021. https://doi.org/10.3390/membranes11110827.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang P, Hu S, Xiang J, Su S, Solar L, Cao F, Xiao X, Zhang A. Evaluation of mercury species over CuO-MnO2-Fe2O3/γ-Al2O3 catalysts by thermal desorption. Proc Combust Inst. 2015;35:2847–53. https://doi.org/10.1016/j.proci.2014.06.054.

    Article 
    CAS 

    Google Scholar
     

  • Zhang R, Lu Okay, Zong L, Tong S, Wang X, Zhou J, Lu ZH, Feng G. Management synthesis of CeO2 nanomaterials supported gold for catalytic oxidation of carbon monoxide. Mol Catal. 2017;442:173–80. https://doi.org/10.1016/j.mcat.2017.09.024.

    Article 
    CAS 

    Google Scholar
     

  • Shen B, Zhu S, Zhang X, Chi G, Patel D, Si M, Wu C. Simultaneous elimination of NO and Hg0 utilizing Fe and Co co-doped Mn-Ce/TiO2 catalysts. Gasoline. 2018;224:241–9. https://doi.org/10.1016/j.gas.2018.03.080.

    Article 
    CAS 

    Google Scholar
     

  • Music Z, Wang B, Yu J, Ma C, Chen T, Yang W, Liu S, Solar L. Impact of Ti doping on heterogeneous oxidation of NO over Fe3O4 (1 1 1) floor by H2O2: a density useful examine. Chem Eng J. 2018;354:517–24. https://doi.org/10.1016/j.cej.2018.08.042.

    Article 
    CAS 

    Google Scholar
     

  • Ali A, Pan M, Tilly TB, Zia M, Wu CY. Efficiency of silver, zinc, and iron nanoparticles-doped cotton filters towards airborne E. coli to reduce bioaerosol publicity. Air Qual Atmos Well being. 2018;11:1233–42. https://doi.org/10.1007/s11869-018-0622-0.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen L, Xu Z, He C, Wang Y, Liang Z, Zhao Q, Lu Q. Gasoline-phase whole oxidation of nitric oxide utilizing hydrogen peroxide vapor over Pt/TiO 2. Appl Surf Sci. 2018;457:821–30. https://doi.org/10.1016/j.apsusc.2018.07.032.

    Article 
    CAS 

    Google Scholar
     

  • Zhao Y, Ma X, Xu P, Wang H, Liu Y, He A. Elemental mercury elimination from flue fuel by CoFe2O4 catalyzed peroxymonosulfate. J Hazard Mater. 2018;341:228–37. https://doi.org/10.1016/j.jhazmat.2017.07.047.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sharif HMA, Cheng HY, Haider MR, Khan Okay, Yang L, Wang AJ. NO elimination with environment friendly restoration of N 2 O by utilizing recyclable Fe 3 O 4 @EDTA@Fe(II) complicated: a novel method towards useful resource restoration from flue fuel. Environ Sci Technol. 2019;53:1004–13. https://doi.org/10.1021/acs.est.8b03934.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao Y, Yuan B, Zheng Z, Hao R. Elimination of multi-pollutant from flue fuel using ammonium persulfate answer catalyzed by Fe/ZSM-5. J Hazard Mater. 2019;362:266–74. https://doi.org/10.1016/j.jhazmat.2018.08.071.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bortolassi ACC, Nagarajan S, de Araújo Lima B, Guerra VG, Aguiar ML, Huon V, Soussan L, Cornu D, Miele P, Bechelany M. Environment friendly nanoparticles elimination and bactericidal motion of electrospun nanofibers membranes for air filtration. Mater Sci Eng C. 2019;102:718–29. https://doi.org/10.1016/j.msec.2019.04.094.

    Article 
    CAS 

    Google Scholar
     

  • Huy NN, Thanh Thuy VT, Thang NH, Thuy NT, Quynh LT, Khoi TT, Van Thanh D. Facile one-step synthesis of zinc oxide nanoparticles by ultrasonic-assisted precipitation technique and its utility for H2S adsorption in air. J Phys Chem Solids. 2019;132:99–103. https://doi.org/10.1016/j.jpcs.2019.04.018.

    Article 
    CAS 

    Google Scholar
     

  • Faghihi-Zarandi A, Rakhtshah J, BahramiYarahmadi B, Shirkhanloo H. A speedy elimination of xylene vapor from environmental air based mostly on bismuth oxide coupled to heterogeneous graphene/graphene oxide by UV photo-catalectic degradation-adsorption process. J Environ Chem Eng. 2020;8: 104193. https://doi.org/10.1016/j.jece.2020.104193.

    Article 
    CAS 

    Google Scholar
     

  • Zhang X, Shi Q, Shen B, Hu Z, Zhang X. MIL-100(Fe) supported Mn-based catalyst and its habits in Hg0 elimination from flue fuel. J Hazard Mater. 2020;381: 121003. https://doi.org/10.1016/j.jhazmat.2019.121003.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zarandi AF, Shirkhanloo H, Paydar P. A novel technique based mostly on functionalized bimodal mesoporous silica nanoparticles for environment friendly elimination of lead aerosols air pollution from air by solid-liquid gas-phase extraction 03 Chemical Sciences 0306 Bodily Chemistry (incl. Structural). J Environ Well being Sci Eng. 2020;18:177–88. https://doi.org/10.1007/s40201-020-00450-7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jang S, Jung S, Music S, Lee S, Lee H, Cho E, Lee HJ, Park S, Youn B, Park KH. Preparation and characterization of multifunctional nanofibers containing metal-organic frameworks and Cu2O nanoparticles: particulate matter seize and antibacterial exercise. Environ Sci NANO. 2021;8:1226–35. https://doi.org/10.1039/d1en00032b.

    Article 
    CAS 

    Google Scholar
     

  • Li J, Li B, Sui G, Du L, Zhuang Y, Zhang Y, Zou Y. Elimination of risky natural compounds from air utilizing supported ionic liquid membrane containing ultraviolet-visible light-driven Nd-TiO2 nanoparticles. J Mol Struct. 2021;1231:2–10. https://doi.org/10.1016/j.molstruc.2021.130023.

    Article 
    CAS 

    Google Scholar
     

  • Inomata Y, Kubota H, Hata S, Kiyonaga E, Morita Okay, Yoshida Okay, Sakaguchi N, Toyao T, IchiShimizu Okay, Ishikawa S, Ueda W, Haruta M, Murayama T. Bulk tungsten-substituted vanadium oxide for low-temperature NOx elimination within the presence of water. Nat Commun. 2021;12:1–11. https://doi.org/10.1038/s41467-020-20867-w.

    Article 
    CAS 

    Google Scholar
     

  • Shirkhanloo H, Faghihi-Zarandi A, Mobarake MD. Thiol modified bimodal mesoporous silica nanoparticles for elimination and willpower poisonous vanadium from air and human organic samples in petrochemical staff. NanoImpact. 2021;23: 100339. https://doi.org/10.1016/j.impression.2021.100339.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang H, Zhang X, Wang P, Chen R, Gu G, Hu S, Tian R. Laminated polyacrylonitrile nanofiber membrane codoped with boehmite nanoparticles for environment friendly electrostatic seize of particulate issues. Nanotechnology. 2021. https://doi.org/10.1088/1361-6528/abeadc.

    Article 
    PubMed 

    Google Scholar
     

  • Bembibre A, Benamara M, Hjiri M, Gómez E, Alamri HR, Dhahri R, Serrà A. Seen-light pushed sonophotocatalytic elimination of tetracycline utilizing Ca-doped ZnO nanoparticles. Chem Eng J. 2022. https://doi.org/10.1016/j.cej.2021.132006.

    Article 

    Google Scholar
     

  • Hernández-Fontes C, Pfeiffer H. Unraveling the CO and CO2 reactivity on Li2MnO3: sorption and catalytic analyses. Chem Eng J. 2022. https://doi.org/10.1016/j.cej.2021.131998.

    Article 

    Google Scholar
     

  • Qu Y, Zheng X, Ma Okay, He W, Wang S, Zhang P. Facile coating of MnO2 nanoparticles onto polymer fibers by way of friction-heating adhesion for environment friendly formaldehyde elimination. Chem Eng J. 2022;430: 132954. https://doi.org/10.1016/j.cej.2021.132954.

    Article 
    CAS 

    Google Scholar
     

  • Zhou Y, He Y, Xiang Y, Meng S, Liu X, Yu J, Yang J, Zhang J, Qin P, Luo L. Single and simultaneous adsorption of pefloxacin and Cu(II) ions from aqueous options by oxidized multiwalled carbon nanotube. Sci Whole Environ. 2019;646:29–36. https://doi.org/10.1016/j.scitotenv.2018.07.267.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xia Okay, Guo Y, Shao Q, Zan Q, Bai R. Elimination of Mercury (II) by EDTA-functionalized magnetic CoFe 2 O 4 @SiO 2 nanomaterial with core-shell construction. Nanomaterials. 2019. https://doi.org/10.3390/nano9111532.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dai S, Wang N, Qi C, Wang X, Ma Y, Yang L, Liu X, Huang Q, Nie C, Hu B, Wang X. Preparation of core-shell construction Fe3O4@C@MnO2 nanoparticles for environment friendly elimination of U(VI) and Eu(III) ions. Sci Whole Environ. 2019;685:986–96. https://doi.org/10.1016/j.scitotenv.2019.06.292.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang C, Zhang J, Zhu X, Liu Y, Chen Y, Wang C. Deep and environment friendly elimination of vanadium from molybdate answer utilizing magnetic γ-Fe2O3 nanoparticles. Appl Surf Sci. 2020;529: 147060. https://doi.org/10.1016/j.apsusc.2020.147060.

    Article 
    CAS 

    Google Scholar
     

  • Feng G, Ma J, Zhang X, Zhang Q, Xiao Y, Ma Q, Wang S. Magnetic pure composite Fe3O4-chitosan@bentonite for elimination of heavy metals from acid mine drainage. J Colloid Interface Sci. 2019;538:132–41. https://doi.org/10.1016/j.jcis.2018.11.087.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang W, Wu G, Zhu T, Yang Y, Zhang Y. Synthesis of -thiazole Schiff base modified SBA-15 mesoporous silica for selective Pb(II) adsorption. J Taiwan Inst Chem Eng. 2021;125:349–59. https://doi.org/10.1016/j.jtice.2021.06.004.

    Article 
    CAS 

    Google Scholar
     

  • Reghioua A, Barkat D, Jawad AH, Abdulhameed AS, Rangabhashiyam S, Khan MR, Alothman ZA. Magnetic chitosan-glutaraldehyde/zinc oxide/Fe3O4 nanocomposite: optimization and adsorptive mechanism of remazol sensible blue R dye elimination. J Polym Environ. 2021;29:3932–47. https://doi.org/10.1007/s10924-021-02160-z.

    Article 
    CAS 

    Google Scholar
     

  • BoHuo J, Yu G, Wang J. Magnetic zeolitic imidazolate frameworks composite as an environment friendly adsorbent for arsenic elimination from aqueous answer. J Hazard Mater. 2021;412: 125298. https://doi.org/10.1016/j.jhazmat.2021.125298.

    Article 
    CAS 

    Google Scholar
     

  • Zhang J, Feng L, Jian Y, Luo G, Wang M, Hu B, Liu T, Li J, Yuan Y, Wang N. Interlayer spacing adjusted zirconium phosphate with 2D ion channels for extremely environment friendly elimination of uranium contamination in radioactive effluent. Chem Eng J. 2022;429: 132265. https://doi.org/10.1016/j.cej.2021.132265.

    Article 
    CAS 

    Google Scholar
     

  • Mahmoud ME, Saad SR, El-Ghanam AM, Mohamed RHA. Developed magnetic Fe3O4–MoO3-AC nanocomposite for efficient elimination of ciprofloxacin from water. Mater Chem Phys. 2021;257: 123454. https://doi.org/10.1016/j.matchemphys.2020.123454.

    Article 
    CAS 

    Google Scholar
     

  • Guo T, Lei Y, Hu X, Yang G, Liang J, Huang Q, Li X, Liu M, Zhang X, Wei Y. Hydrothermal synthesis of MXene-MoS2 composites for extremely environment friendly elimination of pesticides. Appl Surf Sci. 2022;588: 152597. https://doi.org/10.1016/j.apsusc.2022.152597.

    Article 
    CAS 

    Google Scholar
     

  • Sharma R, Zhou Z, Themelis T, Van Assche TRC, Eeltink S, Denayer JFM. Elimination of low hint ppb-level perfluorooctanesulfonic acid (PFOS) with ZIF-8 coatings involving adsorbent degradation. Langmuir. 2023;39:3341–9. https://doi.org/10.1021/acs.langmuir.2c03209.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chang PH, Mukhopadhyay R, Zhong B, Yang QY, Zhou S, Tzou YM, Sarkar B. Synthesis and characterization of PCN-222 steel natural framework and its utility for eradicating perfluorooctane sulfonate from water. J Colloid Interface Sci. 2023;636:459–69. https://doi.org/10.1016/j.jcis.2023.01.032.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Njaramba LK, Kim M, Yea Y, Yoon Y, Park CM. Environment friendly adsorption of naproxen and ibuprofen by gelatin/zirconium-based steel–natural framework/sepiolite aerogels by way of synergistic mechanisms. Chem Eng J. 2023;452: 139426. https://doi.org/10.1016/j.cej.2022.139426.

    Article 
    CAS 

    Google Scholar
     

  • Arya S, Mahajan P, Mahajan S, Khosla A, Datt R, Gupta V, Younger S-J, Oruganti SK. Overview—affect of processing parameters to manage morphology and optical properties of sol-gel synthesized ZnO nanoparticles. ECS J Strong State Sci Technol. 2021;10: 023002. https://doi.org/10.1149/2162-8777/abe095.

    Article 
    CAS 

    Google Scholar
     

  • Zahmatkesh S, Hajiaghaei-Keshteli M, Bokhari A, Sundaramurthy S, Panneerselvam B, Rezakhani Y. Wastewater therapy with nanomaterials for the long run: a state-of-the-art evaluate. Environ Res. 2023;216: 114652. https://doi.org/10.1016/j.envres.2022.114652.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mater Y, Kamel M, Karam A, Bakhoum E. ANN-Python prediction mannequin for the compressive energy of inexperienced concrete. Constr Innov. 2023;23:340–59. https://doi.org/10.1108/CI-08-2021-0145.

    Article 

    Google Scholar
     

  • Olajire AA, Bamigbade LA. Inexperienced synthesis of chitosan-based iron@silver nanocomposite as adsorbent for wastewater therapy. Water Resour Ind. 2021;26: 100158. https://doi.org/10.1016/j.wri.2021.100158.

    Article 
    CAS 

    Google Scholar
     

  • Zarrabi A, Ghasemi-Fasaei R. Preparation of inexperienced synthesized copper oxide nanoparticles for environment friendly elimination of lead from wastewaters. Int J Phytoremediat. 2021. https://doi.org/10.1080/15226514.2021.1984385.

    Article 

    Google Scholar
     

  • Xu Q, Li W, Ma L, Cao D, Owens G, Chen Z. Simultaneous elimination of ammonia and phosphate utilizing inexperienced synthesized iron oxide nanoparticles dispersed onto zeolite. Sci Whole Environ. 2020. https://doi.org/10.1016/j.scitotenv.2019.135002.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Singh P, Kim YJ, Zhang D, Yang DC. Organic synthesis of nanoparticles from vegetation and microorganisms. Tendencies Biotechnol. 2016;34:588–99. https://doi.org/10.1016/j.tibtech.2016.02.006.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jeyaraj M, Gurunathan S, Qasim M, Kang MH, Kim JH. A complete evaluate on the synthesis, characterization, and biomedical utility of platinum nanoparticles. Nanomaterials. 2019. https://doi.org/10.3390/nano9121719.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abdullah FH, Abu Bakar NHH, Abu Bakar M. Comparative examine of chemically synthesized and low temperature bio-inspired Musa acuminata peel extract mediated zinc oxide nanoparticles for enhanced visible-photocatalytic degradation of natural contaminants in wastewater therapy. J Hazard Mater. 2021;406: 124779. https://doi.org/10.1016/j.jhazmat.2020.124779.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ali I, Afshinb S, Poureshgh Y, Azari A, Rashtbari Y, Feizizadeh A, Hamzezadeh A, Fazlzadeh M. Inexperienced preparation of activated carbon from pomegranate peel coated with zero-valent iron nanoparticles (nZVI) and isotherm and kinetic research of amoxicillin elimination in water. Environ Sci Pollut Res. 2020;27:36732–43. https://doi.org/10.1007/s11356-020-09310-1.

    Article 
    CAS 

    Google Scholar
     

  • Oruganti RK, Pal D, Panda TK, Shee D, Bhattacharyya D. Inexperienced synthesis of calcium oxide nanoparticles impregnated activated carbon from algal–bacterial activated sludge: its utility in ciprofloxacin elimination. Int J Environ Sci Technol. 2022. https://doi.org/10.1007/s13762-022-04662-2.

    Article 

    Google Scholar
     

  • Hadi S, Taheri E, Amin MM, Fatehizadeh A. Fabrication of activated carbon from pomegranate husk by twin consecutive chemical activation for 4-chlorophenol adsorption. Environ Sci Pollut Res. 2021;28:13919–30.

    Article 
    CAS 

    Google Scholar
     

  • Amirsadat Okay, Sharififard H. Adsorption of nitrate from municipal wastewater by synthesized chitosan / iron / activated carbon of orange peel composite. Biomass Convers Biorefin. 2022. https://doi.org/10.1007/s13399-022-03198-2.

    Article 

    Google Scholar
     

  • Getahun Y, Gardea-Torresdey J, Manciu FS, Li X, El-Gendy AA. Inexperienced synthesized superparamagnetic iron oxide nanoparticles for water therapy with various recyclability. J Mol Liq. 2022;356: 118983. https://doi.org/10.1016/j.molliq.2022.118983.

    Article 
    CAS 

    Google Scholar
     

  • Galan CR, Silva MF, Mantovani D, Bergamasco R, Vieira MF. Inexperienced synthesis of copper oxide nanoparticles impregnated on activated carbon utilizing Moringa oleifera leaves extract for the elimination of nitrates from water. Can J Chem Eng. 2018;96:2378–86. https://doi.org/10.1002/cjce.23185.

    Article 
    CAS 

    Google Scholar
     

  • Goutam SP, Saxena G, Singh V, Yadav AK, Bharagava RN, Thapa KB. Inexperienced synthesis of TiO2 nanoparticles utilizing leaf extract of Jatropha curcas L. for photocatalytic degradation of tannery wastewater. Chem Eng J. 2018;336:386–96. https://doi.org/10.1016/j.cej.2017.12.029.

    Article 
    CAS 

    Google Scholar
     

  • Sadiq H, Sher F, Sehar S, Lima EC, Zhang S, Iqbal HMN, Zafar F, Nuhanović M. Inexperienced synthesis of ZnO nanoparticles from Syzygium Cumini leaves extract with sturdy photocatalysis purposes. J Mol Liq. 2021. https://doi.org/10.1016/j.molliq.2021.116567.

    Article 

    Google Scholar
     

  • Al-Qahtani KM. Cadmium elimination from aqueous answer by inexperienced synthesis zero valent silver nanoparticles with Benjamina leaves extract. Egypt J Aquat Res. 2017;43:269–74. https://doi.org/10.1016/j.ejar.2017.10.003.

    Article 

    Google Scholar
     

  • Gindaba GT, Demsash HD, Jayakumar M. Inexperienced synthesis, characterization, and utility of steel oxide nanoparticles for mercury elimination from aqueous answer. Environ Monit Assess. 2023. https://doi.org/10.1007/s10661-022-10586-8.

    Article 

    Google Scholar
     

  • Singh S, Naik TSSK, Thamaraiselvan C, Behera SK, Pavithra N, Bidisha Nath P, Dwivedi P, Singh J, Ramamurthy PC. Applicability of latest sustainable and environment friendly inexperienced metal-based nanoparticles for elimination of Cr(VI): adsorption anti-microbial, and DFT research. Environ Pollut. 2023;320:121105. https://doi.org/10.1016/j.envpol.2023.121105.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mukherjee D, Ghosh S, Majumdar S, Annapurna Okay. Inexperienced synthesis of α-Fe2O3 nanoparticles for arsenic(V) remediation with a novel facet for sludge administration. J Environ Chem Eng. 2016;4:639–50. https://doi.org/10.1016/j.jece.2015.12.010.

    Article 
    CAS 

    Google Scholar
     

  • Dihingia H, Tiwari D. Inexperienced and facile synthesis of heterojunction nanocatalyst: insights and mechanism of antibiotics elimination. Sep Purif Technol. 2023;306: 122641. https://doi.org/10.1016/j.seppur.2022.122641.

    Article 
    CAS 

    Google Scholar
     

  • Iqbal A, Haq AU, Cerrón-Calle GA, Naqvi SAR, Westerhoff P, Garcia-Segura S. Inexperienced synthesis of flower-shaped copper oxide and nickel oxide nanoparticles by way of capparis decidua leaf extract for synergic adsorption-photocatalytic degradation of pesticides. Catalysts. 2021. https://doi.org/10.3390/catal11070806.

    Article 

    Google Scholar
     

  • Militao IM, Roddick F, Fan L, Zepeda LC, Parthasarathy R, Bergamasco R. PFAS elimination from water by adsorption with alginate-encapsulated plant albumin and rice straw-derived biochar. J Water Course of Eng. 2023. https://doi.org/10.1016/j.jwpe.2023.103616.

    Article 

    Google Scholar
     

  • Ali I, Al-Othman ZA, Alwarthan A. Inexperienced synthesis of functionalized iron nano particles and molecular liquid section adsorption of ametryn from water. J Mol Liq. 2016;221:1168–74. https://doi.org/10.1016/j.molliq.2016.06.089.

    Article 
    CAS 

    Google Scholar
     

  • Marimuthu S, Antonisamy AJ, Malayandi S, Rajendran Okay, Tsai P-C, Pugazhendhi A, KumarPonnusamy V, Metropolis CM, Nam V. Silver nanoparticles in dye effluent therapy: a evaluate on synthesis, therapy strategies, mechanisms, photocatalytic degradation, poisonous results and mitigation of toxicity. J Photochem Photobiol B Biol. 2020. https://doi.org/10.1016/j.jphotobiol.2020.111823.

    Article 

    Google Scholar
     

  • Maleki A, Hayati B, Najafi F, Gharibi F, Joo SW. Heavy steel adsorption from industrial wastewater by PAMAM/TiO 2 nanohybrid: preparation, characterization and adsorption research. J Mol Liquids. 2016. https://doi.org/10.1016/j.molliq.2016.09.060.

    Article 

    Google Scholar
     

  • Qiu H, Lv L, Pan BC, Zhang QJ, Zhang WM, Zhang QX. Essential evaluate in adsorption kinetic fashions. J Zhejiang Univ Sci A. 2009;10:716–24. https://doi.org/10.1631/JZUS.A0820524/METRICS.

    Article 
    CAS 

    Google Scholar
     

  • Qu X, Alvarez PJJ, Li Q. Functions of nanotechnology in water and wastewater therapy. Water Res. 2013;47:3931–46. https://doi.org/10.1016/j.watres.2012.09.058.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nassar NN. The applying of nanoparticles for wastewater remediation. In: Van der Bruggen B, editor. Functions of nanomaterials for water high quality. London: Future Science Ltd; 2013. p. 52–65. https://doi.org/10.4155/ebo.13.373.

    Chapter 

    Google Scholar
     

  • Anh Nguyen D, Viet Nguyen D, Jeong G, Asghar N, Jang A. Essential analysis of hybrid steel–natural framework composites for environment friendly therapy of arsenic–contaminated options by adsorption and membrane–separation course of. Chem Eng J. 2023. https://doi.org/10.1016/j.cej.2023.141789.

    Article 

    Google Scholar
     

  • Kaur S, Sundarrajan S, Rana D, Sridhar R, Gopal R, Matsuura T, Ramakrishna S. Overview: the characterization of electrospun nanofibrous liquid filtration membranes. J Mater Sci. 2014;49:6143–59. https://doi.org/10.1007/S10853-014-8308-Y/FIGURES/20.

    Article 
    CAS 

    Google Scholar
     

  • Athanasekou CP, Romanos GE, Katsaros FK, Kordatos Okay, Likodimos V, Falaras P. Very environment friendly composite titania membranes in hybrid ultrafiltration/photocatalysis water therapy processes. J Memb Sci. 2012;392–393:192–203. https://doi.org/10.1016/J.MEMSCI.2011.12.028.

    Article 

    Google Scholar
     

  • Athanasekou CP, Moustakas NG, Morales-Torres S, Pastrana-Martínez LM, Figueiredo JL, Faria JL, Silva AMT, Dona-Rodriguez JM, Romanos GE, Falaras P. Ceramic photocatalytic membranes for water filtration below UV and visual gentle. Appl Catal B. 2015;178:12–9. https://doi.org/10.1016/J.APCATB.2014.11.021.

    Article 
    CAS 

    Google Scholar
     

  • Zhang X, Du AJ, Lee P, Solar DD, Leckie JO. TiO2 nanowire membrane for concurrent filtration and photocatalytic oxidation of humic acid in water. J Memb Sci. 2008;313:44–51. https://doi.org/10.1016/J.MEMSCI.2007.12.045.

    Article 
    CAS 

    Google Scholar
     

  • Athanasekou CP, Romanos GE, Katsaros FK, Kordatos Okay, Likodimos V, Falaras P. Very environment friendly composite titania membranes in hybrid ultrafiltration/photocatalysis water therapy processes. J Memb Sci. 2012;392:192–203. https://doi.org/10.1016/j.memsci.2011.12.028.

    Article 
    CAS 

    Google Scholar
     

  • Ma N, Zhang Y, Quan X, Fan X, Zhao H. Performing a microfiltration built-in with photocatalysis utilizing an Ag-TiO2/HAP/Al2O3 composite membrane for water therapy: evaluating effectiveness for humic acid elimination and anti-fouling properties. Water Res. 2010;44(20):6104–14.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu H, Guo J, Zhu S, Li Y, Zhang Q, Zhu M. Preparation of steady alumina nanofibers by way of electrospinning of PAN/DMF answer. Mater Lett. 2012;74:247–9. https://doi.org/10.1016/J.MATLET.2012.01.077.

    Article 
    CAS 

    Google Scholar
     

  • Nasreen SAAN, Sundarrajan S, Nizar SAS, Balamurugan R, Ramakrishna S. Development in electrospun nanofibrous membranes modification and their utility in water therapy. Membranes. 2013;3:266–84. https://doi.org/10.3390/MEMBRANES3040266.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pichel N, Vivar M, Fuentes M. The issue of ingesting water entry: a evaluate of disinfection applied sciences with an emphasis on photo voltaic therapy strategies. Chemosphere. 2018;218:1014–30. https://doi.org/10.1016/j.chemosphere.2018.11.205.

    Article 
    PubMed 

    Google Scholar
     

  • Das SK, Motiar M, Khan R, Parandhaman T, Laffir F, Guha AK, Sekaran G, Mandal AB. Nano-silica fabricated with silver nanoparticles: antifouling adsorbent for environment friendly dye elimination, efficient water disinfection and biofouling management. Nanoscale. 2013;5(12):5549. https://doi.org/10.1039/c3nr00856h.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hamdan M, Darabee S. Enhancement of photo voltaic water disinfection utilizing nanotechnology. Int J Thermal Environ Eng. 2017;15:111–6. https://doi.org/10.5383/ijtee.15.02.005.

    Article 

    Google Scholar
     

  • Yunus IS, Harwin A, Kurniawan D, Adityawarman AI. Nanotechnologies in water and air air pollution therapy. Environ Technol Rev. 2012;1:136–48. https://doi.org/10.1080/21622515.2012.733966.

    Article 
    CAS 

    Google Scholar
     

  • KumarBhardwaj A, Sundaram S, Yadav KK, Srivastav AL. An summary of silver nano-particles as promising supplies for water disinfection. Environ Technol Innov. 2021;23: 101721. https://doi.org/10.1016/j.eti.2021.101721.

    Article 
    CAS 

    Google Scholar
     

  • Asuncion Dimapilis ES, Hsu C-S, Marie Mendoza RO, Lu M-C. Zinc oxide nanoparticles for water disinfection. Maintain Environ Res. 2018. https://doi.org/10.1016/j.serj.2017.10.001.

    Article 

    Google Scholar
     

  • Zhang Y, Cheng Y, Qi H. Synergistic degradation of natural pollution on CoFe2O4/rGO nanocomposites by peroxymonosulfate activation below LED irradiation. Appl Surf Sci. 2022;579: 152151. https://doi.org/10.1016/j.apsusc.2021.152151.

    Article 
    CAS 

    Google Scholar
     

  • Baaloudj O, Badawi AK, Kenfoud H, Benrighi Y, Hassan R, Nasrallah N, Assadi AA. Techno-economic research for a pilot-scale Bi12TiO20 based mostly photocatalytic system for pharmaceutical wastewater therapy: from laboratory research to commercial-scale purposes. J Water Course of Eng. 2022;48: 102847. https://doi.org/10.1016/j.jwpe.2022.102847.

    Article 

    Google Scholar
     

  • Peng C, Yu D, Wang L, Yu X, Zhao Z. Latest advances within the preparation and catalytic efficiency of Mn-based oxide catalysts with particular morphologies for the elimination of air pollution. J Mater Chem A Mater. 2021;9:12947–80. https://doi.org/10.1039/d1ta00911g.

    Article 
    CAS 

    Google Scholar
     

  • Saleh TS, Badawi AK, Salama RS, Mostafa MMM. Design and growth of novel composites containing nickel ferrites supported on activated carbon derived from agricultural wastes and its utility in water remediation. Supplies. 2023. https://doi.org/10.3390/ma16062170.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baaloudj O, Nasrallah N, Kenfoud H, Bourkeb KW, Badawi AK. Polyaniline/Bi12TiO20 hybrid system for cefixime elimination by combining adsorption and photocatalytic degradation. ChemEngineering. 2023. https://doi.org/10.3390/chemengineering7010004.

    Article 

    Google Scholar
     

  • Mahmoudi F, Saravanakumar Okay, Maheskumar V, KamandeNjaramba L, Yoon Y, Park CM, Park CM. Software of perovskite oxides and their composites for degrading natural pollution from wastewater utilizing superior oxidation processes: evaluate of the latest progress. J Hazard Mater. 2022. https://doi.org/10.1016/j.jhazmat.2022.129074.

    Article 
    PubMed 

    Google Scholar
     

  • Neumann S, Gutmann T, Buntkowsky G, Paul S, Thiele G, Sievers H, Bäumer M, Kunz S. Insights into the response mechanism and particle measurement results of CO oxidation over supported Pt nanoparticle catalysts. J Catal. 2019;377:662–72. https://doi.org/10.1016/J.JCAT.2019.07.049.

    Article 
    CAS 

    Google Scholar
     

  • Li L, Yang A, He X, Liu J, Ma Y, Niu J, Luo B. Indoor air air pollution from strong fuels and hypertension: a scientific evaluate and meta-analysis. Environ Pollut. 2020;259: 113914. https://doi.org/10.1016/j.envpol.2020.113914.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jabbar ZH, Ebrahim SE. Latest advances in nano-semiconductors photocatalysis for degrading natural contaminants and microbial disinfection in wastewater: a complete evaluate. Environ Nanotechnol Monit Manag. 2022;17: 100666. https://doi.org/10.1016/j.enmm.2022.100666.

    Article 
    CAS 

    Google Scholar
     

  • Rezaee A, Rangkooy H, Khavanin A, Jafari AJ. Excessive photocatalytic decomposition of the air pollutant formaldehyde utilizing nano-ZnO on bone char. Environ Chem Lett. 2014;12:353–7. https://doi.org/10.1007/s10311-014-0453-7.

    Article 
    CAS 

    Google Scholar
     

  • Park JH, Yoon KY, Kim YS, Byeon JH, Hwang J. Elimination of submicron aerosol particles and bioaerosols utilizing carbon fiber ionizer assisted fibrous medium filter media. J Mech Sci Technol. 2009;23:1846–51. https://doi.org/10.1007/s12206-009-0613-z.

    Article 

    Google Scholar
     



  • Supply hyperlink

    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    - Advertisment -
    Google search engine

    Most Popular

    Recent Comments