Futaki S, Nakase I, Tadokoro A, Takeuchi T, Jones AT. Arginine-rich peptides and their internalization mechanisms. Biochem Soc Trans. 2007;35:784–7.
Erazo-Oliveras A, Muthukrishnan N, Baker R, Wang TY, Pellois JP. Bettering the endosomal escape of cell-penetrating peptides and their cargos: methods and challenges. Prescribed drugs (Basel). 2012;5:1177–209.
Copolovici DM, Langel Ok, Eriste E, Langel Ü. Cell-penetrating peptides: design, synthesis, and functions. ACS Nano. 2014;8:1972–94.
Ruczynski J, Wierzbicki PM, Kogut-Wierzbicka M, Mucha P, Siedlecka-Kroplewska Ok, Rekowski P. Cell-penetrating peptides as a promising software for supply of assorted molecules into the cells. Folia Histochem Cytobiol. 2014;52:257–69.
Farkhani SM, Valizadeh A, Karami H, Mohammadi S, Sohrabi N, Badrzadeh F. Cell penetrating peptides: environment friendly vectors for supply of nanoparticles, nanocarriers, therapeutic and diagnostic molecules. Peptides. 2014;57:78–94.
Guidotti G, Brambilla L, Rossi D. Cell-penetrating peptides: from fundamental analysis to clinics. Developments Pharmacol Sci. 2017;38:406–24.
Yang J, Luo Y, Shibu MA, Toth I, Skwarczynskia M. Cell-penetrating Peptides: environment friendly vectors for vaccine supply. Curr Drug Deliv. 2019;16:430–43.
Zhang Y, Guo P, Ma Z, Lu P, Kebebe D, Liu Z. Mixture of cell-penetrating peptides with nanomaterials for the potential therapeutics of central nervous system issues: a evaluate. J Nanobiotechnology. 2021;19:255.
Kim GC, Cheon DH, Lee Y. Problem to beat present limitations of cell-penetrating peptides. Biochim Biophys Acta Proteins Proteom. 2021;1869: 140604.
Geng J, Xia X, Teng L, Wang L, Chen L, Guo X, Belingon B, Li J, Feng X, Li X, Shang W, Wan Y, Wang H. Rising panorama of cell-penetrating peptide-mediated nucleic acid supply and their utility in imaging, gene-editing, and RNA-sequencing. J Management Launch. 2022;341:166–83.
Endo S, Kubota S, Siomi H, Adachi A, Oroszlan S, Maki M, Hatanaka M. A area of fundamental amino-acid cluster in HIV-1 Tat protein is important for trans-acting exercise and nucleolar localization. Virus Genes. 1989;3:99–110.
Vivès E, Brodin P, Lebleu B. A truncated HIV-1 Tat protein fundamental area quickly translocates by way of the plasma membrane and accumulates within the cell nucleus. J Biol Chem. 1997;272:16010–7.
Wadia JS, Stan RV, Dowdy SF. Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft micropinocytosis. Nat Med. 2004;10:310–5.
Erazo-Oliveras A, Najjar Ok, Dayani L, Wang TY, Johnson GA, Pellois JP. Protein supply into dwell cells by incubation with an endosomolytic agent. Nat Strategies. 2014;11:861–7.
Tietz O, Cortezon-Tamarit F, Chalk R, In a position S, Vallis KA. Tricyclic cell-penetrating peptides for environment friendly supply of purposeful antibodies into most cancers cells. Nat Chem. 2022;14:284–93.
Sudo Ok, Niikura Ok, Iwaki Ok, Kohyama S, Fujiwara Ok, Doi N. Human-derived fusogenic peptides for the intracellular supply of proteins. J Management Launch. 2017;255:1–11.
Hutvagner G, Simard MJ. Argonaute proteins: key gamers in RNA silencing. Nat Rev Mol Cell Biol. 2008;9:22–32.
Zhang S, Zhao B, Jiang H, Wang B, Ma B. Cationic lipids and polymers mediated vectors for supply of siRNA. J Management Launch. 2007;123:1–10.
Dowdy SF. Overcoming mobile boundaries for RNA therapeutics. Nat Biotechnol. 2017;35:222–9.
Setten RL, Rossi JJ, Han SP. The present state and future instructions of RNAi-based therapeutics. Nat Rev Drug Discov. 2019;18:421–46.
Guo S, Li Ok, Hu B, Li C, Zhang M, Hussain A. Membrane-destabilizing ionizable lipid empowered imaging-guided siRNA supply and most cancers therapy. Exploration. 2021;1:35–49.
Ryu YC, Kim KA, Kim BC, Wang HD, Hwang BH. Novel fusion peptide-mediated siRNA supply utilizing self-assembled nanocomplex. J Nanobiotechnology. 2021;19:44.
Kiisholts Ok, Kurrikoff Ok, Arukuusk P, Porosk L, Peters M, Salumets A, Langel Ü. Cell-penetrating peptide and siRNA-mediated therapeutic results on endometriosis and most cancers in vitro fashions. Pharmaceutics. 2021;13:1618.
Wei Y, Solar Y, Wei J, Qiu X, Meng F, Storm G, Zhong Z. Selective transferrin coating as a facile technique to fabricate BBB-permeable and focused vesicles for potent RNAi remedy of mind metastatic breast most cancers in vivo. J Management Launch. 2021;337:521–9.
Kim HJ, Takemoto H, Yi Y, Zheng M, Maeda Y, Chaya H, Hayashi Ok, Mi P, Pittella F, Christie RJ, Toh Ok, Matsumoto Y, Nishiyama N, Miyata Ok, Kataoka Ok. Exact engineering of siRNA supply automobiles to tumors utilizing polyion complexes and gold nanoparticles. ACS Nano. 2014;8:8979–91.
Liu R, Luo C, Pang Z, Zhang J, Ruan S, Wu M, Wang L, Solar T, Li N, Han L, Shi J, Huang Y, Guo W, Peng S, Zhou W, Gao H. Advances of nanoparticles as drug supply programs for illness prognosis and therapy. Chin Chem Lett. 2022. https://doi.org/10.1016/j.cclet.2022.05.032.
Huang X, Wu G, Liu C, Hua X, Tang Z, Xiao Y, Chen W, Zhou J, Kong N, Huang P, Shi J, Tao W. Intercalation-driven formation of siRNA nanogels for most cancers remedy. Nano Lett. 2021;21:9706–14.
Eguchi A, Meade BR, Chang YC, Fredrickson CT, Willert Ok, Puri N, Dowdy SF. Environment friendly siRNA supply into main cells by a peptide transduction domain-dsRNA binding area fusion protein. Nat Biotechnol. 2009;27:567–71.
Choi KM, Park GL, Hwang KY, Lee JW, Ahn HJ. Environment friendly siRNA supply into tumor cells by p19-YSA fusion protein. Mol Pharm. 2013;10:763–73.
Li H, Zheng X, Koren V, Vashist YK, Tsui TY. Extremely environment friendly supply of siRNA to a coronary heart transplant mannequin by a novel cell penetrating peptide-dsRNA binding area. Int J Pharm. 2014;469:206–13.
Danielson DC, Sachrajda N, Wang W, Filip R, Pezacki JP. A novel p19 fusion protein as a supply agent for short-interfering RNAs. Mol Ther Nucleic Acids. 2016;5: e303.
Yang NJ, Kauke MJ, Solar F, Yang LF, Maass KF, Traxlmayr MW, Yu Y, Xu Y, Langer RS, Anderson DG, Wittrup KD. Cytosolic supply of siRNA by ultra-high affinity dsRNA binding proteins. Nucleic Acids Res. 2017;45:7602–14.
Kim HJ, Yi Y, Kim A, Miyata Ok. Small supply automobiles of siRNA for enhanced most cancers focusing on. Biomacromol. 2018;19:2377–90.
Li MZ, Elledge SJ. Harnessing homologous recombination in vitro to generate recombinant DNA by way of SLIC. Nat Strategies. 2007;4:251–6.
Yoshida A, Kohyama S, Fujiwara Ok, Nishikawa S, Doi N. Regulation of spatiotemporal patterning in synthetic cells by an outlined protein expression system. Chem Sci. 2019;10:11064–72.
Naruse Ok, Matsuura SE, Watanabe M, Iwasaki S, Tomari Y. In vitro reconstitution of chaperone-mediated human RISC meeting. RNA. 2018;24:6–11.
Sledz CA, Holko M, de Veer MJ, Silverman RH, Williams BR. Activation of the interferon system by short-interfering RNAs. Nature Cell Biol. 2003;5:834–9.
Rivas FV, Tolia NH, Music JJ, Aragon JP, Liu J, Hannon GJ, Joshua-Tor L. Purified Argonaute2 and an siRNA kind recombinant human RISC. Nat Struct Mol Biol. 2005;12:340–9.
Lima WF, Prakash TP, Murray HM, Kinberger GA, Li W, Chappell AE, Li CS, Murray SF, Gaus H, Seth PP, Swayze EE, Crooke ST. Single-stranded siRNAs activate RNAi in animals. Cell. 2012;150:883–94.
Iwasaki S, Sasaki HM, Sakaguchi Y, Suzuki T, Tadakuma H, Tomari Y. Defining elementary steps within the meeting of the Drosophila RNAi enzyme advanced. Nature. 2015;28:533–6.
Liu L, Spurrier J, Butt TR, Strickler JE. Enhanced protein expression within the baculovirus/insect cell system utilizing engineered SUMO fusions. Protein Expr Purif. 2008;62:21–8.
Schirle NT, MacRae IJ. The crystal construction of human Argonaute2. Science. 2012;336:1037–40.
Suzuki M, Iwaki Ok, Kikuchi M, Fujiwara Ok, Doi N. Characterization of the membrane penetration-enhancing peptide S19 derived from human syncytin-1 for the intracellular supply of TAT-fused proteins. Biochem Biophys Res Commun. 2022;586:63–7.
Kobayashi T, Beuchat MH, Lindsay M, Frias S, Palmiter RD, Sakuraba H, Parton RG, Gruenberg J. Late endosomal membranes wealthy in lysobisphosphatidic acid regulate ldl cholesterol transport. Nat Cell Biol. 1999;1:113–8.
Yang ST, Zaitseva E, Chernomordik LV, Melikov Ok. Cell-penetrating peptide induces leaky fusion of liposomes containing late endosome-specific anionic lipid. Biophys J. 2010;99:2525–33.
Erazo-Oliveras A, Najjar Ok, Truong D, Wang TY, Brock DJ, Prater AR, Pellois JP. The late endosome and its lipid BMP act as gateways for environment friendly cytosolic entry of the supply agent dfTAT and its macromolecular cargos. Cell Chem Biol. 2016;23:598–607.
Brock DJ, Kondow-McConaghy H, Allen J, Brkljača Z, Kustigian L, Jiang M, Zhang J, Rye H, Vazdar M, Pellois JP. Mechanism of cell penetration by permeabilization of late endosomes: interaction between a multivalent TAT peptide and bis(monoacylglycero)phosphate. Cell Chem Biol. 2020;27:1296–307.
Li J, Wu C, Wang W, He Y, Elkayam E, Joshua-Tor L, Hammond PT. Structurally modulated codelivery of siRNA and Argonaute 2 for enhanced RNA interference. Proc Natl Acad Sci USA. 2018;115:2696–705.
Braasch DA, Jensen S, Liu Y, Kaur Ok, Arar Ok, White MA, Corey DR. RNA interference in mammalian cells by chemically-modified RNA. Biochemistry. 2003;42:7967–75.
Kenski DM, Butora G, Willingham AT, Cooper AJ, Fu W, Qi N, Soriano F, Davies IW, Flanagan WM. siRNA-optimized modifications for enhanced in vivo exercise. Mol Ther Nucleic Acids. 2012;1: e5.
Zheng J, Zhang L, Zhang J, Wang X, Ye Ok, Xi Z, Du Q, Liang Z. Single modification at place 14 of siRNA strand abolishes its gene-silencing exercise by lowering each RISC loading and goal degradation. FASEB J. 2013;27:4017–26.
Choung S, Kim YJ, Kim S, Park HO, Choi YC. Chemical modification of siRNAs to enhance serum stability with out lack of efficacy. Biochem Biophys Res Commun. 2006;342:919–27.
Jackson AL, Burchard J, Schelter J, Chau BN, Cleary M, Lim L, Linsley PS. Widespread siRNA “off-target” transcript silencing mediated by seed area sequence complementarity. RNA. 2006;12:1179–87.
Diederichs S, Jung S, Rothenberg SM, Smolen GA, Mlody BG, Haber DA. Coexpression of Argonaute-2 enhances RNA interference towards excellent match binding websites. Proc Natl Acad Sci USA. 2008;105:9284–9.
Börner Ok, Niopek D, Cotugno G, Kaldenbach M, Pankert T, Willemsen J, Zhang X, Schürmann N, Mockenhaupt S, Serva A, Hiet MS, Wiedtke E, Castoldi M, Starkuviene V, Erfle H, Gilbert DF, Bartenschlager R, Boutros M, Binder M, Streetz Ok, Kräusslich HG, Grimm D. Strong RNAi enhancement by way of human Argonaute-2 overexpression from plasmids, viral vectors and cell traces. Nucleic Acids Res. 2013;41: e199.
Tsuboyama Ok, Osaki T, Matsuura-Suzuki E, Kozuka-Hata H, Okada Y, Oyama M, Ikeuchi Y, Iwasaki S, Tomari Y. A widespread household of heat-resistant obscure (Hero) proteins shield in opposition to protein instability and aggregation. PLoS Biol. 2020;18: e3000632.
Ide M, Tabata N, Yonemura Y, Shirasaki T, Murai Ok, Wang Y, Ishida A, Okada H, Honda M, Kaneko S, Doi N, Ito S, Yanagawa H. Guanine nucleotide change issue DOCK11-binding peptide fused with a single chain antibody inhibits hepatitis B virus an infection and replication. J Biol Chem. 2022;298: 102097.
Shim MS, Kwon YJ. Environment friendly and focused supply of siRNA in vivo. FEBS J. 2010;277:4814–27.
Cuellar TL, Barnes D, Nelson C, Tanguay J, Yu SF, Wen X, Scales SJ, Gesch J, Davis D, Smith AB, Leake D, Vandlen R, Siebel CW. Systematic analysis of antibody-mediated siRNA supply utilizing an industrial platform of THIOMAB–siRNA conjugates. Nucleic Acids Res. 2015;43:1189–203.
Supekova L, Supek F, Lee J, Chen S, Grey N, Pezacki JP, Schlapbach A, Schultz PG. Identification of human kinases concerned in hepatitis C virus replication by small interference RNA library screening. J Biol Chem. 2008;283:29–36.
Yang F, Chen Y, Shen T, Guo D, Dakhova O, Ittmann MM, Creighton CJ, Zhang Y, Dang TD, Rowley DR. Stromal TGF-β signaling induces AR activation in prostate most cancers. Oncotarget. 2014;5:10854–69.
Liao X, Tang S, Thrasher JB, Griebling TL, Li B. Small-interfering RNA-induced androgen receptor silencing results in apoptotic cell dying in prostate most cancers. Mol Most cancers Ther. 2005;4:505–15.