Wednesday, February 8, 2023
HomeNanotechnologyCytoplasmic supply of siRNA utilizing human-derived membrane penetration-enhancing peptide | Journal of...

Cytoplasmic supply of siRNA utilizing human-derived membrane penetration-enhancing peptide | Journal of Nanobiotechnology


  • Futaki S, Nakase I, Tadokoro A, Takeuchi T, Jones AT. Arginine-rich peptides and their internalization mechanisms. Biochem Soc Trans. 2007;35:784–7.

    CAS 
    PubMed 

    Google Scholar
     

  • Erazo-Oliveras A, Muthukrishnan N, Baker R, Wang TY, Pellois JP. Bettering the endosomal escape of cell-penetrating peptides and their cargos: methods and challenges. Prescribed drugs (Basel). 2012;5:1177–209.

    CAS 

    Google Scholar
     

  • Copolovici DM, Langel Ok, Eriste E, Langel Ü. Cell-penetrating peptides: design, synthesis, and functions. ACS Nano. 2014;8:1972–94.

    CAS 
    PubMed 

    Google Scholar
     

  • Ruczynski J, Wierzbicki PM, Kogut-Wierzbicka M, Mucha P, Siedlecka-Kroplewska Ok, Rekowski P. Cell-penetrating peptides as a promising software for supply of assorted molecules into the cells. Folia Histochem Cytobiol. 2014;52:257–69.

    PubMed 

    Google Scholar
     

  • Farkhani SM, Valizadeh A, Karami H, Mohammadi S, Sohrabi N, Badrzadeh F. Cell penetrating peptides: environment friendly vectors for supply of nanoparticles, nanocarriers, therapeutic and diagnostic molecules. Peptides. 2014;57:78–94.

    CAS 
    PubMed 

    Google Scholar
     

  • Guidotti G, Brambilla L, Rossi D. Cell-penetrating peptides: from fundamental analysis to clinics. Developments Pharmacol Sci. 2017;38:406–24.

    CAS 
    PubMed 

    Google Scholar
     

  • Yang J, Luo Y, Shibu MA, Toth I, Skwarczynskia M. Cell-penetrating Peptides: environment friendly vectors for vaccine supply. Curr Drug Deliv. 2019;16:430–43.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Y, Guo P, Ma Z, Lu P, Kebebe D, Liu Z. Mixture of cell-penetrating peptides with nanomaterials for the potential therapeutics of central nervous system issues: a evaluate. J Nanobiotechnology. 2021;19:255.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim GC, Cheon DH, Lee Y. Problem to beat present limitations of cell-penetrating peptides. Biochim Biophys Acta Proteins Proteom. 2021;1869: 140604.

    CAS 
    PubMed 

    Google Scholar
     

  • Geng J, Xia X, Teng L, Wang L, Chen L, Guo X, Belingon B, Li J, Feng X, Li X, Shang W, Wan Y, Wang H. Rising panorama of cell-penetrating peptide-mediated nucleic acid supply and their utility in imaging, gene-editing, and RNA-sequencing. J Management Launch. 2022;341:166–83.

    CAS 
    PubMed 

    Google Scholar
     

  • Endo S, Kubota S, Siomi H, Adachi A, Oroszlan S, Maki M, Hatanaka M. A area of fundamental amino-acid cluster in HIV-1 Tat protein is important for trans-acting exercise and nucleolar localization. Virus Genes. 1989;3:99–110.

    CAS 
    PubMed 

    Google Scholar
     

  • Vivès E, Brodin P, Lebleu B. A truncated HIV-1 Tat protein fundamental area quickly translocates by way of the plasma membrane and accumulates within the cell nucleus. J Biol Chem. 1997;272:16010–7.

    PubMed 

    Google Scholar
     

  • Wadia JS, Stan RV, Dowdy SF. Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft micropinocytosis. Nat Med. 2004;10:310–5.

    CAS 
    PubMed 

    Google Scholar
     

  • Erazo-Oliveras A, Najjar Ok, Dayani L, Wang TY, Johnson GA, Pellois JP. Protein supply into dwell cells by incubation with an endosomolytic agent. Nat Strategies. 2014;11:861–7.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tietz O, Cortezon-Tamarit F, Chalk R, In a position S, Vallis KA. Tricyclic cell-penetrating peptides for environment friendly supply of purposeful antibodies into most cancers cells. Nat Chem. 2022;14:284–93.

    CAS 
    PubMed 

    Google Scholar
     

  • Sudo Ok, Niikura Ok, Iwaki Ok, Kohyama S, Fujiwara Ok, Doi N. Human-derived fusogenic peptides for the intracellular supply of proteins. J Management Launch. 2017;255:1–11.

    CAS 
    PubMed 

    Google Scholar
     

  • Hutvagner G, Simard MJ. Argonaute proteins: key gamers in RNA silencing. Nat Rev Mol Cell Biol. 2008;9:22–32.

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang S, Zhao B, Jiang H, Wang B, Ma B. Cationic lipids and polymers mediated vectors for supply of siRNA. J Management Launch. 2007;123:1–10.

    CAS 
    PubMed 

    Google Scholar
     

  • Dowdy SF. Overcoming mobile boundaries for RNA therapeutics. Nat Biotechnol. 2017;35:222–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Setten RL, Rossi JJ, Han SP. The present state and future instructions of RNAi-based therapeutics. Nat Rev Drug Discov. 2019;18:421–46.

    CAS 
    PubMed 

    Google Scholar
     

  • Guo S, Li Ok, Hu B, Li C, Zhang M, Hussain A. Membrane-destabilizing ionizable lipid empowered imaging-guided siRNA supply and most cancers therapy. Exploration. 2021;1:35–49.


    Google Scholar
     

  • Ryu YC, Kim KA, Kim BC, Wang HD, Hwang BH. Novel fusion peptide-mediated siRNA supply utilizing self-assembled nanocomplex. J Nanobiotechnology. 2021;19:44.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kiisholts Ok, Kurrikoff Ok, Arukuusk P, Porosk L, Peters M, Salumets A, Langel Ü. Cell-penetrating peptide and siRNA-mediated therapeutic results on endometriosis and most cancers in vitro fashions. Pharmaceutics. 2021;13:1618.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wei Y, Solar Y, Wei J, Qiu X, Meng F, Storm G, Zhong Z. Selective transferrin coating as a facile technique to fabricate BBB-permeable and focused vesicles for potent RNAi remedy of mind metastatic breast most cancers in vivo. J Management Launch. 2021;337:521–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Kim HJ, Takemoto H, Yi Y, Zheng M, Maeda Y, Chaya H, Hayashi Ok, Mi P, Pittella F, Christie RJ, Toh Ok, Matsumoto Y, Nishiyama N, Miyata Ok, Kataoka Ok. Exact engineering of siRNA supply automobiles to tumors utilizing polyion complexes and gold nanoparticles. ACS Nano. 2014;8:8979–91.

    CAS 
    PubMed 

    Google Scholar
     

  • Liu R, Luo C, Pang Z, Zhang J, Ruan S, Wu M, Wang L, Solar T, Li N, Han L, Shi J, Huang Y, Guo W, Peng S, Zhou W, Gao H. Advances of nanoparticles as drug supply programs for illness prognosis and therapy. Chin Chem Lett. 2022. https://doi.org/10.1016/j.cclet.2022.05.032.

    Article 

    Google Scholar
     

  • Huang X, Wu G, Liu C, Hua X, Tang Z, Xiao Y, Chen W, Zhou J, Kong N, Huang P, Shi J, Tao W. Intercalation-driven formation of siRNA nanogels for most cancers remedy. Nano Lett. 2021;21:9706–14.

    CAS 
    PubMed 

    Google Scholar
     

  • Eguchi A, Meade BR, Chang YC, Fredrickson CT, Willert Ok, Puri N, Dowdy SF. Environment friendly siRNA supply into main cells by a peptide transduction domain-dsRNA binding area fusion protein. Nat Biotechnol. 2009;27:567–71.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Choi KM, Park GL, Hwang KY, Lee JW, Ahn HJ. Environment friendly siRNA supply into tumor cells by p19-YSA fusion protein. Mol Pharm. 2013;10:763–73.

    CAS 
    PubMed 

    Google Scholar
     

  • Li H, Zheng X, Koren V, Vashist YK, Tsui TY. Extremely environment friendly supply of siRNA to a coronary heart transplant mannequin by a novel cell penetrating peptide-dsRNA binding area. Int J Pharm. 2014;469:206–13.

    CAS 
    PubMed 

    Google Scholar
     

  • Danielson DC, Sachrajda N, Wang W, Filip R, Pezacki JP. A novel p19 fusion protein as a supply agent for short-interfering RNAs. Mol Ther Nucleic Acids. 2016;5: e303.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang NJ, Kauke MJ, Solar F, Yang LF, Maass KF, Traxlmayr MW, Yu Y, Xu Y, Langer RS, Anderson DG, Wittrup KD. Cytosolic supply of siRNA by ultra-high affinity dsRNA binding proteins. Nucleic Acids Res. 2017;45:7602–14.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim HJ, Yi Y, Kim A, Miyata Ok. Small supply automobiles of siRNA for enhanced most cancers focusing on. Biomacromol. 2018;19:2377–90.

    CAS 

    Google Scholar
     

  • Li MZ, Elledge SJ. Harnessing homologous recombination in vitro to generate recombinant DNA by way of SLIC. Nat Strategies. 2007;4:251–6.

    CAS 
    PubMed 

    Google Scholar
     

  • Yoshida A, Kohyama S, Fujiwara Ok, Nishikawa S, Doi N. Regulation of spatiotemporal patterning in synthetic cells by an outlined protein expression system. Chem Sci. 2019;10:11064–72.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Naruse Ok, Matsuura SE, Watanabe M, Iwasaki S, Tomari Y. In vitro reconstitution of chaperone-mediated human RISC meeting. RNA. 2018;24:6–11.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sledz CA, Holko M, de Veer MJ, Silverman RH, Williams BR. Activation of the interferon system by short-interfering RNAs. Nature Cell Biol. 2003;5:834–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Rivas FV, Tolia NH, Music JJ, Aragon JP, Liu J, Hannon GJ, Joshua-Tor L. Purified Argonaute2 and an siRNA kind recombinant human RISC. Nat Struct Mol Biol. 2005;12:340–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Lima WF, Prakash TP, Murray HM, Kinberger GA, Li W, Chappell AE, Li CS, Murray SF, Gaus H, Seth PP, Swayze EE, Crooke ST. Single-stranded siRNAs activate RNAi in animals. Cell. 2012;150:883–94.

    CAS 
    PubMed 

    Google Scholar
     

  • Iwasaki S, Sasaki HM, Sakaguchi Y, Suzuki T, Tadakuma H, Tomari Y. Defining elementary steps within the meeting of the Drosophila RNAi enzyme advanced. Nature. 2015;28:533–6.


    Google Scholar
     

  • Liu L, Spurrier J, Butt TR, Strickler JE. Enhanced protein expression within the baculovirus/insect cell system utilizing engineered SUMO fusions. Protein Expr Purif. 2008;62:21–8.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schirle NT, MacRae IJ. The crystal construction of human Argonaute2. Science. 2012;336:1037–40.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Suzuki M, Iwaki Ok, Kikuchi M, Fujiwara Ok, Doi N. Characterization of the membrane penetration-enhancing peptide S19 derived from human syncytin-1 for the intracellular supply of TAT-fused proteins. Biochem Biophys Res Commun. 2022;586:63–7.

    CAS 
    PubMed 

    Google Scholar
     

  • Kobayashi T, Beuchat MH, Lindsay M, Frias S, Palmiter RD, Sakuraba H, Parton RG, Gruenberg J. Late endosomal membranes wealthy in lysobisphosphatidic acid regulate ldl cholesterol transport. Nat Cell Biol. 1999;1:113–8.

    CAS 
    PubMed 

    Google Scholar
     

  • Yang ST, Zaitseva E, Chernomordik LV, Melikov Ok. Cell-penetrating peptide induces leaky fusion of liposomes containing late endosome-specific anionic lipid. Biophys J. 2010;99:2525–33.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Erazo-Oliveras A, Najjar Ok, Truong D, Wang TY, Brock DJ, Prater AR, Pellois JP. The late endosome and its lipid BMP act as gateways for environment friendly cytosolic entry of the supply agent dfTAT and its macromolecular cargos. Cell Chem Biol. 2016;23:598–607.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brock DJ, Kondow-McConaghy H, Allen J, Brkljača Z, Kustigian L, Jiang M, Zhang J, Rye H, Vazdar M, Pellois JP. Mechanism of cell penetration by permeabilization of late endosomes: interaction between a multivalent TAT peptide and bis(monoacylglycero)phosphate. Cell Chem Biol. 2020;27:1296–307.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li J, Wu C, Wang W, He Y, Elkayam E, Joshua-Tor L, Hammond PT. Structurally modulated codelivery of siRNA and Argonaute 2 for enhanced RNA interference. Proc Natl Acad Sci USA. 2018;115:2696–705.


    Google Scholar
     

  • Braasch DA, Jensen S, Liu Y, Kaur Ok, Arar Ok, White MA, Corey DR. RNA interference in mammalian cells by chemically-modified RNA. Biochemistry. 2003;42:7967–75.

    CAS 
    PubMed 

    Google Scholar
     

  • Kenski DM, Butora G, Willingham AT, Cooper AJ, Fu W, Qi N, Soriano F, Davies IW, Flanagan WM. siRNA-optimized modifications for enhanced in vivo exercise. Mol Ther Nucleic Acids. 2012;1: e5.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng J, Zhang L, Zhang J, Wang X, Ye Ok, Xi Z, Du Q, Liang Z. Single modification at place 14 of siRNA strand abolishes its gene-silencing exercise by lowering each RISC loading and goal degradation. FASEB J. 2013;27:4017–26.

    CAS 
    PubMed 

    Google Scholar
     

  • Choung S, Kim YJ, Kim S, Park HO, Choi YC. Chemical modification of siRNAs to enhance serum stability with out lack of efficacy. Biochem Biophys Res Commun. 2006;342:919–27.

    CAS 
    PubMed 

    Google Scholar
     

  • Jackson AL, Burchard J, Schelter J, Chau BN, Cleary M, Lim L, Linsley PS. Widespread siRNA “off-target” transcript silencing mediated by seed area sequence complementarity. RNA. 2006;12:1179–87.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Diederichs S, Jung S, Rothenberg SM, Smolen GA, Mlody BG, Haber DA. Coexpression of Argonaute-2 enhances RNA interference towards excellent match binding websites. Proc Natl Acad Sci USA. 2008;105:9284–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Börner Ok, Niopek D, Cotugno G, Kaldenbach M, Pankert T, Willemsen J, Zhang X, Schürmann N, Mockenhaupt S, Serva A, Hiet MS, Wiedtke E, Castoldi M, Starkuviene V, Erfle H, Gilbert DF, Bartenschlager R, Boutros M, Binder M, Streetz Ok, Kräusslich HG, Grimm D. Strong RNAi enhancement by way of human Argonaute-2 overexpression from plasmids, viral vectors and cell traces. Nucleic Acids Res. 2013;41: e199.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tsuboyama Ok, Osaki T, Matsuura-Suzuki E, Kozuka-Hata H, Okada Y, Oyama M, Ikeuchi Y, Iwasaki S, Tomari Y. A widespread household of heat-resistant obscure (Hero) proteins shield in opposition to protein instability and aggregation. PLoS Biol. 2020;18: e3000632.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ide M, Tabata N, Yonemura Y, Shirasaki T, Murai Ok, Wang Y, Ishida A, Okada H, Honda M, Kaneko S, Doi N, Ito S, Yanagawa H. Guanine nucleotide change issue DOCK11-binding peptide fused with a single chain antibody inhibits hepatitis B virus an infection and replication. J Biol Chem. 2022;298: 102097.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shim MS, Kwon YJ. Environment friendly and focused supply of siRNA in vivo. FEBS J. 2010;277:4814–27.

    CAS 
    PubMed 

    Google Scholar
     

  • Cuellar TL, Barnes D, Nelson C, Tanguay J, Yu SF, Wen X, Scales SJ, Gesch J, Davis D, Smith AB, Leake D, Vandlen R, Siebel CW. Systematic analysis of antibody-mediated siRNA supply utilizing an industrial platform of THIOMAB–siRNA conjugates. Nucleic Acids Res. 2015;43:1189–203.

    CAS 
    PubMed 

    Google Scholar
     

  • Supekova L, Supek F, Lee J, Chen S, Grey N, Pezacki JP, Schlapbach A, Schultz PG. Identification of human kinases concerned in hepatitis C virus replication by small interference RNA library screening. J Biol Chem. 2008;283:29–36.

    CAS 
    PubMed 

    Google Scholar
     

  • Yang F, Chen Y, Shen T, Guo D, Dakhova O, Ittmann MM, Creighton CJ, Zhang Y, Dang TD, Rowley DR. Stromal TGF-β signaling induces AR activation in prostate most cancers. Oncotarget. 2014;5:10854–69.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liao X, Tang S, Thrasher JB, Griebling TL, Li B. Small-interfering RNA-induced androgen receptor silencing results in apoptotic cell dying in prostate most cancers. Mol Most cancers Ther. 2005;4:505–15.

    CAS 
    PubMed 

    Google Scholar
     



  • Supply hyperlink

    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    - Advertisment -
    Google search engine

    Most Popular

    Recent Comments