Alobuia W, Gillis A, Kebebew E. Modern administration of anaplastic thyroid Most cancers. Curr Deal with Choices Oncol. 2020;21:78.
Xu B, Ghossein RA. Advances in thyroid Pathology: excessive Grade Follicular Cell-derived thyroid carcinoma and anaplastic thyroid carcinoma. Adv Anat Pathol. 2023;30:3–10.
Molinaro E, Romei C, Biagini A, Sabini E, Agate L, Mazzeo S, et al. Anaplastic thyroid carcinoma: from clinicopathology to genetics and superior therapies. Nat Critiques Endocrinol. 2017;13:644–60.
Lin B, Ma H, Ma M, Zhang Z, Solar Z, Hsieh IY, et al. The incidence and survival evaluation for anaplastic thyroid most cancers: a SEER database evaluation. Am J Transl Res. 2019;11:5888–96.
Dijkstra B, Prichard RS, Lee A, Kelly LM, Smyth PP, Crotty T, et al. Altering patterns of thyroid carcinoma. Ir J Med Sci. 2007;176:87–90.
Jannin A, Escande A, Al Ghuzlan A, Blanchard P, Hartl D, Chevalier B, et al. Anaplastic Thyroid Carcinoma: An Replace Cancers (Basel). 2022;14:1061.
Yang J, Barletta JA. Anaplastic thyroid carcinoma. Semin Diagn Pathol. 2020;37:248–56.
Xu B, Fuchs T, Dogan S, Landa I, Katabi N, Fagin JA, et al. Dissecting anaplastic thyroid carcinoma: a Complete Scientific, histologic, immunophenotypic, and Molecular Examine of 360 circumstances. Thyroid. 2020;30:1505–17.
Rao SN, Zafereo M, Dadu R, Busaidy NL, Hess Ok, Cote GJ, et al. Patterns of remedy failure in anaplastic thyroid carcinoma. Thyroid. 2017;27:672–81.
Rao SN, Smallridge RC. Anaplastic thyroid most cancers: an replace. Greatest Pract Res Clin Endocrinol Metab. 2023;37:101678.
Bible KC, Kebebew E, Brierley J, Brito JP, Cabanillas ME, Clark TJ Jr, et al. 2021 american thyroid Affiliation Pointers for Administration of sufferers with anaplastic thyroid Most cancers. Thyroid. 2021;31:337–86.
Nachalon Y, Stern-Shavit S, Bachar G, Shvero J, Limon D, Popovtzer A. Aggressive palliation and survival in anaplastic thyroid carcinoma. JAMA Otolaryngol Head Neck Surg. 2015;141:1128–32.
Aiken MJ, Suhag V, Garcia CA, Acio E, Moreau S, Priebat DA, et al. Doxorubicin-induced cardiac toxicity and cardiac relaxation gated blood pool imaging. Clin Nucl Med. 2009;34:762–7.
Jungels C, Pita JM, Costante G. Anaplastic thyroid carcinoma: advances in molecular profiling and focused remedy. Curr Opin Oncol. 2023;35:1–9.
Hühn J, Carrillo-Carrion C, Soliman MG, Pfeiffer C, Valdeperez D, Masood A, et al. Chosen commonplace protocols for the synthesis, part switch, and characterization of Inorganic Colloidal Nanoparticles. Chem Mater. 2016;29:399–461.
Bjornmalm M, Thurecht KJ, Michael M, Scott AM, Caruso F. Bridging Bio-Nano Science and Most cancers Nanomedicine. ACS Nano. 2017;11:9594–613.
Pourmadadi M, Mahdi Eshaghi M, Ostovar S, Mohammadi Z, Sharma RK, Paiva-Santos AC et al. Progressive nanomaterials for most cancers prognosis, imaging, and remedy: drug supply purposes. J Drug Deliv Sci Technol. 2023;82.
Laraib U, Sargazi S, Rahdar A, Khatami M, Pandey S. Nanotechnology-based approaches for efficient detection of tumor markers: a complete state-of-the-art assessment. Int J Biol Macromol. 2022;195:356–83.
Ghazy E, Kumar A, Barani M, Kaur I, Rahdar A, Behl T. Scrutinizing the therapeutic and diagnostic potential of nanotechnology in thyroid most cancers: edifying drug focusing on by nano-oncotherapeutics. J Drug Deliv Sci Technol. 2021;61.
Shao C, Li Z, Zhang C, Zhang W, He R, Xu J et al. Optical diagnostic imaging and remedy for thyroid most cancers. Mater Right now Bio. 2022;17.
Hvilsom GB, Londero SC, Hahn CH, Schytte S, Pedersen HB, Christiansen P, et al. Anaplastic thyroid carcinoma in Denmark 1996–2012: a nationwide potential research of 219 sufferers. Most cancers Epidemiol. 2018;53:65–71.
Sugitani I, Miyauchi A, Sugino Ok, Okamoto T, Yoshida A, Suzuki S. Prognostic components and remedy outcomes for anaplastic thyroid carcinoma: ATC Analysis Consortium of Japan cohort research of 677 sufferers. World J Surg. 2012;36:1247–54.
Wendler J, Kroiss M, Gast Ok, Kreissl MC, Allelein S, Lichtenauer U, et al. Scientific presentation, remedy and end result of anaplastic thyroid carcinoma: outcomes of a multicenter research in Germany. Eur J Endocrinol. 2016;175:521–9.
Han X, Xu X, Tang Y, Zhu F, Tian Y, Liu W, et al. BSA-Stabilized Mesoporous Organosilica Nanoparticles reversed Chemotherapy Resistance of anaplastic thyroid Most cancers by rising drug uptake and decreasing Mobile Efflux. Entrance Mol Biosci. 2020;7:610084.
Haddad RI, Lydiatt WM, Ball DW, Busaidy NL, Byrd D, Callender G, et al. Anaplastic thyroid carcinoma, Model 2.2015. J Natl Compr Canc Netw. 2015;13:1140–50.
Teng Z, Wang C, Tang Y, Li W, Bao L, Zhang X, et al. Deformable Hole Periodic Mesoporous Organosilica Nanocapsules for considerably improved Mobile Uptake. J Am Chem Soc. 2018;140:1385–93.
Tao J, Dang M, Su X, Hao Q, Zhang J, Ma X, et al. Facile synthesis of yolk-shell structured monodisperse mesoporous organosilica nanoparticles by a gentle alkalescent etching strategy. J Colloid Interface Sci. 2018;527:33–9.
Zhang J, Shen B, Chen L, Chen L, Meng Y, Feng J. A dual-sensitive mesoporous silica nanoparticle based mostly drug provider for most cancers synergetic remedy. Colloids Surf B Biointerfaces. 2019;175:65–72.
DeBerardinis RJ, Chandel NS. Fundamentals of most cancers metabolism. Sci Adv. 2016;2:e1600200.
Wang Ok, Wang S, Chen Ok, Zhao Y, Ma X, Wang L. Doxorubicin-loaded melanin particles for enhanced chemotherapy in drug-resistant anaplastic thyroid Most cancers cells. J Nanomaterials. 2018;2018:1–6.
Marano F, Argenziano M, Frairia R, Adamini A, Bosco O, Rinella L, et al. Doxorubicin-loaded Nanobubbles mixed with extracorporeal shock waves: foundation for a New Drug Supply Device in anaplastic thyroid Most cancers. Thyroid. 2016;26:705–16.
Marano F, Frairia R, Rinella L, Argenziano M, Bussolati B, Grange C, et al. Combining doxorubicin-nanobubbles and shockwaves for anaplastic thyroid most cancers remedy: preclinical research in a xenograft mouse mannequin. Endocr Relat Most cancers. 2017;24:275–86.
Lauer U, Burgelt E, Squire Z, Messmer Ok, Hofschneider PH, Gregor M, et al. Shock wave permeabilization as a brand new gene switch technique. Gene Ther. 1997;4:710–5.
Ringel MD, Greenberg M, Chen X, Hayre N, Suzuki Ok, Priebat D, et al. Cytotoxic exercise of two’,2’-difluorodeoxycytidine (gemcitabine) in poorly differentiated thyroid carcinoma cells. Thyroid. 2000;10:865–9.
Celano M, Calvagno MG, Bulotta S, Paolino D, Arturi F, Rotiroti D, et al. Cytotoxic results of gemcitabine-loaded liposomes in human anaplastic thyroid carcinoma cells. BMC Most cancers. 2004;4:63.
Gigliotti CL, Ferrara B, Occhipinti S, Boggio E, Barrera G, Pizzimenti S, et al. Enhanced cytotoxic impact of camptothecin nanosponges in anaplastic thyroid most cancers cells in vitro and in vivo on orthotopic xenograft tumors. Drug Deliv. 2017;24:670–80.
Pommier Y. Topoisomerase I inhibitors: camptothecins and past. Nat Rev Most cancers. 2006;6:789–802.
Xiong L, Lin XM, Nie JH, Ye HS, Liu J. Resveratrol and its nanoparticle suppress Doxorubicin/Docetaxel-resistant anaplastic thyroid Most cancers cells in vitro and in vivo. Nanotheranostics. 2021;5:143–54.
Gu M. IL13Ralpha2 siRNA inhibited cell proliferation, induced cell apoptosis, and suppressed cell invasion in papillary thyroid carcinoma cells. Onco Targets Ther. 2018;11:1345–52.
Kim J, Woo SY, Im CY, Yoo EK, Lee S, Kim HJ, et al. Insights of a lead optimization research and organic analysis of Novel 4-Hydroxytamoxifen analogs as estrogen-related receptor gamma (ERRgamma) inverse agonists. J Med Chem. 2016;59:10209–27.
Reyna-Neyra A, Jung L, Chakrabarti M, Suarez MX, Amzel LM, Carrasco N. The Iodide Transport defect-causing Y348D mutation within the na(+)/I(-) Symporter renders the protein intrinsically inactive and impairs its focusing on to the plasma membrane. Thyroid. 2021;31:1272–81.
Solar Y, Han Y, Qian M, Li Y, Ye Y, Lin L, et al. Defending Results of Iodide switch in placental barrier in opposition to maternal Iodine Deficiency. Thyroid. 2021;31:509–18.
Schmutzler C, Schmitt TL, Glaser F, Loos U, Kohrle J. The promoter of the human sodium/iodide-symporter gene responds to retinoic acid. Mol Cell Endocrinol. 2002;189:145–55.
Frohlich E, Machicao F, Wahl R. Motion of thiazolidinediones on differentiation, proliferation and apoptosis of regular and remodeled thyrocytes in tradition. Endocr Relat Most cancers. 2005;12:291–303.
Terada T, Noda S, Inui Ok. Administration of dose variability and unwanted effects for individualized most cancers pharmacotherapy with tyrosine kinase inhibitors. Pharmacol Ther. 2015;152:125–34.
Puccini A, Marin-Ramos NI, Bergamo F, Schirripa M, Lonardi S, Lenz HJ, et al. Security and Tolerability of c-MET inhibitors in Most cancers. Drug Saf. 2019;42:211–33.
Duester G. Retinoic acid synthesis and signaling throughout early organogenesis. Cell. 2008;134:921–31.
Johnson DE, Redner RL. An ATRActive future for differentiation remedy in AML. Blood Rev. 2015;29:263–8.
Cristiano MC, Cosco D, Celia C, Tudose A, Mare R, Paolino D, et al. Anticancer exercise of all-trans retinoic acid-loaded liposomes on human thyroid carcinoma cells. Colloids Surf B Biointerfaces. 2017;150:408–16.
Brisaert M, Gabriels M, Matthijs V, Plaizier-Vercammen J. Liposomes with tretinoin: a bodily and chemical analysis. J Pharm Biomed Anal. 2001;26:909–17.
Lener T, Gimona M, Aigner L, Borger V, Buzas E, Camussi G, et al. Making use of extracellular vesicles based mostly therapeutics in medical trials – an ISEV place paper. J Extracell Vesicles. 2015;4:30087.
Delcorte O, Degosserie J, Pierreux CE. Function of Extracellular vesicles in thyroid physiology and Illnesses: implications for prognosis and remedy. Biomedicines. 2022;10.
Rajendran RL, Paudel S, Gangadaran P, Oh JM, Oh EJ, Hong CM et al. Extracellular Vesicles Act as Nano-Transporters of tyrosine kinase inhibitors to revert iodine avidity in thyroid Most cancers. Pharmaceutics. 2021;13.
Yan Z, Zhang X, Liu Y, Shen Y, Li N, Jia Q, et al. HSA-MnO(2)-(131)I mixed imaging and remedy of anaplastic thyroid carcinoma. Technol Most cancers Res Deal with. 2022. https://doi.org/10.1177/15330338221106557.
Yang G, Ji J, Liu Z. Multifunctional MnO(2) nanoparticles for tumor microenvironment modulation and most cancers remedy. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2021;13:e1720.
Zhang R, Zhang Y, Tan J, Wang H, Zhang G, Li N, et al. Antitumor Impact of (131)I-Labeled Anti-VEGFR2 focused mesoporous silica nanoparticles in anaplastic thyroid Most cancers. Nanoscale Res Lett. 2019;14:96.
Quiros RM, Ding HG, Gattuso P, Prinz RA, Xu X. Proof that one subset of anaplastic thyroid carcinomas are derived from papillary carcinomas attributable to BRAF and p53 mutations. Most cancers. 2005;103:2261–8.
Okada T, Nakamura T, Watanabe T, Onoda N, Ashida A, Okuyama R, et al. Coexpression of EpCAM, CD44 variant isoforms and claudin-7 in anaplastic thyroid carcinoma. PLoS ONE. 2014;9:e94487.
Huang S, Zhang L, Xu M, Li C, Fu H, Huang J, et al. Co-Supply of (131) I and Prima-1 by self-assembled CD44-Focused nanoparticles for anaplastic thyroid Carcinoma Theranostics. Adv Healthc Mater. 2021;10:e2001029.
Lambert JM, Gorzov P, Veprintsev DB, Soderqvist M, Segerback D, Bergman J, et al. PRIMA-1 reactivates mutant p53 by covalent binding to the core area. Most cancers Cell. 2009;15:376–88.
Zuckerman JE, Davis ME. Scientific experiences with systemically administered siRNA-based therapeutics in most cancers. Nat Rev Drug Discov. 2015;14:843–56.
Maeda H, Nakamura H, Fang J. The EPR impact for macromolecular drug supply to stable tumors: enchancment of tumor uptake, decreasing of systemic toxicity, and distinct tumor imaging in vivo. Adv Drug Deliv Rev. 2013;65:71–9.
Schmohl KA, Dolp P, Schug C, Knoop Ok, Klutz Ok, Schwenk N, et al. Reintroducing the Sodium-Iodide Symporter to anaplastic thyroid carcinoma. Thyroid. 2017;27:1534–43.
Yin H, Kanasty RL, Eltoukhy AA, Vegas AJ, Dorkin JR, Anderson DG. Non-viral vectors for gene-based remedy. Nat Rev Genet. 2014;15:541–55.
Wadhwa A, Aljabbari A, Lokras A, Foged C, Thakur A. Alternatives and Challenges within the supply of mRNA-based vaccines. Pharmaceutics. 2020;12.
Roberts TC, Langer R, Wooden MJA. Advances in oligonucleotide drug supply. Nat Rev Drug Discov. 2020;19:673–94.
Li Q, Zhang L, Lang J, Tan Z, Feng Q, Zhu F, et al. Lipid-Peptide-mRNA nanoparticles increase Radioiodine Uptake in anaplastic thyroid Most cancers. Adv Sci (Weinh). 2023;10:e2204334.
Liu Y, Gunda V, Zhu X, Xu X, Wu J, Askhatova D, et al. Theranostic near-infrared fluorescent nanoplatform for imaging and systemic siRNA supply to metastatic anaplastic thyroid most cancers. Proc Natl Acad Sci USA. 2016;113:7750–5.
Nucera C, Porrello A, Antonello ZA, Mekel M, Nehs MA, Giordano TJ, et al. B-Raf(V600E) and thrombospondin-1 promote thyroid most cancers development. Proc Natl Acad Sci U S A. 2010;107:10649–54.
Fagin JA, Wells SA. Jr. Biologic and medical views on thyroid Most cancers. N Engl J Med. 2016;375:1054–67.
Kunstman JW, Juhlin CC, Goh G, Brown TC, Stenman A, Healy JM, et al. Characterization of the mutational panorama of anaplastic thyroid most cancers through whole-exome sequencing. Hum Mol Genet. 2015;24:2318–29.
Maggisano V, Celano M, Lombardo GE, Lepore SM, Sponziello M, Rosignolo F, et al. Silencing of hTERT blocks progress and migration of anaplastic thyroid most cancers cells. Mol Cell Endocrinol. 2017;448:34–40.
Lombardo GE, Maggisano V, Celano M, Cosco D, Mignogna C, Baldan F, et al. Anti-hTERT siRNA-Loaded Nanoparticles Block the expansion of anaplastic thyroid Most cancers Xenograft. Mol Most cancers Ther. 2018;17:1187–95.
Takeda T, Inaba H, Yamazaki M, Kyo S, Miyamoto T, Suzuki S, et al. Tumor-specific gene remedy for undifferentiated thyroid carcinoma using the Telomerase Reverse transcriptase promoter. J Clin Endocrinol Metabolism. 2003;88:3531–8.
Shepelev MV, Kalinichenko SV, Saakian EK, Korobko IV. Xenobiotic response components (XREs) from human CYP1A1 gene improve the hTERT promoter exercise. Dokl Biochem Biophys. 2019;485:150–2.
Chang A, Ling J, Ye H, Zhao H, Zhuo X. Enhancement of nanoparticle-mediated double suicide gene expression pushed by ‘E9-hTERT promoter’ swap in dedifferentiated thyroid most cancers cells. Bioengineered. 2021;12:6572–8.
Mirzaei S, Zarrabi A, Asnaf SE, Hashemi F, Zabolian A, Hushmandi Ok, et al. The position of microRNA-338-3p in most cancers: progress, invasion, chemoresistance, and mediators. Life Sci. 2021;268:119005.
Maroof H, Salajegheh A, Smith RA, Lam AK. MicroRNA-34 household, mechanisms of motion in most cancers: a assessment. Curr Most cancers Drug Targets. 2014;14:737–51.
Maroof H, Islam F, Dong L, Ajjikuttira P, Gopalan V, McMillan NAJ et al. Liposomal supply of miR-34b-5p Induced Most cancers Cell loss of life in thyroid carcinoma. Cells. 2018;7.
Wang C, Zhang R, Tan J, Meng Z, Zhang Y, Li N, et al. Impact of mesoporous silica nanoparticles co–loading with 17–AAG and Torin2 on anaplastic thyroid carcinoma by focusing on VEGFR2. Oncol Rep. 2020;43:1491–502.
White PT, Subramanian C, Zhu Q, Zhang H, Zhao H, Gallagher R, et al. Novel HSP90 inhibitors successfully goal features of thyroid most cancers stem cell stopping migration and invasion. Surgical procedure. 2016;159:142–51.
Tavares C, Eloy C, Melo M, Gaspar da Rocha A, Pestana A, Batista R et al. mTOR pathway in papillary thyroid carcinoma: totally different contributions of mTORC1 and mTORC2 complexes for Tumor Habits and SLC5A5 mRNA expression. Int J Mol Sci. 2018;19.
Ahmed M, Hussain AR, Bavi P, Ahmed SO, Al Sobhi SS, Al-Dayel F, et al. Excessive prevalence of mTOR complicated exercise might be focused utilizing Torin2 in papillary thyroid carcinoma. Carcinogenesis. 2014;35:1564–72.
Rizzitelli S, Giustetto P, Cutrin JC, Delli Castelli D, Boffa C, Ruzza M, et al. Sonosensitive theranostic liposomes for preclinical in vivo MRI-guided visualization of doxorubicin launch stimulated by pulsed low depth non-focused ultrasound. J Management Launch. 2015;202:21–30.
Zhu L, Zhao H, Zhou Z, Xia Y, Wang Z, Ran H, et al. Peptide-Functionalized Part-Transformation Nanoparticles for Low Depth centered Ultrasound-Assisted Tumor Imaging and Remedy. Nano Lett. 2018;18:1831–41.
Cao Y, Chen Y, Yu T, Guo Y, Liu F, Yao Y, et al. Drug launch from phase-changeable nanodroplets triggered by low-intensity centered Ultrasound. Theranostics. 2018;8:1327–39.
Zhao H, Wu M, Zhu L, Tian Y, Wu M, Li Y, et al. Cell-penetrating peptide-modified focused drug-loaded phase-transformation lipid nanoparticles mixed with low-intensity centered Ultrasound for Precision Theranostics in opposition to Hepatocellular Carcinoma. Theranostics. 2018;8:1892–910.
Liu Y, Ma Y, Peng X, Wang L, Li H, Cheng W, et al. Cetuximab-conjugated perfluorohexane/gold nanoparticles for low depth centered ultrasound prognosis ablation of thyroid most cancers remedy. Sci Technol Adv Mater. 2021;21:856–66.
Wang Y, Sui G, Teng D, Wang Q, Qu J, Zhu L, et al. Low depth centered ultrasound (LIFU) triggered drug launch from cetuximab-conjugated phase-changeable nanoparticles for precision theranostics in opposition to anaplastic thyroid carcinoma. Biomater Sci. 2018;7:196–210.
Li X, Lovell JF, Yoon J, Chen X. Scientific improvement and potential of photothermal and photodynamic therapies for most cancers. Nat Rev Clin Oncol. 2020;17:657–74.
Amaral M, Charmier AJ, Afonso RA, Catarino J, Faisca P, Carvalho L et al. Gold-based nanoplataform for the remedy of anaplastic thyroid carcinoma: a Step Ahead. Cancers (Basel). 2021;13.
Wan X, Liu M, Ma M, Chen D, Wu N, Li L, et al. The Ultrasmall Biocompatible CuS@BSA Nanoparticle and its Photothermal Results. Entrance Pharmacol. 2019;10:141.
Curcio A, Silva AKA, Cabana S, Espinosa A, Baptiste B, Menguy N, et al. Iron Oxide Nanoflowers @ CuS Hybrids for Most cancers Tri-Remedy: interaction of Photothermal Remedy, magnetic hyperthermia and photodynamic remedy. Theranostics. 2019;9:1288–302.
Zhou M, Chen Y, Adachi M, Wen X, Erwin B, Mawlawi O, et al. Single agent nanoparticle for radiotherapy and radio-photothermal remedy in anaplastic thyroid most cancers. Biomaterials. 2015;57:41–9.
Zhang C, Chai J, Jia Q, Tan J, Meng Z, Li N, et al. Evaluating the therapeutic efficacy of radiolabeled BSA@CuS nanoparticle-induced radio-photothermal remedy in opposition to anaplastic thyroid most cancers. IUBMB Life. 2022;74:433–45.
Huang S, Wu Y, Li C, Xu L, Huang J, Huang Y, et al. Tailoring morphologies of mesoporous polydopamine nanoparticles to ship high-loading radioiodine for anaplastic thyroid carcinoma imaging and remedy. Nanoscale. 2021;13:15021–30.
Zhang X, Yan Z, Meng Z, Li N, Jia Q, Shen Y, et al. Radionuclide (131)I-labeled albumin-indocyanine inexperienced nanoparticles for synergistic mixed radio-photothermal remedy of anaplastic thyroid most cancers. Entrance Oncol. 2022;12:889284.
Wang Q, Sui G, Wu X, Teng D, Zhu L, Guan S, et al. A sequential focusing on nanoplatform for anaplastic thyroid carcinoma theranostics. Acta Biomater. 2020;102:367–83.
Liang X, Fang L, Li X, Zhang X, Wang F. Activatable close to infrared dye conjugated hyaluronic acid based mostly nanoparticles as a focused theranostic agent for enhanced fluorescence/CT/photoacoustic imaging guided photothermal remedy. Biomaterials. 2017;132:72–84.
Gong H, Dong Z, Liu Y, Yin S, Cheng L, Xi W, et al. Engineering of Multifunctional Nano-Micelles for Mixed Photothermal and photodynamic remedy below the Steering of Multimodal Imaging. Adv Funct Mater. 2014;24:6492–502.
Zhu R, Wang Z, Liang P, He X, Zhuang X, Huang R, et al. Environment friendly VEGF focusing on supply of DOX utilizing Bevacizumab conjugated SiO(2)@LDH for anti-neuroblastoma remedy. Acta Biomater. 2017;63:163–80.
Joudeh N, Linke D. Nanoparticle classification, physicochemical properties, characterization, and purposes: a complete assessment for biologists. J Nanobiotechnol. 2022;20.
Li J, Wu T, Li S, Chen X, Deng Z, Huang Y. Nanoparticles for most cancers remedy: a assessment of influencing components and analysis strategies for biosafety. Clin Transl Oncol. 2023;25:2043–55.
Li L, Wang Z, Guo H, Lin Q. Nanomaterials: a promising multimodal theranostics platform for thyroid most cancers. J Mater Chem B. 2023.
Fröhlich E, Wahl R, Nanoparticles. Promising Auxiliary Brokers for prognosis and remedy of thyroid cancers. Cancers. 2021;13.