Monday, October 23, 2023
HomeNanotechnologyCustomizing most cancers remedy on the nanoscale: a deal with anaplastic thyroid...

Customizing most cancers remedy on the nanoscale: a deal with anaplastic thyroid most cancers remedy | Journal of Nanobiotechnology


  • Alobuia W, Gillis A, Kebebew E. Modern administration of anaplastic thyroid Most cancers. Curr Deal with Choices Oncol. 2020;21:78.

    Article 
    PubMed 

    Google Scholar
     

  • Xu B, Ghossein RA. Advances in thyroid Pathology: excessive Grade Follicular Cell-derived thyroid carcinoma and anaplastic thyroid carcinoma. Adv Anat Pathol. 2023;30:3–10.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Molinaro E, Romei C, Biagini A, Sabini E, Agate L, Mazzeo S, et al. Anaplastic thyroid carcinoma: from clinicopathology to genetics and superior therapies. Nat Critiques Endocrinol. 2017;13:644–60.

    Article 
    CAS 

    Google Scholar
     

  • Lin B, Ma H, Ma M, Zhang Z, Solar Z, Hsieh IY, et al. The incidence and survival evaluation for anaplastic thyroid most cancers: a SEER database evaluation. Am J Transl Res. 2019;11:5888–96.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dijkstra B, Prichard RS, Lee A, Kelly LM, Smyth PP, Crotty T, et al. Altering patterns of thyroid carcinoma. Ir J Med Sci. 2007;176:87–90.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jannin A, Escande A, Al Ghuzlan A, Blanchard P, Hartl D, Chevalier B, et al. Anaplastic Thyroid Carcinoma: An Replace Cancers (Basel). 2022;14:1061.

    CAS 
    PubMed 

    Google Scholar
     

  • Yang J, Barletta JA. Anaplastic thyroid carcinoma. Semin Diagn Pathol. 2020;37:248–56.

    Article 
    PubMed 

    Google Scholar
     

  • Xu B, Fuchs T, Dogan S, Landa I, Katabi N, Fagin JA, et al. Dissecting anaplastic thyroid carcinoma: a Complete Scientific, histologic, immunophenotypic, and Molecular Examine of 360 circumstances. Thyroid. 2020;30:1505–17.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rao SN, Zafereo M, Dadu R, Busaidy NL, Hess Ok, Cote GJ, et al. Patterns of remedy failure in anaplastic thyroid carcinoma. Thyroid. 2017;27:672–81.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rao SN, Smallridge RC. Anaplastic thyroid most cancers: an replace. Greatest Pract Res Clin Endocrinol Metab. 2023;37:101678.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bible KC, Kebebew E, Brierley J, Brito JP, Cabanillas ME, Clark TJ Jr, et al. 2021 american thyroid Affiliation Pointers for Administration of sufferers with anaplastic thyroid Most cancers. Thyroid. 2021;31:337–86.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nachalon Y, Stern-Shavit S, Bachar G, Shvero J, Limon D, Popovtzer A. Aggressive palliation and survival in anaplastic thyroid carcinoma. JAMA Otolaryngol Head Neck Surg. 2015;141:1128–32.

    Article 
    PubMed 

    Google Scholar
     

  • Aiken MJ, Suhag V, Garcia CA, Acio E, Moreau S, Priebat DA, et al. Doxorubicin-induced cardiac toxicity and cardiac relaxation gated blood pool imaging. Clin Nucl Med. 2009;34:762–7.

    Article 
    PubMed 

    Google Scholar
     

  • Jungels C, Pita JM, Costante G. Anaplastic thyroid carcinoma: advances in molecular profiling and focused remedy. Curr Opin Oncol. 2023;35:1–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hühn J, Carrillo-Carrion C, Soliman MG, Pfeiffer C, Valdeperez D, Masood A, et al. Chosen commonplace protocols for the synthesis, part switch, and characterization of Inorganic Colloidal Nanoparticles. Chem Mater. 2016;29:399–461.

    Article 

    Google Scholar
     

  • Bjornmalm M, Thurecht KJ, Michael M, Scott AM, Caruso F. Bridging Bio-Nano Science and Most cancers Nanomedicine. ACS Nano. 2017;11:9594–613.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pourmadadi M, Mahdi Eshaghi M, Ostovar S, Mohammadi Z, Sharma RK, Paiva-Santos AC et al. Progressive nanomaterials for most cancers prognosis, imaging, and remedy: drug supply purposes. J Drug Deliv Sci Technol. 2023;82.

  • Laraib U, Sargazi S, Rahdar A, Khatami M, Pandey S. Nanotechnology-based approaches for efficient detection of tumor markers: a complete state-of-the-art assessment. Int J Biol Macromol. 2022;195:356–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ghazy E, Kumar A, Barani M, Kaur I, Rahdar A, Behl T. Scrutinizing the therapeutic and diagnostic potential of nanotechnology in thyroid most cancers: edifying drug focusing on by nano-oncotherapeutics. J Drug Deliv Sci Technol. 2021;61.

  • Shao C, Li Z, Zhang C, Zhang W, He R, Xu J et al. Optical diagnostic imaging and remedy for thyroid most cancers. Mater Right now Bio. 2022;17.

  • Hvilsom GB, Londero SC, Hahn CH, Schytte S, Pedersen HB, Christiansen P, et al. Anaplastic thyroid carcinoma in Denmark 1996–2012: a nationwide potential research of 219 sufferers. Most cancers Epidemiol. 2018;53:65–71.

    Article 
    PubMed 

    Google Scholar
     

  • Sugitani I, Miyauchi A, Sugino Ok, Okamoto T, Yoshida A, Suzuki S. Prognostic components and remedy outcomes for anaplastic thyroid carcinoma: ATC Analysis Consortium of Japan cohort research of 677 sufferers. World J Surg. 2012;36:1247–54.

    Article 
    PubMed 

    Google Scholar
     

  • Wendler J, Kroiss M, Gast Ok, Kreissl MC, Allelein S, Lichtenauer U, et al. Scientific presentation, remedy and end result of anaplastic thyroid carcinoma: outcomes of a multicenter research in Germany. Eur J Endocrinol. 2016;175:521–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Han X, Xu X, Tang Y, Zhu F, Tian Y, Liu W, et al. BSA-Stabilized Mesoporous Organosilica Nanoparticles reversed Chemotherapy Resistance of anaplastic thyroid Most cancers by rising drug uptake and decreasing Mobile Efflux. Entrance Mol Biosci. 2020;7:610084.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haddad RI, Lydiatt WM, Ball DW, Busaidy NL, Byrd D, Callender G, et al. Anaplastic thyroid carcinoma, Model 2.2015. J Natl Compr Canc Netw. 2015;13:1140–50.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Teng Z, Wang C, Tang Y, Li W, Bao L, Zhang X, et al. Deformable Hole Periodic Mesoporous Organosilica Nanocapsules for considerably improved Mobile Uptake. J Am Chem Soc. 2018;140:1385–93.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tao J, Dang M, Su X, Hao Q, Zhang J, Ma X, et al. Facile synthesis of yolk-shell structured monodisperse mesoporous organosilica nanoparticles by a gentle alkalescent etching strategy. J Colloid Interface Sci. 2018;527:33–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang J, Shen B, Chen L, Chen L, Meng Y, Feng J. A dual-sensitive mesoporous silica nanoparticle based mostly drug provider for most cancers synergetic remedy. Colloids Surf B Biointerfaces. 2019;175:65–72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • DeBerardinis RJ, Chandel NS. Fundamentals of most cancers metabolism. Sci Adv. 2016;2:e1600200.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang Ok, Wang S, Chen Ok, Zhao Y, Ma X, Wang L. Doxorubicin-loaded melanin particles for enhanced chemotherapy in drug-resistant anaplastic thyroid Most cancers cells. J Nanomaterials. 2018;2018:1–6.


    Google Scholar
     

  • Marano F, Argenziano M, Frairia R, Adamini A, Bosco O, Rinella L, et al. Doxorubicin-loaded Nanobubbles mixed with extracorporeal shock waves: foundation for a New Drug Supply Device in anaplastic thyroid Most cancers. Thyroid. 2016;26:705–16.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Marano F, Frairia R, Rinella L, Argenziano M, Bussolati B, Grange C, et al. Combining doxorubicin-nanobubbles and shockwaves for anaplastic thyroid most cancers remedy: preclinical research in a xenograft mouse mannequin. Endocr Relat Most cancers. 2017;24:275–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lauer U, Burgelt E, Squire Z, Messmer Ok, Hofschneider PH, Gregor M, et al. Shock wave permeabilization as a brand new gene switch technique. Gene Ther. 1997;4:710–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ringel MD, Greenberg M, Chen X, Hayre N, Suzuki Ok, Priebat D, et al. Cytotoxic exercise of two’,2’-difluorodeoxycytidine (gemcitabine) in poorly differentiated thyroid carcinoma cells. Thyroid. 2000;10:865–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Celano M, Calvagno MG, Bulotta S, Paolino D, Arturi F, Rotiroti D, et al. Cytotoxic results of gemcitabine-loaded liposomes in human anaplastic thyroid carcinoma cells. BMC Most cancers. 2004;4:63.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gigliotti CL, Ferrara B, Occhipinti S, Boggio E, Barrera G, Pizzimenti S, et al. Enhanced cytotoxic impact of camptothecin nanosponges in anaplastic thyroid most cancers cells in vitro and in vivo on orthotopic xenograft tumors. Drug Deliv. 2017;24:670–80.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pommier Y. Topoisomerase I inhibitors: camptothecins and past. Nat Rev Most cancers. 2006;6:789–802.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiong L, Lin XM, Nie JH, Ye HS, Liu J. Resveratrol and its nanoparticle suppress Doxorubicin/Docetaxel-resistant anaplastic thyroid Most cancers cells in vitro and in vivo. Nanotheranostics. 2021;5:143–54.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gu M. IL13Ralpha2 siRNA inhibited cell proliferation, induced cell apoptosis, and suppressed cell invasion in papillary thyroid carcinoma cells. Onco Targets Ther. 2018;11:1345–52.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim J, Woo SY, Im CY, Yoo EK, Lee S, Kim HJ, et al. Insights of a lead optimization research and organic analysis of Novel 4-Hydroxytamoxifen analogs as estrogen-related receptor gamma (ERRgamma) inverse agonists. J Med Chem. 2016;59:10209–27.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Reyna-Neyra A, Jung L, Chakrabarti M, Suarez MX, Amzel LM, Carrasco N. The Iodide Transport defect-causing Y348D mutation within the na(+)/I(-) Symporter renders the protein intrinsically inactive and impairs its focusing on to the plasma membrane. Thyroid. 2021;31:1272–81.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Solar Y, Han Y, Qian M, Li Y, Ye Y, Lin L, et al. Defending Results of Iodide switch in placental barrier in opposition to maternal Iodine Deficiency. Thyroid. 2021;31:509–18.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schmutzler C, Schmitt TL, Glaser F, Loos U, Kohrle J. The promoter of the human sodium/iodide-symporter gene responds to retinoic acid. Mol Cell Endocrinol. 2002;189:145–55.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Frohlich E, Machicao F, Wahl R. Motion of thiazolidinediones on differentiation, proliferation and apoptosis of regular and remodeled thyrocytes in tradition. Endocr Relat Most cancers. 2005;12:291–303.

    Article 
    PubMed 

    Google Scholar
     

  • Terada T, Noda S, Inui Ok. Administration of dose variability and unwanted effects for individualized most cancers pharmacotherapy with tyrosine kinase inhibitors. Pharmacol Ther. 2015;152:125–34.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Puccini A, Marin-Ramos NI, Bergamo F, Schirripa M, Lonardi S, Lenz HJ, et al. Security and Tolerability of c-MET inhibitors in Most cancers. Drug Saf. 2019;42:211–33.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Duester G. Retinoic acid synthesis and signaling throughout early organogenesis. Cell. 2008;134:921–31.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Johnson DE, Redner RL. An ATRActive future for differentiation remedy in AML. Blood Rev. 2015;29:263–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cristiano MC, Cosco D, Celia C, Tudose A, Mare R, Paolino D, et al. Anticancer exercise of all-trans retinoic acid-loaded liposomes on human thyroid carcinoma cells. Colloids Surf B Biointerfaces. 2017;150:408–16.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brisaert M, Gabriels M, Matthijs V, Plaizier-Vercammen J. Liposomes with tretinoin: a bodily and chemical analysis. J Pharm Biomed Anal. 2001;26:909–17.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lener T, Gimona M, Aigner L, Borger V, Buzas E, Camussi G, et al. Making use of extracellular vesicles based mostly therapeutics in medical trials – an ISEV place paper. J Extracell Vesicles. 2015;4:30087.

    Article 
    PubMed 

    Google Scholar
     

  • Delcorte O, Degosserie J, Pierreux CE. Function of Extracellular vesicles in thyroid physiology and Illnesses: implications for prognosis and remedy. Biomedicines. 2022;10.

  • Rajendran RL, Paudel S, Gangadaran P, Oh JM, Oh EJ, Hong CM et al. Extracellular Vesicles Act as Nano-Transporters of tyrosine kinase inhibitors to revert iodine avidity in thyroid Most cancers. Pharmaceutics. 2021;13.

  • Yan Z, Zhang X, Liu Y, Shen Y, Li N, Jia Q, et al. HSA-MnO(2)-(131)I mixed imaging and remedy of anaplastic thyroid carcinoma. Technol Most cancers Res Deal with. 2022. https://doi.org/10.1177/15330338221106557.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang G, Ji J, Liu Z. Multifunctional MnO(2) nanoparticles for tumor microenvironment modulation and most cancers remedy. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2021;13:e1720.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang R, Zhang Y, Tan J, Wang H, Zhang G, Li N, et al. Antitumor Impact of (131)I-Labeled Anti-VEGFR2 focused mesoporous silica nanoparticles in anaplastic thyroid Most cancers. Nanoscale Res Lett. 2019;14:96.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Quiros RM, Ding HG, Gattuso P, Prinz RA, Xu X. Proof that one subset of anaplastic thyroid carcinomas are derived from papillary carcinomas attributable to BRAF and p53 mutations. Most cancers. 2005;103:2261–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Okada T, Nakamura T, Watanabe T, Onoda N, Ashida A, Okuyama R, et al. Coexpression of EpCAM, CD44 variant isoforms and claudin-7 in anaplastic thyroid carcinoma. PLoS ONE. 2014;9:e94487.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang S, Zhang L, Xu M, Li C, Fu H, Huang J, et al. Co-Supply of (131) I and Prima-1 by self-assembled CD44-Focused nanoparticles for anaplastic thyroid Carcinoma Theranostics. Adv Healthc Mater. 2021;10:e2001029.

    Article 
    PubMed 

    Google Scholar
     

  • Lambert JM, Gorzov P, Veprintsev DB, Soderqvist M, Segerback D, Bergman J, et al. PRIMA-1 reactivates mutant p53 by covalent binding to the core area. Most cancers Cell. 2009;15:376–88.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zuckerman JE, Davis ME. Scientific experiences with systemically administered siRNA-based therapeutics in most cancers. Nat Rev Drug Discov. 2015;14:843–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maeda H, Nakamura H, Fang J. The EPR impact for macromolecular drug supply to stable tumors: enchancment of tumor uptake, decreasing of systemic toxicity, and distinct tumor imaging in vivo. Adv Drug Deliv Rev. 2013;65:71–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schmohl KA, Dolp P, Schug C, Knoop Ok, Klutz Ok, Schwenk N, et al. Reintroducing the Sodium-Iodide Symporter to anaplastic thyroid carcinoma. Thyroid. 2017;27:1534–43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yin H, Kanasty RL, Eltoukhy AA, Vegas AJ, Dorkin JR, Anderson DG. Non-viral vectors for gene-based remedy. Nat Rev Genet. 2014;15:541–55.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wadhwa A, Aljabbari A, Lokras A, Foged C, Thakur A. Alternatives and Challenges within the supply of mRNA-based vaccines. Pharmaceutics. 2020;12.

  • Roberts TC, Langer R, Wooden MJA. Advances in oligonucleotide drug supply. Nat Rev Drug Discov. 2020;19:673–94.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li Q, Zhang L, Lang J, Tan Z, Feng Q, Zhu F, et al. Lipid-Peptide-mRNA nanoparticles increase Radioiodine Uptake in anaplastic thyroid Most cancers. Adv Sci (Weinh). 2023;10:e2204334.

    Article 
    PubMed 

    Google Scholar
     

  • Liu Y, Gunda V, Zhu X, Xu X, Wu J, Askhatova D, et al. Theranostic near-infrared fluorescent nanoplatform for imaging and systemic siRNA supply to metastatic anaplastic thyroid most cancers. Proc Natl Acad Sci USA. 2016;113:7750–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nucera C, Porrello A, Antonello ZA, Mekel M, Nehs MA, Giordano TJ, et al. B-Raf(V600E) and thrombospondin-1 promote thyroid most cancers development. Proc Natl Acad Sci U S A. 2010;107:10649–54.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fagin JA, Wells SA. Jr. Biologic and medical views on thyroid Most cancers. N Engl J Med. 2016;375:1054–67.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kunstman JW, Juhlin CC, Goh G, Brown TC, Stenman A, Healy JM, et al. Characterization of the mutational panorama of anaplastic thyroid most cancers through whole-exome sequencing. Hum Mol Genet. 2015;24:2318–29.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maggisano V, Celano M, Lombardo GE, Lepore SM, Sponziello M, Rosignolo F, et al. Silencing of hTERT blocks progress and migration of anaplastic thyroid most cancers cells. Mol Cell Endocrinol. 2017;448:34–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lombardo GE, Maggisano V, Celano M, Cosco D, Mignogna C, Baldan F, et al. Anti-hTERT siRNA-Loaded Nanoparticles Block the expansion of anaplastic thyroid Most cancers Xenograft. Mol Most cancers Ther. 2018;17:1187–95.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Takeda T, Inaba H, Yamazaki M, Kyo S, Miyamoto T, Suzuki S, et al. Tumor-specific gene remedy for undifferentiated thyroid carcinoma using the Telomerase Reverse transcriptase promoter. J Clin Endocrinol Metabolism. 2003;88:3531–8.

    Article 
    CAS 

    Google Scholar
     

  • Shepelev MV, Kalinichenko SV, Saakian EK, Korobko IV. Xenobiotic response components (XREs) from human CYP1A1 gene improve the hTERT promoter exercise. Dokl Biochem Biophys. 2019;485:150–2.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chang A, Ling J, Ye H, Zhao H, Zhuo X. Enhancement of nanoparticle-mediated double suicide gene expression pushed by ‘E9-hTERT promoter’ swap in dedifferentiated thyroid most cancers cells. Bioengineered. 2021;12:6572–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mirzaei S, Zarrabi A, Asnaf SE, Hashemi F, Zabolian A, Hushmandi Ok, et al. The position of microRNA-338-3p in most cancers: progress, invasion, chemoresistance, and mediators. Life Sci. 2021;268:119005.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maroof H, Salajegheh A, Smith RA, Lam AK. MicroRNA-34 household, mechanisms of motion in most cancers: a assessment. Curr Most cancers Drug Targets. 2014;14:737–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maroof H, Islam F, Dong L, Ajjikuttira P, Gopalan V, McMillan NAJ et al. Liposomal supply of miR-34b-5p Induced Most cancers Cell loss of life in thyroid carcinoma. Cells. 2018;7.

  • Wang C, Zhang R, Tan J, Meng Z, Zhang Y, Li N, et al. Impact of mesoporous silica nanoparticles co–loading with 17–AAG and Torin2 on anaplastic thyroid carcinoma by focusing on VEGFR2. Oncol Rep. 2020;43:1491–502.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • White PT, Subramanian C, Zhu Q, Zhang H, Zhao H, Gallagher R, et al. Novel HSP90 inhibitors successfully goal features of thyroid most cancers stem cell stopping migration and invasion. Surgical procedure. 2016;159:142–51.

    Article 
    PubMed 

    Google Scholar
     

  • Tavares C, Eloy C, Melo M, Gaspar da Rocha A, Pestana A, Batista R et al. mTOR pathway in papillary thyroid carcinoma: totally different contributions of mTORC1 and mTORC2 complexes for Tumor Habits and SLC5A5 mRNA expression. Int J Mol Sci. 2018;19.

  • Ahmed M, Hussain AR, Bavi P, Ahmed SO, Al Sobhi SS, Al-Dayel F, et al. Excessive prevalence of mTOR complicated exercise might be focused utilizing Torin2 in papillary thyroid carcinoma. Carcinogenesis. 2014;35:1564–72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rizzitelli S, Giustetto P, Cutrin JC, Delli Castelli D, Boffa C, Ruzza M, et al. Sonosensitive theranostic liposomes for preclinical in vivo MRI-guided visualization of doxorubicin launch stimulated by pulsed low depth non-focused ultrasound. J Management Launch. 2015;202:21–30.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu L, Zhao H, Zhou Z, Xia Y, Wang Z, Ran H, et al. Peptide-Functionalized Part-Transformation Nanoparticles for Low Depth centered Ultrasound-Assisted Tumor Imaging and Remedy. Nano Lett. 2018;18:1831–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao Y, Chen Y, Yu T, Guo Y, Liu F, Yao Y, et al. Drug launch from phase-changeable nanodroplets triggered by low-intensity centered Ultrasound. Theranostics. 2018;8:1327–39.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao H, Wu M, Zhu L, Tian Y, Wu M, Li Y, et al. Cell-penetrating peptide-modified focused drug-loaded phase-transformation lipid nanoparticles mixed with low-intensity centered Ultrasound for Precision Theranostics in opposition to Hepatocellular Carcinoma. Theranostics. 2018;8:1892–910.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu Y, Ma Y, Peng X, Wang L, Li H, Cheng W, et al. Cetuximab-conjugated perfluorohexane/gold nanoparticles for low depth centered ultrasound prognosis ablation of thyroid most cancers remedy. Sci Technol Adv Mater. 2021;21:856–66.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang Y, Sui G, Teng D, Wang Q, Qu J, Zhu L, et al. Low depth centered ultrasound (LIFU) triggered drug launch from cetuximab-conjugated phase-changeable nanoparticles for precision theranostics in opposition to anaplastic thyroid carcinoma. Biomater Sci. 2018;7:196–210.

    Article 
    PubMed 

    Google Scholar
     

  • Li X, Lovell JF, Yoon J, Chen X. Scientific improvement and potential of photothermal and photodynamic therapies for most cancers. Nat Rev Clin Oncol. 2020;17:657–74.

    Article 
    PubMed 

    Google Scholar
     

  • Amaral M, Charmier AJ, Afonso RA, Catarino J, Faisca P, Carvalho L et al. Gold-based nanoplataform for the remedy of anaplastic thyroid carcinoma: a Step Ahead. Cancers (Basel). 2021;13.

  • Wan X, Liu M, Ma M, Chen D, Wu N, Li L, et al. The Ultrasmall Biocompatible CuS@BSA Nanoparticle and its Photothermal Results. Entrance Pharmacol. 2019;10:141.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Curcio A, Silva AKA, Cabana S, Espinosa A, Baptiste B, Menguy N, et al. Iron Oxide Nanoflowers @ CuS Hybrids for Most cancers Tri-Remedy: interaction of Photothermal Remedy, magnetic hyperthermia and photodynamic remedy. Theranostics. 2019;9:1288–302.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou M, Chen Y, Adachi M, Wen X, Erwin B, Mawlawi O, et al. Single agent nanoparticle for radiotherapy and radio-photothermal remedy in anaplastic thyroid most cancers. Biomaterials. 2015;57:41–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang C, Chai J, Jia Q, Tan J, Meng Z, Li N, et al. Evaluating the therapeutic efficacy of radiolabeled BSA@CuS nanoparticle-induced radio-photothermal remedy in opposition to anaplastic thyroid most cancers. IUBMB Life. 2022;74:433–45.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang S, Wu Y, Li C, Xu L, Huang J, Huang Y, et al. Tailoring morphologies of mesoporous polydopamine nanoparticles to ship high-loading radioiodine for anaplastic thyroid carcinoma imaging and remedy. Nanoscale. 2021;13:15021–30.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang X, Yan Z, Meng Z, Li N, Jia Q, Shen Y, et al. Radionuclide (131)I-labeled albumin-indocyanine inexperienced nanoparticles for synergistic mixed radio-photothermal remedy of anaplastic thyroid most cancers. Entrance Oncol. 2022;12:889284.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang Q, Sui G, Wu X, Teng D, Zhu L, Guan S, et al. A sequential focusing on nanoplatform for anaplastic thyroid carcinoma theranostics. Acta Biomater. 2020;102:367–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liang X, Fang L, Li X, Zhang X, Wang F. Activatable close to infrared dye conjugated hyaluronic acid based mostly nanoparticles as a focused theranostic agent for enhanced fluorescence/CT/photoacoustic imaging guided photothermal remedy. Biomaterials. 2017;132:72–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gong H, Dong Z, Liu Y, Yin S, Cheng L, Xi W, et al. Engineering of Multifunctional Nano-Micelles for Mixed Photothermal and photodynamic remedy below the Steering of Multimodal Imaging. Adv Funct Mater. 2014;24:6492–502.

    Article 
    CAS 

    Google Scholar
     

  • Zhu R, Wang Z, Liang P, He X, Zhuang X, Huang R, et al. Environment friendly VEGF focusing on supply of DOX utilizing Bevacizumab conjugated SiO(2)@LDH for anti-neuroblastoma remedy. Acta Biomater. 2017;63:163–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Joudeh N, Linke D. Nanoparticle classification, physicochemical properties, characterization, and purposes: a complete assessment for biologists. J Nanobiotechnol. 2022;20.

  • Li J, Wu T, Li S, Chen X, Deng Z, Huang Y. Nanoparticles for most cancers remedy: a assessment of influencing components and analysis strategies for biosafety. Clin Transl Oncol. 2023;25:2043–55.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li L, Wang Z, Guo H, Lin Q. Nanomaterials: a promising multimodal theranostics platform for thyroid most cancers. J Mater Chem B. 2023.

  • Fröhlich E, Wahl R, Nanoparticles. Promising Auxiliary Brokers for prognosis and remedy of thyroid cancers. Cancers. 2021;13.



  • Supply hyperlink

    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    - Advertisment -
    Google search engine

    Most Popular

    Recent Comments