Wang W, Lu Ok, Yu C, Huang Q, Du Y-Z. Nano-drug supply techniques in wound remedy and pores and skin regeneration. J Nanobiotechnol. 2019;17:82. https://doi.org/10.1186/s12951-019-0514-y.
Naskar A, Kim Ok. Current advances in nanomaterial-based wound-healing therapeutics. Pharmaceutics. 2020;12:499. https://doi.org/10.3390/pharmaceutics12060499.
Momoh FU, Boateng JS, Richardson SCW, Chowdhry BZ, Mitchell JC. Improvement and practical characterization of alginate dressing as potential protein supply system for wound therapeutic. Int J Biol Macromol. 2015;81:137–50. https://doi.org/10.1016/j.ijbiomac.2015.07.037.
Sanapalli BKR, Yele V, Singh MK, Thaggikuppe Krishnamurthy P, Karri VVSR. Preclinical fashions of diabetic wound therapeutic: a essential evaluate. Biomed Pharmacother. 2021;142:111946. https://doi.org/10.1016/j.biopha.2021.111946.
Saleh Ok, Sönnergren HH. 5—Management and remedy of contaminated wounds. In: Ågren MS, editor. Wound therapeutic biomaterials. Duxford: Woodhead Publishing; 2016. p. 107–15. https://doi.org/10.1016/B978-1-78242-456-7.00005-2.
Rajendran S, Anand SC. 14—Woven textiles for medical purposes. In: Gandhi KL, editor. Woven textiles. Sawston: Woodhead Publishing; 2012. p. 414–41. https://doi.org/10.1533/9780857095589.3.414.
Dai C, Shih S, Khachemoune A. Pores and skin substitutes for acute and continual wound therapeutic: an up to date evaluate. J Dermatol Deal with. 2020;31:639–48. https://doi.org/10.1080/09546634.2018.1530443.
Demidova-Rice TN, Durham JT, Herman IM. Wound therapeutic angiogenesis: improvements and challenges in acute and continual wound therapeutic. Adv Wound Care. 2012;1:17–22. https://doi.org/10.1089/wound.2011.0308.
Praburaj DV, Anand SC, Dean C, Nettleton R. Conducting scientific trials in woundcare. In: Anand SC, Kennedy JF, Miraftab M, Rajendran S, editors. Medical textiles and biomaterials for healthcare. Cambridge: Woodhead Publishing; 2006. p. 310–9. https://doi.org/10.1533/9781845694104.5.310.
Noor S, Khan RU, Ahmad J. Understanding diabetic foot an infection and its administration. Diabetes Metab Syndr Clin Res Rev. 2017;11:149–56. https://doi.org/10.1016/j.dsx.2016.06.023.
Ahmad J. The diabetic foot. Diabetes Metab Syndr Clin Res Rev. 2016;10:48–60. https://doi.org/10.1016/j.dsx.2015.04.002.
Järbrink Ok, Ni G, Sönnergren H, Schmidtchen A, Pang C, Bajpai R, Automobile J. Prevalence and incidence of continual wounds and associated issues: a protocol for a scientific evaluate. Syst Rev. 2016;5:152. https://doi.org/10.1186/s13643-016-0329-y.
Martinengo L, Olsson M, Bajpai R, Soljak M, Upton Z, Schmidtchen A, Automobile J, Järbrink Ok. Prevalence of continual wounds within the common inhabitants: systematic evaluate and meta-analysis of observational research. Ann Epidemiol. 2019;29:8–15. https://doi.org/10.1016/j.annepidem.2018.10.005.
Rieger KA, Birch NP, Schiffman JD. Designing electrospun nanofiber mats to advertise wound therapeutic—a evaluate. J Mater Chem B. 2013;1:4531–41. https://doi.org/10.1039/C3TB20795A.
Gruen D. Wound therapeutic and diet: going past dressings with a balanced care plan. J Am Coll Certif Wound Spec. 2010;2:46–9. https://doi.org/10.1016/j.jcws.2010.11.001.
Han G, Ceilley R. Persistent wound therapeutic: a evaluate of present administration and coverings. Adv Ther. 2017;34:599–610. https://doi.org/10.1007/s12325-017-0478-y.
Zhu Y, Ma Z, Kong L, He Y, Chan HF, Li H. Modulation of macrophages by bioactive glass/sodium alginate hydrogel is essential in pores and skin regeneration enhancement. Biomaterials. 2020;256:120216. https://doi.org/10.1016/j.biomaterials.2020.120216.
Krzyszczyk P, Schloss R, Palmer A, Berthiaume F. The function of macrophages in acute and continual wound therapeutic and interventions to advertise pro-wound therapeutic phenotypes. Entrance Physiol. 2018;9:419. https://doi.org/10.3389/fphys.2018.00419.
Brown BN, Ratner BD, Goodman SB, Amar S, Badylak SF. Macrophage polarization: a possibility for improved outcomes in biomaterials and regenerative drugs. Biomaterials. 2012;33:3792–802. https://doi.org/10.1016/j.biomaterials.2012.02.034.
Minutti CM, Knipper JA, Allen JE, Zaiss DMW. Tissue-specific contribution of macrophages to wound therapeutic. Semin Cell Dev Biol. 2017;61:3–11. https://doi.org/10.1016/j.semcdb.2016.08.006.
Hussell T, Bell TJ. Alveolar macrophages: plasticity in a tissue-specific context. Nat Rev Immunol. 2014;14:81–93. https://doi.org/10.1038/nri3600.
Martinez FO, Gordon S. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep. 2014;6:13.
Ley Ok. M1 means kill; M2 means heal. J Immunol. 2017;199:2191–3. https://doi.org/10.4049/jimmunol.1701135.
Kloc M, Ghobrial RM, Wosik J, Lewicka A, Lewicki S, Kubiak JZ. Macrophage capabilities in wound therapeutic. J Tissue Eng Regen Med. 2019;13:99–109. https://doi.org/10.1002/time period.2772.
Kim SY, Nair MG. Macrophages in wound therapeutic: activation and plasticity. Immunol Cell Biol. 2019;97:258–67. https://doi.org/10.1111/imcb.12236.
Ferrante CJ, Leibovich SJ. Regulation of macrophage polarization and wound therapeutic. Adv Wound Care. 2012;1:10–6. https://doi.org/10.1089/wound.2011.0307.
Torregrossa M, Kakpenova A, Simon JC, Franz S. Modulation of macrophage capabilities by ECM-inspired wound dressings—a promising therapeutic strategy for continual wounds. Biol Chem. 2021;402:1289–307. https://doi.org/10.1515/hsz-2021-0145.
Caputa G, Flachsmann LJ, Cameron AM. Macrophage metabolism: a wound-healing perspective. Immunol Cell Biol. 2019;97:268–78. https://doi.org/10.1111/imcb.12237.
Spiller KL, Koh TJ. Macrophage-based therapeutic methods in regenerative drugs. Adv Drug Deliv Rev. 2017;122:74–83. https://doi.org/10.1016/j.addr.2017.05.010.
Alvarez MM, Liu JC, Trujillo-de Santiago G, Cha B-H, Vishwakarma A, Ghaemmaghami AM, Khademhosseini A. Supply methods to manage inflammatory response: modulating M1–M2 polarization in tissue engineering purposes. J Management Launch. 2016;240:349–63. https://doi.org/10.1016/j.jconrel.2016.01.026.
Subbiahdoss G, Sharifi S, Grijpma DW, Laurent S, van der Mei HC, Mahmoudi M, Busscher HJ. Magnetic concentrating on of surface-modified superparamagnetic iron oxide nanoparticles yields antibacterial efficacy towards biofilms of gentamicin-resistant staphylococci. Acta Biomater. 2012;8:2047–55. https://doi.org/10.1016/j.actbio.2012.03.002.
Chu C, Deng J, Liu L, Cao Y, Wei X, Li J, Man Y. Nanoparticles mixed with development elements: current progress and purposes. RSC Adv. 2016;6:90856–72. https://doi.org/10.1039/C6RA13636B.
Chigurupati S, Mughal MR, Okun E, Das S, Kumar A, McCaffery M, Seal S, Mattson MP. Results of cerium oxide nanoparticles on the expansion of keratinocytes, fibroblasts and vascular endothelial cells in cutaneous wound therapeutic. Biomaterials. 2013;34:2194–201. https://doi.org/10.1016/j.biomaterials.2012.11.061.
Kim JE, Lee J, Jang M, Kwak MH, Go J, Kho EK, Tune SH, Sung JE, Lee J, Hwang DY. Accelerated therapeutic of cutaneous wounds utilizing phytochemically stabilized gold nanoparticle deposited hydrocolloid membranes. Biomater Sci. 2015;3:509–19. https://doi.org/10.1039/C4BM00390J.
Sharifi S, Hajipour MJ, Gould L, Mahmoudi M. Nanomedicine in therapeutic continual wounds: alternatives and challenges. Mol Pharm. 2021;18:550–75. https://doi.org/10.1021/acs.molpharmaceut.0c00346.
Mei L, Fan R, Li X, Wang Y, Han B, Gu Y, Zhou L, Zheng Y, Tong A, Guo G. Nanofibers for bettering the wound restore course of: the mixture of a grafted chitosan and an antioxidant agent. Polym Chem. 2017;8:1664–71. https://doi.org/10.1039/C7PY00038C.
Mashinchian O, Bonakdar S, Taghinejad H, Satarifard V, Heidari M, Majidi M, Sharifi S, Peirovi A, Saffar S, Taghinejad M, Abdolahad M, Mohajerzadeh S, Shokrgozar MA, Rezayat SM, Ejtehadi MR, Dalby MJ, Mahmoudi M. Cell-imprinted substrates act as a man-made area of interest for pores and skin regeneration. ACS Appl Mater Interfaces. 2014;6:13280–92. https://doi.org/10.1021/am503045b.
Kim HN, Hong Y, Kim MS, Kim SM, Suh Ok-Y. Impact of orientation and density of nanotopography in dermal wound therapeutic. Biomaterials. 2012;33:8782–92. https://doi.org/10.1016/j.biomaterials.2012.08.038.
Joorabloo A, Khorasani MT, Adeli H, Mansoori-Moghadam Z, Moghaddam A. Fabrication of heparinized nano ZnO/poly(vinylalcohol)/carboxymethyl cellulose bionanocomposite hydrogels utilizing synthetic neural community for wound dressing utility. J Ind Eng Chem. 2019. https://doi.org/10.1016/j.jiec.2018.10.022.
Khorasani MT, Joorabloo A, Adeli H, Milan PB, Amoupour M. Enhanced antimicrobial and full-thickness wound therapeutic effectivity of hydrogels loaded with heparinized ZnO nanoparticles: in vitro and in vivo analysis. Int J Biol Macromol. 2020. https://doi.org/10.1016/j.ijbiomac.2020.10.142.
Joorabloo A, Khorasani MT, Adeli H, Brouki Milan P, Amoupour M. Utilizing synthetic neural community for design and improvement of PVA/chitosan/starch/heparinized nZnO hydrogels for enhanced wound therapeutic. J Ind Eng Chem. 2021. https://doi.org/10.1016/j.jiec.2021.12.027.
Rahimi HR, Nedaeinia R, SepehriShamloo A, Nikdoust S, KazemiOskuee R. Novel supply system for pure merchandise: nano-curcumin formulations. Avicenna J Phytomed. 2016;6:383–98.
Dizaj SM, Vazifehasl Z, Salatin S, Adibkia Ok, Javadzadeh Y. Nanosizing of medication: impact on dissolution fee. Res Pharm Sci. 2015;10:95–108.
Wei Z, Zhang Y, Wang L, Wang Z, Chen S, Bao J, Xie Y, Su B, Zhao C. Photoenhanced dual-functional nanomedicine for selling wound therapeutic: shifting focus from micro organism eradication to host microenvironment modulation. ACS Appl Mater Interfaces. 2021;13:32316–31. https://doi.org/10.1021/acsami.1c08875.
Gaspar N, Zambito G, Löwik MWGC, Mezzanotte L. Energetic nano-targeting of macrophages. Curr Pharm Des. 2019;25:1951–61. https://doi.org/10.2174/1381612825666190710114108.
Zang X, Cheng M, Zhang X, Chen X. Focusing on macrophages utilizing nanoparticles: a possible therapeutic technique for atherosclerosis. J Mater Chem B. 2021;9:3284–94. https://doi.org/10.1039/D0TB02956D.
Liu J, Wan M, Lyon CJ, Hu TY. Nanomedicine therapies modulating macrophage dysfunction: a possible technique to attenuate cytokine storms in extreme infections. Theranostics. 2020;10:9591–600. https://doi.org/10.7150/thno.47982.
Liu J, Geng X, Hou J, Wu G. New insights into M1/M2 macrophages: key modulators in most cancers development. Most cancers Cell Int. 2021;21:389. https://doi.org/10.1186/s12935-021-02089-2.
Elliott MR, Koster KM, Murphy PS. Efferocytosis signaling within the regulation of macrophage inflammatory responses. J Immunol. 2017;198:1387–94. https://doi.org/10.4049/jimmunol.1601520.
Sandoval Pacheco CM, Araujo Flores GV, Gonzalez Ok, de Castro Gomes CM, Passero LFD, Tomokane TY, Sosa-Ochoa W, Zúniga C, Calzada J, Saldaña A, Corbett CEP, Silveira FT, Laurenti MD. Macrophage polarization within the pores and skin lesion brought on by neotropical species of Leishmania sp. J Immunol Res. 2021;2021:5596876. https://doi.org/10.1155/2021/5596876.
Mills CD. M1 and M2 macrophages: oracles of well being and illness. Crit Rev Immunol. 2012;32:463–88. https://doi.org/10.1615/CritRevImmunol.v32.i6.10.
Koh TJ, DiPietro LA. Irritation and wound therapeutic: the function of the macrophage. Professional Rev Mol Med. 2011;13:e23. https://doi.org/10.1017/S1462399411001943.
Landén NX, Li D, Ståhle M. Transition from irritation to proliferation: a essential step throughout wound therapeutic. Cell Mol Life Sci. 2016;73:3861–85. https://doi.org/10.1007/s00018-016-2268-0.
Italiani P, Boraschi D. From monocytes to M1/M2 macrophages: phenotypical vs. practical differentiation. Entrance Immunol. 2014;5:514. https://doi.org/10.3389/fimmu.2014.00514.
Moghadam ZM, Henneke P, Kolter J. From flies to males: ROS and the NADPH oxidase in phagocytes. Entrance Cell Dev Biol. 2021;9:618. https://doi.org/10.3389/fcell.2021.628991.
Silva MT. When two is best than one: macrophages and neutrophils work in live performance in innate immunity as complementary and cooperative companions of a myeloid phagocyte system. J Leukoc Biol. 2010;87:93–106. https://doi.org/10.1189/jlb.0809549.
Ashouri F, Beyranvand F, BeigiBoroujeni N, Tavafi M, Sheikhian A, Varzi AM, Shahrokhi S. Macrophage polarization in wound therapeutic: function of aloe vera/chitosan nanohydrogel. Drug Deliv Transl Res. 2019;9:1027–42. https://doi.org/10.1007/s13346-019-00643-0.
Hesketh M, Sahin KB, West ZE, Murray RZ. Macrophage phenotypes regulate scar formation and continual wound therapeutic. Int J Mol Sci. 2017. https://doi.org/10.3390/ijms18071545.
Daley JM, Brancato SK, Thomay AA, Reichner JS, Albina JE. The phenotype of murine wound macrophages. J Leukoc Biol. 2010;87:59–67. https://doi.org/10.1189/jlb.0409236.
Orecchioni M, Ghosheh Y, Pramod AB, Ley Ok. Macrophage polarization: totally different gene signatures in M1(LPS+) vs. classically and M2(LPS−) vs. alternatively activated macrophages. Entrance Immunol. 2019;10:1084. https://doi.org/10.3389/fimmu.2019.01084.
Chistiakov DA, Myasoedova VA, Revin VV, Orekhov AN, Bobryshev YV. The affect of interferon-regulatory elements to macrophage differentiation and polarization into M1 and M2. Immunobiology. 2018;223:101–11. https://doi.org/10.1016/j.imbio.2017.10.005.
Wolf SJ, Melvin WJ, Gallagher Ok. Macrophage-mediated irritation in diabetic wound restore. Semin Cell Dev Biol. 2021;119:111–8. https://doi.org/10.1016/j.semcdb.2021.06.013.
Kim H, Wang SY, Kwak G, Yang Y, Kwon IC, Kim SH. Exosome-guided phenotypic change of M1 to M2 macrophages for cutaneous wound therapeutic. Adv Sci. 2019;6:1900513. https://doi.org/10.1002/advs.201900513.
Kotwal GJ, Chien S. Macrophage differentiation in regular and accelerated wound therapeutic. Macrophages. 2017;62:353–64.
Sharifiaghdam M, Shaabani E, Sharifiaghdam Z, De Keersmaecker H, Lucas B, Lammens J, Ghanbari H, Teimoori-Toolabi L, Vervaet C, De Beer T, Faridi-Majidi R, De Smedt SC, Braeckmans Ok, Fraire JC. Macrophage reprogramming right into a pro-healing phenotype by siRNA delivered with LBL assembled nanocomplexes for wound therapeutic purposes. Nanoscale. 2021;13:15445–63. https://doi.org/10.1039/D1NR03830C.
Miao M, Niu Y, Xie T, Yuan B, Qing C, Lu S. Diabetes-impaired wound therapeutic and altered macrophage activation: a attainable pathophysiologic correlation. Wound Restore Regen. 2012;20:203–13. https://doi.org/10.1111/j.1524-475X.2012.00772.x.
Seraphim PM, Leal EC, Moura J, Gonçalves P, Gonçalves JP, Carvalho E. Lack of lymphocytes impairs macrophage polarization and angiogenesis in diabetic wound therapeutic. Life Sci. 2020;254: 117813. https://doi.org/10.1016/j.lfs.2020.117813.
Leal EC, Carvalho E, Tellechea A, Kafanas A, Tecilazich F, Kearney C, Kuchibhotla S, Auster ME, Kokkotou E, Mooney DJ, LoGerfo FW, Pradhan-Nabzdyk L, Veves A. Substance P promotes wound therapeutic in diabetes by modulating irritation and macrophage phenotype. Am J Pathol. 2015;185:1638–48. https://doi.org/10.1016/j.ajpath.2015.02.011.
Burke B, Sumner S, Maitland N, Lewis CE. Macrophages in gene remedy: mobile supply automobiles and in vivo targets. J Leukoc Biol. 2002;72:417–28. https://doi.org/10.1189/jlb.72.3.417.
Jetten N, Roumans N, Gijbels MJ, Romano A, Submit MJ, de Winther MPJ, van der Hulst RRWJ, Xanthoulea S. Wound administration of M2-polarized macrophages doesn’t enhance murine cutaneous therapeutic responses. PLoS ONE. 2014;9: e102994. https://doi.org/10.1371/journal.pone.0102994.
Goren I, Müller E, Schiefelbein D, Christen U, Pfeilschifter J, Mühl H, Frank S. Systemic anti-TNFα remedy restores diabetes-impaired pores and skin restore in ob/ob mice by inactivation of macrophages. J Make investments Dermatol. 2007;127:2259–67. https://doi.org/10.1038/sj.jid.5700842.
Mirza RE, Fang MM, Ennis WJ, Koh TJ. Blocking interleukin-1β induces a healing-associated wound macrophage phenotype and improves therapeutic in kind 2 diabetes. Diabetes. 2013;62:2579–87. https://doi.org/10.2337/db12-1450.
Ashcroft GS, Jeong M-J, Ashworth JJ, Hardman M, Jin W, Moutsopoulos N, Wild T, McCartney-Francis N, Sim D, McGrady G, Tune X, Wahl SM. Tumor necrosis factor-alpha (TNF-α) is a therapeutic goal for impaired cutaneous wound therapeutic. Wound Restore Regen. 2012;20:38–49. https://doi.org/10.1111/j.1524-475X.2011.00748.x.
Barrientos S, Stojadinovic O, Golinko MS, Brem H, Tomic-Canic M. PERSPECTIVE ARTICLE: development elements and cytokines in wound therapeutic. Wound Restore Regen. 2008;16:585–601. https://doi.org/10.1111/j.1524-475X.2008.00410.x.
Hu G, Guo M, Xu J, Wu F, Fan J, Huang Q, Yang G, Lv Z, Wang X, Jin Y. Nanoparticles concentrating on macrophages as potential scientific therapeutic brokers towards most cancers and irritation. Entrance Immunol. 2019;10:1998. https://doi.org/10.3389/fimmu.2019.01998.
Sridharan R, Cameron AR, Kelly DJ, Kearney CJ, O’Brien FJ. Biomaterial primarily based modulation of macrophage polarization: a evaluate and advised design rules. Mater At this time. 2015;18:313–25. https://doi.org/10.1016/j.mattod.2015.01.019.
Kulinets I. Biomaterials and their purposes in drugs. Regul Aff Biomater Med Units. 2015. https://doi.org/10.1533/9780857099204.1.
Abaricia JO, Shah AH, Chaubal M, Hotchkiss KM, Olivares-Navarrete R. Wnt signaling modulates macrophage polarization and is regulated by biomaterial floor properties. Biomaterials. 2020;243: 119920. https://doi.org/10.1016/j.biomaterials.2020.119920.
Sheikh Z, Brooks PJ, Barzilay O, High quality N, Glogauer M. Macrophages, international physique large cells and their response to implantable biomaterials. Supplies (Basel). 2015;8:5671–701. https://doi.org/10.3390/ma8095269.
Xia Z, Triffitt JT. A evaluate on macrophage responses to biomaterials. Biomed Mater. 2006;1:R1–9. https://doi.org/10.1088/1748-6041/1/1/r01.
Boersema GSA, Grotenhuis N, Bayon Y, Lange JF, Bastiaansen-Jenniskens YM. The impact of biomaterials used for tissue regeneration functions on polarization of macrophages. BioRes Open Entry. 2016;5:6–14. https://doi.org/10.1089/biores.2015.0041.
Okamoto T, Takagi Y, Kawamoto E, Park EJ, Usuda H, Wada Ok, Shimaoka M. Lowered substrate stiffness promotes M2-like macrophage activation and enhances peroxisome proliferator-activated receptor γ expression. Exp Cell Res. 2018;367:264–73. https://doi.org/10.1016/j.yexcr.2018.04.005.
Zhou H, Xue Y, Dong L, Wang C. Biomaterial-based bodily regulation of macrophage behaviour. J Mater Chem B. 2021;9:3608–21. https://doi.org/10.1039/D1TB00107H.
Ribeiro S, Carvalho AM, Fernandes EM, Gomes ME, Reis RL, Bayon Y, Zeugolis DI. Improvement and characterisation of cytocompatible polyester substrates with tunable mechanical properties and degradation fee. Acta Biomater. 2021;121:303–15. https://doi.org/10.1016/j.actbio.2020.11.026.
Davenport Huyer L, Pascual-Gil S, Wang Y, Mandla S, Yee B, Radisic M. Superior methods for modulation of the material-macrophage interface. Adv Funct Mater. 2020;30:1909331. https://doi.org/10.1002/adfm.201909331.
Li Z, Bratlie KM. Macrophage phenotypic modifications on FN-coated bodily gradient hydrogels. ACS Appl Bio Mater. 2021;4:6758–68. https://doi.org/10.1021/acsabm.1c00489.
Chen M, Zhang Y, Zhou P, Liu X, Zhao H, Zhou X, Gu Q, Li B, Zhu X, Shi Q. Substrate stiffness modulates bone marrow-derived macrophage polarization by way of NF-κB signaling pathway. Bioact Mater. 2020;5:880–90. https://doi.org/10.1016/j.bioactmat.2020.05.004.
Sridharan R, Cavanagh B, Cameron AR, Kelly DJ, O’Brien FJ. Materials stiffness influences the polarization state, operate and migration mode of macrophages. Acta Biomater. 2019;89:47–59. https://doi.org/10.1016/j.actbio.2019.02.048.
Camarero-Espinosa S, Carlos-Oliveira M, Liu H, Mano JF, Bouvy N, Moroni L. 3D printed dual-porosity scaffolds: the mixed impact of stiffness and porosity within the modulation of macrophage polarization. Adv Healthc Mater. 2022;11:2101415. https://doi.org/10.1002/adhm.202101415.
Scott RA, Kiick KL, Akins RE. Substrate stiffness directs the phenotype and polarization state of wire blood derived macrophages. Acta Biomater. 2021;122:220–35. https://doi.org/10.1016/j.actbio.2020.12.040.
Yao D, Qiao F, Tune C, Lv Y. Matrix stiffness regulates bone restore by modulating 12-lipoxygenase-mediated early irritation. Mater Sci Eng C. 2021;128: 112359. https://doi.org/10.1016/j.msec.2021.112359.
Rostam HM, Singh S, Vrana NE, Alexander MR, Ghaemmaghami AM. Impression of floor chemistry and topography on the operate of antigen presenting cells. Biomater Sci. 2015;3:424–41. https://doi.org/10.1039/C4BM00375F.
Li M, Guo X, Qi W, Wu Z, de Bruijn JD, Xiao Y, Bao C, Yuan H. Macrophage polarization performs roles in bone formation instructed by calcium phosphate ceramics. J Mater Chem B. 2020;8:1863–77. https://doi.org/10.1039/C9TB02932J.
Sutherland J, Denyer M, Britland S. Contact steerage in human dermal fibroblasts is modulated by inhabitants strain. J Anat. 2005;206:581–7. https://doi.org/10.1111/j.1469-7580.2005.00415.x.
Wennerberg A, Albrektsson T, Andersson B. An animal research of cp titanium screws with totally different floor topographies. J Mater Sci Mater Med. 1995;6:302–9. https://doi.org/10.1007/BF00120275.
Madden LR, Mortisen DJ, Sussman EM, Dupras SK, Fugate JA, Cuy JL, Hauch KD, Laflamme MA, Murry CE, Ratner BD. Proangiogenic scaffolds as practical templates for cardiac tissue engineering. Proc Natl Acad Sci. 2010;107:15211–6. https://doi.org/10.1073/pnas.1006442107.
Chehroudi B, Ghrebi S, Murakami H, Waterfield JD, Owen G, Brunette DM. Bone formation on tough, however not polished, subcutaneously implanted Ti surfaces is preceded by macrophage accumulation. J Biomed Mater Res Half A. 2010;93A:724–37. https://doi.org/10.1002/jbm.a.32587.
Barth KA, Waterfield JD, Brunette DM. The impact of floor roughness on RAW 264.7 macrophage phenotype. J Biomed Mater Res Half A. 2013;101A:2679–88. https://doi.org/10.1002/jbm.a.34562.
Zhang Y, Cheng X, Jansen JA, Yang F, van den Beucken JJJP. Titanium surfaces traits modulate macrophage polarization. Mater Sci Eng C. 2019;95:143–51. https://doi.org/10.1016/j.msec.2018.10.065.
Kosoff D, Yu J, Suresh V, Beebe DJ, Lang JM. Floor topography and hydrophilicity regulate macrophage phenotype in milled microfluidic techniques. Lab Chip. 2018;18:3011–7. https://doi.org/10.1039/C8LC00431E.
Wissing TB, Bonito V, van Haaften EE, van Doeselaar M, Brugmans MMCP, Janssen HM, Bouten CVC, Smits AIPM. Macrophage-driven biomaterial degradation relies on scaffold microarchitecture. Entrance Bioeng Biotechnol. 2019;7:87. https://doi.org/10.3389/fbioe.2019.00087.
Sussman EM, Halpin MC, Muster J, Moon RT, Ratner BD. Porous implants modulate therapeutic and induce shifts in native macrophage polarization within the international physique response. Ann Biomed Eng. 2014;42:1508–16. https://doi.org/10.1007/s10439-013-0933-0.
Yin Y, He X-T, Wang J, Wu R-X, Xu X-Y, Hong Y-L, Tian B-M, Chen F-M. Pore size-mediated macrophage M1-to-M2 transition influences new vessel formation inside the compartment of a scaffold. Appl Mater At this time. 2020;18: 100466. https://doi.org/10.1016/j.apmt.2019.100466.
Bachhuka A, MadathiparambilVisalakshan R, Legislation CS, Santos A, Ebendorff-Heidepriem H, Karnati S, Vasilev Ok. Modulation of macrophages differentiation by nanoscale-engineered geometric and chemical options. ACS Appl Bio Mater. 2020;3:1496–505. https://doi.org/10.1021/acsabm.9b01125.
Jia Y, Yang W, Zhang Ok, Qiu S, Xu J, Wang C, Chai Y. Nanofiber association regulates peripheral nerve regeneration by way of differential modulation of macrophage phenotypes. Acta Biomater. 2019;83:291–301. https://doi.org/10.1016/j.actbio.2018.10.040.
Mao J, Chen L, Cai Z, Qian S, Liu Z, Zhao B, Zhang Y, Solar X, Cui W. Superior biomaterials for regulating polarization of macrophages in wound therapeutic. Adv Funct Mater. 2021. https://doi.org/10.1002/adfm.202111003.
Bygd HC, Forsmark KD, Bratlie KM. Altering in vivo macrophage responses with modified polymer properties. Biomaterials. 2015;56:187–97. https://doi.org/10.1016/j.biomaterials.2015.03.042.
Lv L, Xie Y, Li Ok, Hu T, Lu X, Cao Y, Zheng X. Unveiling the mechanism of floor hydrophilicity-modulated macrophage polarization. Adv Healthc Mater. 2018;7:1800675. https://doi.org/10.1002/adhm.201800675.
Visalakshan RM, MacGregor MN, Sasidharan S, Ghazaryan A, Mierczynska-Vasilev AM, Morsbach S, Mailänder V, Landfester Ok, Hayball JD, Vasilev Ok. Biomaterial floor hydrophobicity-mediated serum protein adsorption and immune responses. ACS Appl Mater Interfaces. 2019;11:27615–23. https://doi.org/10.1021/acsami.9b09900.
Gao S, Lu R, Wang X, Chou J, Wang N, Huai X, Wang C, Zhao Y, Chen S. Immune response of macrophages on super-hydrophilic TiO2 nanotube arrays. J Biomater Appl. 2020;34:1239–53. https://doi.org/10.1177/0885328220903249.
Pérez-Calixto M, Diaz-Rodriguez P, Concheiro A, Alvarez-Lorenzo C, Burillo G. Amino-functionalized polymers by gamma radiation and their affect on macrophage polarization. React Funct Polym. 2020;151: 104568. https://doi.org/10.1016/j.reactfunctpolym.2020.104568.
Wang Y, Yao D, Li L, Qian Z, He W, Ding R, Liu H, Fan Y. Impact of electrospun silk fibroin-silk sericin movies on macrophage polarization and vascularization. ACS Biomater Sci Eng. 2020;6:3502–12. https://doi.org/10.1021/acsbiomaterials.0c00175.
Barroso A, Mestre H, Ascenso A, Simões S, Reis C. Nanomaterials in wound therapeutic: from materials sciences to wound therapeutic purposes. Nano Choose. 2020;1:443–60. https://doi.org/10.1002/nano.202000055.
Mihai MM, Dima MB, Dima B, Holban AM. Nanomaterials for wound therapeutic and an infection management. Supplies. 2019. https://doi.org/10.3390/ma12132176.
Medrano-Bosch M, Moreno-Lanceta A, Melgar-Lesmes P. Nanoparticles to focus on and deal with macrophages: the Ockham’s idea? Pharmaceutics. 2021. https://doi.org/10.3390/pharmaceutics13091340.
Dong X, Chang J, Li H. Bioglass promotes wound therapeutic by way of modulating the paracrine results between macrophages and repairing cells. J Mater Chem B. 2017;5:5240–50. https://doi.org/10.1039/C7TB01211J.
Xie W, Fu X, Tang F, Mo Y, Cheng J, Wang H, Chen X. Dose-dependent modulation results of bioactive glass particles on macrophages and diabetic wound therapeutic. J Mater Chem B. 2019;7:940–52. https://doi.org/10.1039/C8TB02938E.
Mârza SM, Magyari Ok, Bogdan S, Moldovan M, Peştean C, Nagy A, Tăbăran F, Licarete E, Suarasan S, Dreanca A, Baia L, Papuc I. Pores and skin wound regeneration with bioactive glass-gold nanoparticles ointment. Biomed Mater. 2019;14:25011. https://doi.org/10.1088/1748-605x/aafd7d.
Wu H, Li F, Wang S, Lu J, Li J, Du Y, Solar X, Chen X, Gao J, Ling D. Ceria nanocrystals embellished mesoporous silica nanoparticle primarily based ROS-scavenging tissue adhesive for extremely environment friendly regenerative wound therapeutic. Biomaterials. 2018;151:66–77. https://doi.org/10.1016/j.biomaterials.2017.10.018.
Younan GJ, Heit YI, Dastouri P, Kekhia H, Xing W, Gurish MF, Orgill DP. Mast cells are required within the proliferation and reworking phases of microdeformational wound remedy. Plast Reconstr Surg. 2011;128:649e–58e. https://doi.org/10.1097/PRS.0b013e318230c55d.
Rajendran NK, Kumar SSD, Houreld NN, Abrahamse H. A evaluate on nanoparticle primarily based remedy for wound therapeutic. J Drug Deliv Sci Technol. 2018;44:421–30. https://doi.org/10.1016/j.jddst.2018.01.009.
Kim TH, Jung Y, Kim SH. Nanofibrous electrospun coronary heart decellularized extracellular matrix-based hybrid scaffold as wound dressing for decreasing scarring in wound therapeutic. Tissue Eng Half A. 2017;24:830–48. https://doi.org/10.1089/ten.tea.2017.0318.
Liu S, Zhang Q, Yu J, Shao N, Lu H, Guo J, Qiu X, Zhou D, Huang Y. Absorbable thioether grafted hyaluronic acid nanofibrous hydrogel for synergistic modulation of irritation microenvironment to speed up continual diabetic wound therapeutic. Adv Healthc Mater. 2020;9:2000198. https://doi.org/10.1002/adhm.202000198.
Solar L, Li J, Gao W, Shi M, Tang F, Fu X, Chen X. Coaxial nanofibrous scaffolds mimicking the extracellular matrix transition within the wound therapeutic course of selling pores and skin regeneration by way of enhancing immunomodulation. J Mater Chem B. 2021;9:1395–405. https://doi.org/10.1039/D0TB01933J.
Kaymakcalan OE, Abadeer A, Goldufsky JW, Galili U, Karinja SJ, Dong X, Jin JL, Samadi A, Spector JA. Topical α-gal nanoparticles speed up diabetic wound therapeutic. Exp Dermatol. 2020;29:404–13. https://doi.org/10.1111/exd.14084.
Criado-Gonzalez M, Espinosa-Cano E, Rojo L, Boulmedais F, Aguilar MR, Hernández R. Injectable tripeptide/polymer nanoparticles supramolecular hydrogel: a candidate for the remedy of inflammatory pathologies. ACS Appl Mater Interfaces. 2022;14:10068–80. https://doi.org/10.1021/acsami.1c22993.
Peled E, Sosnik A. Amphiphilic galactomannan nanoparticles set off the choice activation of murine macrophages. J Management Launch. 2021;339:473–83. https://doi.org/10.1016/j.jconrel.2021.10.017.
Liu Q, Kim Y-J, Im G-B, Zhu J, Wu Y, Liu Y, Bhang SH. Inorganic nanoparticles utilized as practical therapeutics. Adv Funct Mater. 2021;31:2008171. https://doi.org/10.1002/adfm.202008171.
Cheng J, Zhang Q, Fan S, Zhang A, Liu B, Hong Y, Guo J, Cui D, Tune J. The vacuolization of macrophages induced by giant quantities of inorganic nanoparticle uptake to boost the immune response. Nanoscale. 2019;11:22849–59. https://doi.org/10.1039/C9NR08261A.
You C, Li Q, Wang X, Wu P, Ho JK, Jin R, Zhang L, Shao H, Han C. Silver nanoparticle loaded collagen/chitosan scaffolds promote wound therapeutic by way of regulating fibroblast migration and macrophage activation. Sci Rep. 2017;7:10489. https://doi.org/10.1038/s41598-017-10481-0.
Adhikari U, An X, Rijal N, Hopkins T, Khanal S, Chavez T, Tatu R, Sankar J, Little KJ, Hom DB, Bhattarai N, Pixley SK. Embedding magnesium metallic particles in polycaprolactone nanofiber mesh improves applicability for biomedical purposes. Acta Biomater. 2019;98:215–34. https://doi.org/10.1016/j.actbio.2019.04.061.
Gan J, Liu C, Li H, Wang S, Wang Z, Kang Z, Huang Z, Zhang J, Wang C, Lv D, Dong L. Accelerated wound therapeutic in diabetes by reprogramming the macrophages with particle-induced clustering of the mannose receptors. Biomaterials. 2019;219: 119340. https://doi.org/10.1016/j.biomaterials.2019.119340.
Xiang J, Zhu R, Lang S, Yan H, Liu G, Peng B. Mussel-inspired immobilization of zwitterionic silver nanoparticles towards antibacterial cotton gauze for selling wound therapeutic. Chem Eng J. 2021;409: 128291. https://doi.org/10.1016/j.cej.2020.128291.
Daghian SG, Farahpour MR, Jafarirad S. Organic fabrication and electrostatic sights of recent layered silver/talc nanocomposite utilizing Lawsonia inermis L. and its chitosan-capped inorganic/natural hybrid: investigation on acceleration of Staphylococcus aureus and Pseudomonas aeruginosa contaminated wound therapeutic. Mater Sci Eng C. 2021;128: 112294. https://doi.org/10.1016/j.msec.2021.112294.
ChoodariGharehpapagh A, Farahpour MR, Jafarirad S. The organic synthesis of gold/perlite nanocomposite utilizing Urtica dioica extract and its chitosan-capped spinoff for therapeutic wounds contaminated with methicillin-resistant Staphylococcus aureus. Int J Biol Macromol. 2021;183:447–56. https://doi.org/10.1016/j.ijbiomac.2021.04.150.
Zhu S, Dai Q, Yao L, Wang Z, He Z, Li M, Wang H, Li Q, Gao H, Cao X. Engineered multifunctional nanocomposite hydrogel dressing to advertise vascularization and anti-inflammation by sustained releasing of Mg2+ for diabetic wounds. Compos Half B Eng. 2022;231: 109569. https://doi.org/10.1016/j.compositesb.2021.109569.
Orlowski P, Zmigrodzka M, Tomaszewska E, Ranoszek-Soliwoda Ok, Czupryn M, Antos-Bielska M, Szemraj J, Celichowski G, Grobelny J, Krzyzowska M. Tannic acid-modified silver nanoparticles for wound therapeutic: the significance of measurement. Int J Nanomed. 2018;13:991.
Wu J, Zhu J, Wu Q, An Y, Wang Ok, Xuan T, Zhang J, Tune W, He H, Tune L, Zheng J, Xiao J. Mussel-inspired floor immobilization of heparin on magnetic nanoparticles for enhanced wound restore by way of sustained launch of a development issue and M2 macrophage polarization. ACS Appl Mater Interfaces. 2021;13:2230–44. https://doi.org/10.1021/acsami.0c18388.
Gubitosa J, Rizzi V, Fini P, Laurenzana A, Fibbi G, Veiga-Villauriz C, Fanelli F, Fracassi F, Onzo A, Bianco G, Gaeta C, Guerrieri A, Cosma P. Biomolecules from snail mucus (Helix aspersa) conjugated gold nanoparticles, exhibiting potential wound therapeutic and anti inflammatory exercise. Gentle Matter. 2020;16:10876–88. https://doi.org/10.1039/D0SM01638A.
Liu L, Ding Z, Yang Y, Zhang Z, Lu Q, Kaplan DL. Asiaticoside-laden silk nanofiber hydrogels to manage irritation and angiogenesis for scarless pores and skin regeneration. Biomater Sci. 2021;9:5227–36. https://doi.org/10.1039/D1BM00904D.
Saleh B, Dhaliwal HK, Portillo-Lara R, Shirzaei Sani E, Abdi R, Amiji MM, Annabi N. Native immunomodulation utilizing an adhesive hydrogel loaded with miRNA-laden nanoparticles promotes wound therapeutic. Small. 2019;15:1902232. https://doi.org/10.1002/smll.201902232.
Hu C, Zhang F, Lengthy L, Kong Q, Luo R, Wang Y. Twin-responsive injectable hydrogels encapsulating drug-loaded micelles for on-demand antimicrobial exercise and accelerated wound therapeutic. J Management Launch. 2020;324:204–17. https://doi.org/10.1016/j.jconrel.2020.05.010.
Ding L-G, Wang S, Yao B-J, Li F, Li Y-A, Zhao G-Y, Dong Y-B. Synergistic antibacterial and anti inflammatory results of a drug-loaded self-standing porphyrin-COF membrane for environment friendly pores and skin wound therapeutic. Adv Healthc Mater. 2021;10:2001821. https://doi.org/10.1002/adhm.202001821.
Zhang G, Xue H, Solar D, Yang S, Tu M, Zeng R. Gentle apoptotic-cell-inspired nanoparticles persistently bind to macrophage membranes and promote anti-inflammatory and pro-healing results. Acta Biomater. 2021;131:452–63. https://doi.org/10.1016/j.actbio.2021.07.002.
Gobi R, Ravichandiran P, Babu RS, Yoo DJ. Biopolymer and artificial polymer-based nanocomposites in wound dressing purposes: a evaluate. Polymers. 2021. https://doi.org/10.3390/polym13121962.
Dulińska-Litewka J, Dykas Ok, Felkle D, Karnas Ok, Khachatryan G, Karewicz A. Hyaluronic acid-silver nanocomposites and their biomedical purposes: a evaluate. Supplies. 2022. https://doi.org/10.3390/ma15010234.
Mebert AM, Alvarez GS, Peroni R, Illoul C, Hélary C, Coradin T, Desimone MF. Collagen-silica nanocomposites as dermal dressings stopping an infection in vivo. Mater Sci Eng C. 2018;93:170–7. https://doi.org/10.1016/j.msec.2018.07.078.
Wang P, Jiang S, Li Y, Luo Q, Lin J, Hu L, Liu X, Xue F. Virus-like mesoporous silica-coated plasmonic Ag nanocube with robust micro organism adhesion for diabetic wound ulcer therapeutic. Nanomed Nanotechnol Biol Med. 2021;34: 102381. https://doi.org/10.1016/j.nano.2021.102381.
Maheen S, Younis H, Khan HU, Salman Shafqat S, Ali S, Rehman AU, Ilyas S, Zafar MN, Shafqat SR, Kalam A, Al-Ghamdi AA. Enhanced antifungal and wound therapeutic efficacy of statistically optimized, physicochemically evaluated econazole-triamcinolone loaded silica nanoparticles. Entrance Chem. 2022. https://doi.org/10.3389/fchem.2022.836678.