Geim, A. Okay. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).
Liu, Y., Huang, Y. & Duan, X. Van der Waals integration earlier than and past two-dimensional supplies. Nature 567, 323–333 (2019).
Huang, X. et al. Latest progress on fabrication and flat-band physics in 2D transition metallic dichalcogenides moiré superlattices. J. Semicond. 44, 011901 (2023).
Novoselov, Okay. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).
Qian, Q. et al. Chiral molecular intercalation superlattices. Nature 606, 902–908 (2022).
Wu, Y., Li, D., Wu, C.-L., Hwang, H. Y. & Cui, Y. Electrostatic gating and intercalation in 2D supplies. Nat. Rev. Mater. 8, 41–53 (2023).
Zhao, X. et al. Engineering covalently bonded 2D layered supplies by self-intercalation. Nature 581, 171–177 (2020).
Yang, C. et al. Aqueous Li-ion battery enabled by halogen conversion–intercalation chemistry in graphite. Nature 569, 245–250 (2019).
Li, Z. et al. Intercalation technique in 2D supplies for electronics and optoelectronics. Small Strategies 5, 2100567 (2021).
Luo, P. et al. Molybdenum disulfide transistors with enlarged van der Waals gaps at their dielectric interface by way of oxygen accumulation. Nat. Electron. 5, 849–858 (2022).
Geim, A. Okay. Exploring two-dimensional empty area. Nano Lett. 21, 6356–6358 (2021).
Yang, Q. et al. Capillary condensation beneath atomic-scale confinement. Nature 588, 250–253 (2020).
Keerthi, A. et al. Ballistic molecular transport by means of two-dimensional channels. Nature 558, 420–424 (2018).
Radha, B. et al. Molecular transport by means of capillaries made with atomic-scale precision. Nature 538, 222–225 (2016).
Fumagalli, L. et al. Anomalously low dielectric fixed of confined water. Science 360, 1339–1342 (2018).
Gopinadhan, Okay. et al. Full steric exclusion of ions and proton transport by means of confined monolayer water. Science 363, 145–148 (2019).
Yang, Y. et al. Giant-area graphene-nanomesh/carbon-nanotube hybrid membranes for ionic and molecular nanofiltration. Science 364, 1057–1062 (2019).
Chen, L. et al. Ion sieving in graphene oxide membranes by way of cationic management of interlayer spacing. Nature 550, 380–383 (2017).
Abraham, J. et al. Tunable sieving of ions utilizing graphene oxide membranes. Nat. Nanotechnol. 12, 546–550 (2017).
Rajapakse, M. et al. Intercalation as a flexible device for fabrication, property tuning, and part transitions in 2D supplies. NPJ 2D Mater. Appl. 5, 30 (2021).
Yu, Y. et al. Gate-tunable part transitions in skinny flakes of 1T-TaS2. Nat. Nanotechnol. 10, 270–276 (2015).
Xiong, F. et al. Li intercalation in MoS2: in situ commentary of its dynamics and tuning optical and electrical properties. Nano Lett. 15, 6777–6784 (2015).
Wang, C. et al. Monolayer atomic crystal molecular superlattices. Nature 555, 231–236 (2018).
Li, Y., Yan, H., Xu, B., Zhen, L. & Xu, C.-Y. Electrochemical intercalation in atomically skinny van der Waals supplies for structural part transition and gadget purposes. Adv. Mater. 33, 2000581 (2021).
Bao, W. et al. Approaching the boundaries of transparency and conductivity in graphitic supplies by means of lithium intercalation. Nat. Commun. 5, 4224 (2014).
Muñoz-Santiburcio, D. & Marx, D. Confinement-controlled aqueous chemistry inside nanometric slit pores. Chem. Rev. 121, 6293–6320 (2021).
Esfandiar, A. et al. Measurement impact in ion transport by means of angstrom-scale slits. Science 358, 511–513 (2017).
Kanetani, Okay. et al. Ca intercalated bilayer graphene as a thinnest restrict of superconducting C6Ca. Proc. Natl Acad. Sci. USA 109, 19610–19613 (2012).
Wan, C. et al. Versatile n-type thermoelectric supplies by natural intercalation of layered transition metallic dichalcogenide TiS2. Nat. Mater. 14, 622–627 (2015).
Buddy, R. H. & Yoffe, A. D. Digital properties of intercalation complexes of the transition metallic dichalcogenides. Adv. Phys. 36, 1–94 (1987).
Ruiz-Barragan, S., Muñoz-Santiburcio, D. & Marx, D. Nanoconfined water inside graphene slit pores adopts distinct confinement-dependent regimes. J. Phys. Chem. Lett. 10, 329–334 (2019).
Muñoz-Santiburcio, D., Wittekindt, C. & Marx, D. Nanoconfinement results on hydrated extra protons in layered supplies. Nat. Commun. 4, 2349 (2013).
Muñoz-Santiburcio, D. & Marx, D. On the complicated structural diffusion of proton holes in nanoconfined alkaline options inside slit pores. Nat. Commun. 7, 12625 (2016).
Muñoz-Santiburcio, D. & Marx, D. Nanoconfinement in slit pores enhances water self-dissociation. Phys. Rev. Lett. 119, 056002 (2017).
Zang, Y. et al. Versatile suspended gate natural thin-film transistors for ultra-sensitive stress detection. Nat. Commun. 6, 6269 (2015).
Gong, S. et al. A wearable and extremely delicate stress sensor with ultrathin gold nanowires. Nat. Commun. 5, 3132 (2014).
Huang, Y.-C. et al. Delicate stress sensors based mostly on conductive microstructured air-gap gates and two-dimensional semiconductor transistors. Nat. Electron. 3, 59–69 (2020).
Liu, Y. et al. Approaching the Schottky–Mott restrict in van der Waals metallic–semiconductor junctions. Nature 557, 696–700 (2018).
Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software program venture for quantum simulations of supplies. J. Phys. Condens. Matter 21, 395502 (2009).