Rookmaaker, M. B., Schutgens, F., Verhaar, M. C. & Clevers, H. Growth and utility of human grownup stem or progenitor cell organoids. Nat. Rev. Nephrol. 11, 546–554 (2015).
Baharvand, H., Hashemi, S. M., Kazemi Ashtiani, S. & Farrokhi, A. Differentiation of human embryonic stem cells into hepatocytes in 2D and 3D tradition methods in vitro. Int. J. Dev. Biol. 50, 645–652 (2006).
Benya, P. D. & Shaffer, J. D. Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell 30, 215–224 (1982).
Nelson, C. M. & Bissell, M. J. Modeling dynamic reciprocity: engineering three-dimensional tradition fashions of breast structure, operate, and neoplastic transformation. Semin. Most cancers Biol. 15, 342–352 (2005).
Imamura, Y. et al. Comparability of 2D- and 3D-culture fashions as drug-testing platforms in breast most cancers. Oncol. Rep. 33, 1837–1843 (2015).
Weaver, V. M. et al. Reversion of the malignant phenotype of human breast cells in three-dimensional tradition and in vivo by integrin blocking antibodies. J. Cell Biol. 137, 231–245 (1997).
Bhadriraju, Okay. & Chen, C. S. Engineering mobile microenvironments to enhance cell-based drug testing. Drug Discov. At present 7, 612–620 (2002).
Yamada, Okay. M. & Cukierman, E. Modeling tissue morphogenesis and most cancers in 3D. Cell 130, 601–610 (2007).
Cukierman, E., Pankov, R., Stevens, D. R. & Yamada, Okay. M. Taking cell-matrix adhesions to the third dimension. Science 294, 1708–1712 (2001).
Gao, D. et al. Organoid cultures derived from sufferers with superior prostate most cancers. Cell 159, 176–187 (2014).
Karthaus, W. R. et al. Identification of multipotent luminal progenitor cells in human prostate organoid cultures. Cell 159, 163–175 (2014).
Drost, J. et al. Organoid tradition methods for prostate epithelial and most cancers tissue. Nat. Protoc. 11, 347–358 (2016).
Kelm, J. M., Timmins, N. E., Brown, C. J., Fussenegger, M. & Nielsen, L. Okay. Technique for era of homogeneous multicellular tumor spheroids relevant to all kinds of cell varieties. Biotechnol. Bioeng. 83, 173–180 (2003).
Zheng, H. et al. Rotary tradition promotes the proliferation of MCF-7 cells encapsulated in three-dimensional collagen–alginate hydrogels by way of activation of the ERK1/2-MAPK pathway. Biomed. Mater. 7, 015003 (2012).
Raghavan, S. et al. Comparative evaluation of tumor spheroid era strategies for differential in vitro drug toxicity. Oncotarget 7, 16948–16961 (2016).
Marchi, F. & Leblond, C. P. Collagen biogenesis and meeting into fibrils as proven by ultrastructural and 3H-proline radioautographic research on the fibroblasts of the rat meals pad. Am. J. Anat. 168, 167–197 (1983).
McCaffrey, G. et al. Tight junctions comprise oligomeric protein meeting vital for sustaining blood–mind barrier integrity in vivo. J. Neurochem. 103, 2540–2555 (2007).
Seger, D., Seger, R. & Shaltiel, S. The CK2 phosphorylation of vitronectin. Promotion of cell adhesion by way of the αvβ3-phosphatidylinositol 3-kinase pathway. J. Biol. Chem. 276, 16998–17006 (2001).
Weber, G. F. et al. Phosphorylation-dependent interplay of osteopontin with its receptors regulates macrophage migration and activation. J. Leukoc. Biol. 72, 752–761 (2002).
Yalak, G. & Vogel, V. Extracellular phosphorylation and phosphorylated proteins: not simply curiosities however physiologically vital. Sci. Sign. 5, re7 (2012).
Wu, D. et al. Polymers with managed meeting and rigidity made with click-functional peptide bundles. Nature 574, 658–662 (2019).
Du, X., Zhou, J., Shi, J. & Xu, B. Supramolecular hydrogelators and hydrogels: from delicate matter to molecular biomaterials. Chem. Rev. 115, 13165–13307 (2015).
Cheetham, A. G., Zhang, P., Lin, Y. A., Lock, L. L. & Cui, H. Supramolecular nanostructures fashioned by anticancer drug meeting. J. Am. Chem. Soc. 135, 2907–2910 (2013).
Tibbitt, M. W. & Anseth, Okay. S. Hydrogels as extracellular matrix mimics for 3D cell tradition. Biotechnol. Bioeng. 103, 655–663 (2009).
Jayawarna, V. et al. Nanostructured hydrogels for 3‐dimensional cell tradition by self‐meeting of fluorenylmethoxycarbonyl–dipeptides. Adv. Mater. 18, 611–614 (2006).
Smith, D. J. et al. A multiphase transitioning peptide hydrogel for suturing ultrasmall vessels. Nat. Nanotechnol. 11, 95–102 (2016).
Alvarez, Z. et al. Bioactive scaffolds with enhanced supramolecular movement promote restoration from spinal twine damage. Science 374, 848–856 (2021).
Winkler, S. M., Harrison, M. R. & Messersmith, P. B. Biomaterials in fetal surgical procedure. Biomater. Sci. 7, 3092–3109 (2019).
Wang, H., Feng, Z. & Xu, B. Intercellular instructed-assembly mimics protein dynamics to induce cell spheroids. J. Am. Chem. Soc. 141, 7271–7274 (2019).
Wang, H. et al. An in situ dynamic continuum of supramolecular phosphoglycopeptides permits formation of 3D cell spheroids. Angew. Chem. Int. Ed. 56, 16297–16301 (2017).
He, H. et al. Enzymatic noncovalent synthesis. Chem. Rev. 120, 9994–10078 (2020).
Zhang, Y., Kuang, Y., Gao, Y. & Xu, B. Versatile small-molecule motifs for self-assembly in water and the formation of biofunctional supramolecular hydrogels. Langmuir 27, 529–537 (2011).
Reches, M. & Gazit, E. Casting metallic nanowires inside discrete self-assembled peptide nanotubes. Science 300, 625–627 (2003).
Gao, Y., Shi, J., Yuan, D. & Xu, B. Imaging enzyme-triggered self-assembly of small molecules inside reside cells. Nat. Commun. 3, 1033 (2012).
Van Itallie, C. M. & Anderson, J. M. Occludin confers adhesiveness when expressed in fibroblasts. J. Cell Sci. 110, 1113–1121 (1997).
Mrsny, R. J. et al. A key claudin extracellular loop area is vital for epithelial barrier integrity. Am. J. Pathol. 172, 905–915 (2008).
Lee, M., Ghosh, U., Thurber, Okay. R., Kato, M. & Tycko, R. Molecular construction and interactions inside amyloid-like fibrils fashioned by a low-complexity protein sequence from FUS. Nat. Commun. 11, 5735 (2020).
Roder, C. et al. Atomic construction of PI3-kinase SH3 amyloid fibrils by cryo-electron microscopy. Nat. Commun. 10, 3754 (2019).
Cao, Q., Boyer, D. R., Sawaya, M. R., Ge, P. & Eisenberg, D. S. Cryo-EM constructions of 4 polymorphic TDP-43 amyloid cores. Nat. Struct. Mol. Biol. 26, 619–627 (2019).
Fitzpatrick, A. W. P. et al. Cryo-EM constructions of tau filaments from Alzheimer’s illness. Nature 547, 185–190 (2017).
Falcon, B. et al. Novel tau filament fold in power traumatic encephalopathy encloses hydrophobic molecules. Nature 568, 420–423 (2019).
Wang, F. et al. Deterministic chaos within the self-assembly of β sheet nanotubes from an amphipathic oligopeptide. Matter 4, 3217–3231 (2021).
To, W. S. & Midwood, Okay. S. Plasma and mobile fibronectin: distinct and unbiased features throughout tissue restore. Fibrogenesis Tissue Restore 4, 21 (2011).
Lu, Y. et al. Vacuolin-1 potently and reversibly inhibits autophagosome-lysosome fusion by activating RAB5A. Autophagy 10, 1895–1905 (2014).
Du, X. et al. In situ generated d‐peptidic nanofibrils as multifaceted apoptotic inducers to focus on most cancers cells. Cell Demise Dis. 8, e2614–e2614 (2017).
Feng, Z., Wang, H., Chen, X. & Xu, B. Self-assembling capability determines the exercise of enzyme-instructed self-assembly for inhibiting most cancers cells. J. Am. Chem. Soc. 139, 15377–15384 (2017).
Shigemitsu, H. et al. An adaptive supramolecular hydrogel comprising self-sorting double nanofibre networks. Nat. Nanotechnol. 13, 165–172 (2018).
Epstein, I. R. & Xu, B. Response–diffusion processes on the nano- and microscales. Nat. Nanotechnol. 11, 312–319 (2016).
Liang, G., Ren, H. & Rao, J. A biocompatible condensation response for managed meeting of nanostructures in residing cells. Nat. Chem. 2, 54–60 (2010).
Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006).
Ottinger, E. A., Shekels, L. L., Bernlohr, D. A. & Barany, G. Synthesis of phosphotyrosine-containing peptides and their use as substrates for protein tyrosine phosphatases. Biochemistry 32, 4354–4361 (1993).
Liu, S. et al. Enzymatically forming intranuclear peptide assemblies for selectively killing human induced pluripotent stem cells. J. Am. Chem. Soc. 143, 15852–15862 (2021).
Basu Ray, G., Chakraborty, I. & Moulik, S. P. Pyrene absorption is usually a handy technique for probing vital micellar focus (cmc) and indexing micellar polarity. J. Colloid Interface Sci. 294, 248–254 (2006).
Rohou, A. & Grigorieff, N. CTFFIND4: quick and correct defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015).
Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced movement for improved cryo-electron microscopy. Nat. Strategies 14, 331–332 (2017).
Punjani, A., Zhang, H. & Fleet, D. J. Non-uniform refinement: adaptive regularization improves single-particle cryo-EM reconstruction. Nat. Strategies 17, 1214–1221 (2020).
Emsley, P. & Cowtan, Okay. Coot: model-building instruments for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004).
Afonine, P. V. et al. Actual-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr. D 74, 531–544 (2018).