De Volder, M. F., Tawfick, S. H., Baughman, R. H. & Hart, A. J. Carbon nanotubes: current and future business purposes. Science 339, 535–539 (2013).
Huang, H., Feng, W., Chen, Y. & Shi, J. L. Inorganic nanoparticles in scientific trials and translations. Nano Right this moment 35, 100972 (2020).
Hansen, S. F. & Lennquist, A. SIN record criticism based mostly on misunderstandings. Nat. Nanotechnol. 15, 418 (2020).
Nel, A. E. et al. Understanding biophysicochemical interactions on the nano–bio interface. Nat. Mater. 8, 543–557 (2009).
Rennick, J. J., Johnston, A. P. R. & Parton, R. G. Key ideas and strategies for finding out the endocytosis of organic and nanoparticle therapeutics. Nat. Nanotechnol. 16, 266–276 (2021).
Yang, W., Wang, L., Mettenbrink, E. M., DeAngelis, P. L. & Wilhelm, S. Nanoparticle toxicology. Annu. Rev. Pharmacol. Toxicol. 61, 269–289 (2021).
Poland, C. A. et al. Carbon nanotubes launched into the belly cavity of mice present asbestos-like pathogenicity in a pilot examine. Nat. Nanotechnol. 3, 423–428 (2008).
Nagai, H. et al. Diameter and rigidity of multiwalled carbon nanotubes are crucial elements in mesothelial damage and carcinogenesis. Proc. Natl Acad. Sci. USA 108, E1330–E1338 (2011).
Donaldson, Okay., Murphy, F. A., Duffin, R. & Poland, C. A. Asbestos, carbon nanotubes and the pleural mesothelium: a overview of the speculation relating to the position of lengthy fibre retention within the parietal pleura, irritation and mesothelioma. Half. Fibre Toxicol. 7, 5 (2010).
Dostert, C. et al. Innate immune activation by Nalp3 inflammasome sensing of asbestos and silica. Science 320, 674–677 (2008).
Franklin, B. S., Mangan, M. S. & Latz, E. Crystal formation in irritation. Annu. Rev. Immunol. 34, 173–202 (2016).
Palomaki, J. et al. Lengthy, needle-like carbon nanotubes and asbestos activate the NLRP3 inflammasome by an analogous mechanism. ACS Nano 5, 6861–6870 (2011).
Miyanishi, M. et al. Identification of Tim4 as a phosphatidylserine receptor. Nature 450, 435–439 (2007).
Omori, S. et al. Tim4 acknowledges carbon nanotubes and mediates phagocytosis resulting in granuloma formation. Cell Rep. 34, 108734 (2021).
Kobayashi, N. et al. TIM-1 and TIM-4 glycoproteins bind phosphatidylserine and mediate uptake of apoptotic cells. Immunity 27, 927–940 (2007).
Berman, H., Henrick, Okay., Nakamura, H. & Markley, J. L. The worldwide Protein Knowledge Financial institution (wwPDB): guaranteeing a single, uniform archive of PDB information. Nucleic Acids Res. 35, D301–D303 (2007).
Duan, S. & Paulson, J. C. Siglecs as immune cell checkpoints in illness. Annu. Rev. Immunol. 38, 365–395 (2020).
Crocker, P. R., Paulson, J. C. & Varki, A. Siglecs and their roles within the immune system. Nat. Rev. Immunol. 7, 255–266 (2007).
Hayami, T., Higo, J., Nakamura, H. & Kasahara, Okay. Multidimensional virtual-system coupled canonical molecular dynamics to compute free-energy landscapes of peptide multimer meeting. J. Comput. Chem. 40, 2453–2463 (2019).
Jumper, J. et al. Extremely correct protein construction prediction with AlphaFold. Nature 596, 583–589 (2021).
Angata, T., Hingorani, R., Varki, N. M. & Varki, A. Cloning and characterization of a novel mouse Siglec, mSiglec-F: differential evolution of the mouse and human (CD33) Siglec-3-related gene clusters. J. Biol. Chem. 276, 45128–45136 (2001).
Angata, T., Hayakawa, T., Yamanaka, M., Varki, A. & Nakamura, M. Discovery of Siglec-14, a novel sialic acid receptor present process concerted evolution with Siglec-5 in primates. FASEB J. 20, 1964–1973 (2006).
Wilson, A. A. et al. Amelioration of emphysema in mice by lentiviral transduction of long-lived pulmonary alveolar macrophages. J. Clin. Make investments. 120, 379–389 (2010).
Yamanaka, M., Kato, Y., Angata, T. & Narimatsu, H. Deletion polymorphism of Siglec14 and its practical implications. Glycobiology 19, 841–846 (2009).
Toyokuni, S. Genotoxicity and carcinogenicity danger of carbon nanotubes. Adv. Drug Deliv. Rev. 65, 2098–2110 (2013).
D’Astolfo, D. S. et al. Environment friendly intracellular supply of native proteins. Cell 161, 674–690 (2015).
Gonzalez-Durruthy, M., Concu, R., Ruso, J. M. & Cordeiro, M. New mechanistic insights on carbon nanotubes’ nanotoxicity utilizing remoted submitochondrial particles, molecular docking, and nano-QSTR approaches. Biol. (Basel) 10, 171 (2021).
Ge, C. et al. Binding of blood proteins to carbon nanotubes reduces cytotoxicity. Proc. Natl Acad. Sci. USA 108, 16968–16973 (2011).
Zhang, J. et al. Molecular recognition utilizing corona part complexes manufactured from artificial polymers adsorbed on carbon nanotubes. Nat. Nanotechnol. 8, 959–968 (2013).
Lanzarotti, E., Defelipe, L. A., Marti, M. A. & Turjanski, A. G. Fragrant clusters in protein–protein and protein–drug complexes. J. Cheminform. 12, 30 (2020).
Westbrook, J., Ito, N., Nakamura, H., Henrick, Okay. & Berman, H. M. PDBML: the illustration of archival macromolecular construction information in XML. Bioinformatics 21, 988–992 (2005).
Kinjo, A. R. et al. Protein Knowledge Financial institution Japan (PDBj): up to date person interfaces, useful resource description framework, evaluation instruments for big buildings. Nucleic Acids Res. 45, D282–D288 (2017).
Fu, Q. et al. Stimuli-responsive plasmonic assemblies and their biomedical purposes. Nano Right this moment 36, 101014 (2021).
Jorgensen, W. L., Maxwell, D. S. & TiradoRives, J. Growth and testing of the OPLS all-atom power discipline on conformational energetics and properties of natural liquids. J. Am. Chem. Soc. 118, 11225–11236 (1996).
Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparability of straightforward potential features for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983).
Darden, T., York, D. & Pedersen, L. Particle mesh Ewald—an N.log(N) methodology for Ewald sums in giant programs. J. Chem. Phys. 98, 10089–10092 (1993).
Essmann, U. et al. A easy particle mesh Ewald methodology. J. Chem. Phys. 103, 8577–8593 (1995).
Abraham, M. J. et al. Gromacs: excessive efficiency molecular simulations by multi-level parallelism from laptops to supercomputers. SoftwareX 1-2, 19–25 (2015).
Berendsen, H. J. C., Postma, J. P. M., Vangunsteren, W. F., Dinola, A. & Haak, J. R. Molecular-dynamics with coupling to an exterior bathtub. J. Chem. Phys. 81, 3684–3690 (1984).
Nostril, S. A molecular-dynamics methodology for simulations within the canonical ensemble. Mol. Phys. 52, 255–268 (1984).
Hess, B., Bekker, H., Berendsen, H. J. C. & Fraaije, J. G. E. M. LINCS: a linear constraint solver for molecular simulations. J. Comput. Chem. 18, 1463–1472 (1997).
Daszykowski, M & Walczak, B. In Complete Chemometrics (eds Brown, S. D., Tauler, R. & Walczak, B.), 635–654 (Elsevier, 2009).
Huerta-Cepas, J., Serra, F. & Bork, P. ETE 3: reconstruction, evaluation, and visualization of phylogenomic information. Mol. Biol. Evol. 33, 1635–1638 (2016).
Value, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2—roughly maximum-likelihood timber for big alignments. PLoS One 5, e9490 (2010).
Varadi, M. et al. AlphaFold Protein Construction Database: massively increasing the structural protection of protein-sequence area with high-accuracy fashions. Nucleic Acids Res. 50, D439–D444 (2022).
Tsugita, M., Morimoto, N., Tashiro, M., Kinoshita, Okay. & Nakayama, M. SR-B1 Is a silica receptor that mediates canonical inflammasome activation. Cell Rep. 18, 1298–1311 (2017).
Kitamura, T. et al. Retrovirus-mediated gene switch and expression cloning: highly effective instruments in practical genomics. Exp. Hematol. 31, 1007–1014 (2003).
Naito, Y., Hino, Okay., Bono, H. & Ui-Tei, Okay. CRISPRdirect: software program for designing CRISPR/Cas information RNA with decreased off-target websites. Bioinformatics 31, 1120–1123 (2015).
Sanjana, N. E., Shalem, O. & Zhang, F. Improved vectors and genome-wide libraries for CRISPR screening. Nat. Strategies 11, 783–784 (2014).
Lam, C. W., James, J. T., McCluskey, R., Arepalli, S. & Hunter, R. L. A overview of carbon nanotube toxicity and evaluation of potential occupational and environmental well being dangers. Crit. Rev. Toxicol. 36, 189–217 (2006).
Flynn, R. et al. Focusing on Syk-activated B cells in murine and human persistent graft-versus-host illness. Blood 125, 4085–4094 (2015).
Agarwal, Okay. et al. Inhibition of mucin-type O-glycosylation by metabolic processing and incorporation of N-thioglycolyl-d-galactosamine peracetate (Ac(5)GalNTGc). J. Am. Chem. Soc. 135, 14189–14197 (2013).
Ito, F. et al. Asbestos conceives Fe(II)-dependent mutagenic stromal milieu by ceaseless macrophage ferroptosis and β-catenin induction in mesothelium. Redox Biol. 36, 101616 (2020).
Maejima, I. et al. Autophagy sequesters broken lysosomes to regulate lysosomal biogenesis and kidney damage. EMBO J. 32, 2336–2347 (2013).