Verma SK, Gantait S, Kumar V, Gurel E. Purposes of carbon nanomaterials within the plant system: a perspective view on the professionals and cons. Sci Whole Environ. 2019;667:485–99.
Khodakovskaya M, Mahmood M, Xu Y, Li Z. Carbon nanotubes are in a position to penetrateplant seed coat and dramatically afect seed germination and plant development. ACS Nano. 2009;3:3221–7.
Cañas JE, Nations S, Vadan R, Dai L, Luo M, Ambikapathi R, Lee EH, Olszyk D, Efects of functionlized and nonfunctionlized single-walled carbon nonatubes on root elongation of choose crop species. Environ Toxicol Chem 2008;27(1):1922–31
Kumar A, Panigrahy M, Sahoo PK, Panigrahi KCS. Carbon nanoparticles affect photomorphogenesis and flowering time in Arabidopsis thaliana. Plant Cell Rep. 2018;37:901–12.
Kole C, Randunu KM, Choudhary P, Podila R, Ke PC, Rao AM, Marcus RK. Nanobiotechnology can enhance crop manufacturing and high quality: first proof from elevated plant biomass, fruit yield and phytomedicine content material in bitter melon (Momordica charantia). BMC Biotechnol. 2013;13:37–10.
Guo X, Wang R, Zhang H, Xing B, Naeem M, Yao T, Li R, Xu R, Zhang Z, Wu J. Results of graphene oxide on tomato development in numerous phases. Plant Physiol Biochem. 2021;162:447–55.
Khodakovskaya MV, Biris AS, Dervishi E, Villagarcia H. Carbon nanotubes induce development enhancement of tobacco cells. ACS Nano. 2012;27:2128–35.
Khodakovskaya MV, Nedosekin DA, Dervishi E, Biris AS, Shashkov EV, Galanzha EI, Zharov VP. Advanced genetic, photothermal, and photoacoustic evaluation of nanoparticle-plant interactions. Proc Natl Acad Sci U S A. 2011;108(3):1028–33.
Shekhawat GS, Rajput P, Rajput VD, Minkina T, Singh RK. Position of engineered carbon nanoparticles (CNPs) in selling development and metabolism of Vigna radiata (L.) Wilczek: Insights into the biochemical and physiological responses. Vegetation (Basel). 2021;10(7):1317.
Tiwari DK, Villaseñor Cendejas LM, Villegas J, Carreto Montoya L, Borjas García SE. Interfacing carbon nanotubes (CNT) with vegetation: enhancement of development, water and ionic nutrient uptake in maize (Zea mays) and implications for nanoagriculture. Appl Nanosci. 2014;4(5):577–91.
Li X, Jousset A, de Boer W, et al. Legacy of land use historical past determines reprogramming of plant physiology by soil microbiome. ISME J. 2019;13:738–51.
Fitzpatrick CR, Wang PW, Guttman DS, Kotanen PM, Johnson MTJ. Meeting and ecological operate of the basis microbiome throughout angiosperm plant species. Proc Natl Acad Sci USA. 2018;22:1157–65.
Raaijmakers JM. Soil immune responses. Science. 2016;352:1392–3.
Della Mónica IF, Stefanoni Rubio PJ, Vaca-Paulín R, Yañez-Ocampo G. Exploring plant growth-promoting rhizobacteria as stress alleviators: a methodological perception. Arch Microbiol. 2022;204(6):316.
Bhattacharyya PN. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol iotechnol. 2012;28(4):1327–50.
Ryu CM, Hu CH, Reddy MS, Wei HX, Paré PW, Kloepper JW. Bacterial volatiles promote development in Arabidopsis. Proc Natl Acad Sci U S A. 2003;100:4927–32.
Wu F, Zhang X, Zhang H, Chen W, Yang Y, Werner D, Tao S, Wang X. Results of varied carbon nanotubes on soil bacterial group composition and construction. Environ Sci Technol. 2019;53(10):5707–16.
Cheng J, Li X, Yu Y. Results of modified nanoscale carbon black on plant development, root mobile morphogenesis, and microbial group in cadmium-contaminated soil. Environ Sci Pollut Res Int. 2020;27(15):18423–33.
Chen L, Li X, Liang T, Nie C, Xie F, Liu Ok, Peng X, Xie J. Carbon nanoparticles improve potassium uptake through upregulating potassium channel expression and imitating organic ion channels in BY-2 cells. J Nanobiotechnol. 2020;18:21.
Tarroum M, Al-Qurainy F, Ali AAM, Al-Doss A, Fki L, Hassairi A. A novel PGPF Penicillium olsonii remoted from the rhizosphere of Aeluropus littoralis promotes plant development, enhances salt stress tolerance, and reduces chemical fertilizers inputs in hydroponic system. Entrance Microbiol. 2022;13:996054.
Tarroum M, Ali AAM, Al-Qurainy F, Al-Doss A, Fki L, Hassairi A. Harnessing the rhizosphere of the halophyte grass Aeluropus littoralis for halophilic plant-growth-promoting fungi and analysis of their biostimulant actions. Vegetation (Basel). 2021;10:784.
Dangle X, Ou Y, Shao C, Xiong W, Zhang N, Liu H, Li R, Shen Q, Kowalchuk GA. Trichoderma-amended biofertilizer stimulates soil resident Aspergillus inhabitants for joint plant development promotion. NPJ Biofilms Microbiomes. 2022;8:57.
Yang J, Li HJ, Yin QS, Zhang YL, Zhou HP, Zhang SX. Results of nano-carbon sol on physiological traits of root system and potassium absorption of flue-cured tobacco. Yancao Keji. 2015;48(1):7–11.
Berendsen RL, Bakker PA. The rhizosphere microbiome and plant well being. Developments Plant Sci. 2012;17:478–86.
Mhatre PH, Kadirvelu Ok, Divya KL, Venkatasalam EP, Srinivasan S, Ramkumar G, Saranya C, Shanmuganathan R. Plant Progress Selling Rhizobacteria (PGPR): a possible various device for Nematodes bio-control. Biocatal Agric Biotechnol. 2018;17:119–28.
Woo SL, Lorito M, Monte E. Trichoderma: a multipurpose, plant-beneficial microorganism for eco-sustainable agriculture. Nat Rev Microbiol. 2023;21(5):312–26.
Sharma M, Singh DN, Negi RK. The genus Sphingopyxis: systematics, ecology, and bioremediation potential. J Environ Handle. 2021;280:111744.
Kertesz MA, Hydrocarbon-Degrading Sphingomonads: Sphingomonas, Sphingobium, Novosphingobium, and Sphingopyxis, in Handbook of Hydrocarbon and Lipid Microbiology, T. KN, Editor. 2010, Springer: Berlin, Heidelberg. p. 1693–1705.
Boss BL, Zaslow SJ, Normile TG, Izquierdo JA. Comparative genomics of the plant-growth selling bacterium Sphingobium sp. pressure AEW4 remoted from the rhizosphere of the beachgrass Ammophila breviligulata. BMC Genom. 2022;23:508.
Krishnan R, Busse HJ, Tanaka N, Krishnamurthi S, Rameshkumar N. Novosphingobium pokkalii sp. nov., a novel rhizosphere-associated bacterium with plant helpful properties remoted from saline-tolerant pokkali rice. Res Microbiol. 2017;168(2):113–21.
Sukweenadhi J, Kang CH, et al. Sphingomonas panaciterrae sp. nov., a plant growth-promoting bacterium remoted from soil of a ginseng feld. Arch Microbiol. 2015;197:973–81.
Battu L, Goud BS, Ulaganathan Ok, Kandasamy U. Genome inside genome: NGS based mostly identifcation and meeting of endophytic Sphingopyxis granuli and Pseudomonas aeruginosa genomes from rice genomic reads. Genomics. 2017;109:141–6.
Dias ACF, Andreote FD, Lacava PT, Teixeira MA, Assumpção LC. Isolation of micropropagated strawberry endophytic micro organism and evaluation of their potential for plant development promotion. World J Microbiol iotechnol. 2009;25:189–95.
Dias AC, et al. Isolation of micropropagated strawberry endophytic micro organism and evaluation of their potential for plant development promotion. World J Microbiol Biotechnol. 2009;25:189–95.
Jaiswal AK, Paudel I, Graber ER, Cytryn E, Frenkel O. Linking the belowground microbial composition, variety and exercise to soilborne illness suppression and development promotion of tomato amended with biochar. Sci Rep. 2017;7:44382.
Lengthy HH, Schmidt DD, Baldwin IT. Native bacterial endophytes promote host development in a species-specific method; phytohormone manipulations don’t lead to frequent development responses. PLoS ONE. 2008;3(7): e2702.
Mendes LW, Navarrete AA, van Veen JA, Tsai SM. Taxonomical and purposeful microbial group choice in soybean rhizosphere. ISME J. 2014;8(8):1577–87.
Ofek-Lalzar M, Goldman-Voronov M, Inexperienced SJ, Hadar Y, Minz D. Area of interest and host-associated purposeful signatures of the basis floor microbiome. Nat Commun. 2014;5:4950.
Panke-Buisse Ok, Goodrich JK, Ley RE, Kao-Kniffin J. Choice on soil microbiomes reveals reproducible impacts on plant operate. ISME J. 2015;9:980–9.
Overvoorde P, Beeckman T. Auxin management of root improvement. Chilly Spring Harb Perspect Biol. 2010;2(6):a001537.
Wang Y, Ji Z, Bouchard DC, Nisbet RM, Schimel JP, Gardea-Torresdey JL, Holden PA. Agglomeration determines results of carbonaceous nanomaterials on soybean nodulation, dinitrogen fixation potential, and development in soil. ACS Nano. 2017;11:5753–65.
Hao Y, Zhang Z, Music Y, Cao W, Guo J, Zhou G, Rui Y, Liu L, Xing B. Carbon nanomaterials alter plant physiology and soil bacterial group composition in a rice-soil-bacterial ecosystem. Environ Pollut. 2018;232:123–36.
Tong ZH, Nies LF, Carroll NJ, Applegate B, Turco RF. Affect of fullerene (C-60) on soil bacterial communities: aqueous mixture dimension and solvent co-introduction results. Sci Rep. 2016. https://doi.org/10.1038/srep28069.
Ren W, Teng Y, Li Z, Li L. Time-dependent impact of graphene on the construction, abundance, and performance of the soil bacterial group. J Hazard Mater. 2015;297:286–94.
Khodakovskaya MV, Kim JN, Alimohammadi M, Dervishi E, Mustafa T, Cernigla CE. Carbon nanotubes as plant development regulators: results on tomato development, reproductive system, and soil microbial group. Small. 2013;9:115–23.
Du J, Zhou Q. Graphene oxide regulates the bacterial group and reveals property modifications in soil. RSC Adv. 2015;5:27009–17.
Chen L, Li X, Nie C, Liang T, Xie F. Extremely hydrophilic carbon nanoparticles: uptake mechanism by mammalian and plant cells. RSC Adv. 2018;8:35246–56.
Estaki M, Bokulich NA, McDonald D, González A, Kosciolek T, Martino C, Zhu Q, Birmingham A, Vázquez-Baeza Y, Dillon MR, Bolyen E, Caporaso JG, Knight R. QIIME 2 permits complete end-to-end evaluation of numerous microbiome knowledge and comparative research with publicly accessible knowledge. Curr Protoc Bioinformatics. 2020;1:e100.
Quast C, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO. The SILVA ribosomal RNA gene database undertaking: improved knowledge processing and web-based instruments. Nucleic Acids Res. 2013;41:D590–6.
Nilsson RH, Taylor AFS, Bengtsson-Palme J, Jeppesen TS, Schigel D, Kennedy P, Picard Ok, Glöckner FO, Tedersoo L, Saar I, Kõljalg U, Abarenkov Ok. The UNITE database for molecular identification of fungi: dealing with darkish taxa and parallel taxonomic classifications. Nucleic Acids Res. 2019;8(D1):D259–64.
Douglas GM, Zaneveld JR. PICRUSt2 for prediction of metagenome capabilities. Nat Biotechnol. 2020;38:685–8.
Bastian M, Jacomy M. Gephi: an open supply software program for exploring and manipulating networks. ICWSM. 2009. https://doi.org/10.1609/icwsm.v3i1.13937.
Love MI, Anders S. Moderated estimation of fold change and dispersion for RNA-seq knowledge with DESeq2. Genome Biol. 2014;15(12):550.
Kumar S, Li M, Knyaz C, Tamura Ok. MEGA X: molecular evolutionary genetics evaluation throughout computing platforms. Mol Biol Evol. 2018;35(6):1547–9.
Poly F, et al. Comparability of nifH gene swimming pools in soils and soil microenvironments with contrasting properties. Appl Environ Microbiol. 2001;67(5):2255–62.
Glick BR. Micro organism with ACC deaminase can promote plant development and assist to feed the world. Microbiol Res. 2014;169(1):30–9.
Brazelton JN, et al. 2, 4-Diacetylphloroglucinol alters plant root improvement. Mol Plant Microbe Work together. 2008;21(10):1349–58.
Gruet C, et al. Rhizophere evaluation of auxin producers harboring the phenylpyruvate decarboxylase pathway. Appl Soil Ecol. 2022;173: 104363.