Sunday, September 17, 2023
HomeNanotechnologyBreaking by means of the basement membrane barrier to enhance nanotherapeutic supply...

Breaking by means of the basement membrane barrier to enhance nanotherapeutic supply to tumours


  • Dewhirst, M. W. & Secomb, T. W. Transport of medicine from blood vessels to tumour tissue. Nat. Rev. Most cancers 17, 738–750 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Blanco, E., Shen, H. & Ferrari, M. Ideas of nanoparticle design for overcoming organic limitations to drug supply. Nat. Biotechnol. 33, 941–951 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Wilhelm, S. et al. Evaluation of nanoparticle supply to tumours. Nat. Rev. Mater. 1, 16014 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Sindhwani, S. et al. The entry of nanoparticles into stable tumours. Nat. Mater. 19, 566–575 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Mitchell, M. J. et al. Engineering precision nanoparticles for drug supply. Nat. Rev. Drug Discov. 20, 101–124 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Wettschureck, N., Strilic, B. & Offermanns, S. Passing the vascular barrier: endothelial signaling processes controlling extravasation. Physiol. Rev. 99, 1467–1525 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Glassman, P. M. et al. Focusing on drug supply within the vascular system: concentrate on endothelium. Adv. Drug Deliv. Rev. 157, 96–117 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Setyawati, M. I., Tay, C. Y., Docter, D., Stauber, R. H. & Leong, D. T. Understanding and exploiting nanoparticles’ intimacy with the blood vessel and blood. Chem. Soc. Rev. 44, 8174–8199 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Cahill, P. A. & Redmond, E. M. Vascular endothelium—gatekeeper of vessel well being. Atherosclerosis 248, 97–109 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, Q. et al. Enzyme-activatable polymer–drug conjugate augments tumour penetration and therapy efficacy. Nat. Nanotechnol. 14, 799–809 (2019).

    Article 
    CAS 

    Google Scholar
     

  • El-Kareh, A. W. & Secomb, T. W. A mathematical mannequin for comparability of bolus injection, steady infusion, and liposomal supply of doxorubicin to tumor cells. Neoplasia 2, 325–338 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Hendriks, B. S. et al. Multiscale kinetic modeling of liposomal doxorubicin supply quantifies the function of tumor and drug-specific parameters in native supply to tumors. CPT Pharmacomet. Syst. Pharmacol. 1, e15 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Harashima, H., Iida, S., Urakami, Y., Tsuchihashi, M. & Kiwada, H. Optimization of antitumor impact of liposomally encapsulated doxorubicin primarily based on simulations by pharmacokinetic/pharmacodynamic modeling. J. Management. Launch 61, 93–106 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Jayadev, R. & Sherwood, D. R. Basement membranes. Curr. Biol. 27, R207–R211 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Nikolova, G., Strilic, B. & Lammert, E. The vascular area of interest and its basement membrane. Tendencies Cell Biol. 17, 19–25 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Reuten, R. et al. Basement membrane stiffness determines metastases formation. Nat. Mater. 20, 892–903 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Rowe, R. G. & Weiss, S. J. Breaching the basement membrane: who, when and the way? Tendencies Cell Biol. 18, 560–574 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Chaudhuri, O. et al. Extracellular matrix stiffness and composition collectively regulate the induction of malignant phenotypes in mammary epithelium. Nat. Mater. 13, 970–978 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, X. L. et al. The endothelial basement membrane acts as a checkpoint for entry of pathogenic T cells into the mind. J. Exp. Med. 217, e20191339 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Du, B. J. et al. Glomerular barrier behaves as an atomically exact bandpass filter in a sub-nanometre regime. Nat. Nanotechnol. 12, 1096–1102 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Baluk, P., Morikawa, S., Haskell, A., Mancuso, M. & McDonald, D. M. Abnormalities of basement membrane on blood vessels and endothelial sprouts in tumors. Am. J. Pathol. 163, 1801–1815 (2003).

    Article 

    Google Scholar
     

  • Yuan, F. et al. Microvascular permeability and interstitial penetration of sterically stabilized (stealth) liposomes in a human tumor xenograft. Most cancers Res. 54, 3352–3356 (1994).

    CAS 

    Google Scholar
     

  • Yokoi, Ok. et al. Capillary-wall collagen as a biophysical marker of nanotherapeutic permeability into the tumor microenvironment. Most cancers Res. 74, 4239–4246 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Miao, L. & Huang, L. Exploring the tumor microenvironment with nanoparticles. Most cancers Deal with. Res. 166, 193–226 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Wang, S. W., Liu, J., Goh, C. C., Ng, L. G. R. & Liu, B. NIR-II-excited intravital two-photon microscopy distinguishes deep cerebral and tumor vasculatures with an ultrabright NIR-I AIE luminogen. Adv. Mater. 31, 1904447 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Iliff, J. J. et al. A paravascular pathway facilitates CSF movement by means of the mind parenchyma and the clearance of interstitial solutes, together with amyloid β. Sci. Transl. Med. 4, 147ra111 (2012).

    Article 

    Google Scholar
     

  • Yu, X. et al. Immune modulation of liver sinusoidal endothelial cells by melittin nanoparticles suppresses liver metastasis. Nat. Commun. 10, 574 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Mikelis, C. M. et al. RhoA and ROCK mediate histamine-induced vascular leakage and anaphylactic shock. Nat. Commun. 6, 6725 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Bazzoni, G. & Dejana, E. Endothelial cell-to-cell junctions: molecular group and function in vascular homeostasis. Physiol. Rev. 84, 869–901 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Mak, Ok. M. & Mei, R. Basement membrane kind IV collagen and laminin: an outline of their biology and worth as fibrosis biomarkers of liver illness. Anat. Rec. 300, 1371–1390 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Track, J. et al. Endothelial basement membrane laminin 511 contributes to endothelial junctional tightness and thereby inhibits leukocyte transmigration. Cell Rep. 18, 1256–1269 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Chang, J. L. & Chaudhuri, O. Past proteases: basement membrane mechanics and most cancers invasion. J. Cell Biol. 218, 2456–2469 (2019).

    Article 

    Google Scholar
     

  • Rayagiri, S. S. et al. Basal lamina reworking on the skeletal muscle stem cell area of interest mediates stem cell self-renewal. Nat. Commun. 9, 1075 (2018).

    Article 

    Google Scholar
     

  • Liotta, L. A. et al. Metastatic potential correlates with enzymatic degradation of basement-membrane collagen. Nature 284, 67–68 (1980).

    Article 
    CAS 

    Google Scholar
     

  • Reymond, N., d’Agua, B. B. & Ridley, A. J. Crossing the endothelial barrier throughout metastasis. Nat. Rev. Most cancers 13, 858–870 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Kelley, L. C., Lohmer, L. L., Hagedorn, E. J. & Sherwood, D. R. Traversing the basement membrane in vivo: a variety of methods. J. Cell Biol. 204, 291–302 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Zindel, J. et al. Primordial GATA6 macrophages perform as extravascular platelets in sterile harm. Science 371, eabe0595 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Li, M. et al. Chemotaxis-driven supply of nano-pathogenoids for full eradication of tumors post-phototherapy. Nat. Commun. 11, 1126 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Wang, J. et al. Visualizing the perform and destiny of neutrophils in sterile harm and restore. Science 358, 111–116 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Harris, T. J. C. & Tepass, U. Adherens junctions: from molecules to morphogenesis. Nat. Rev. Mol. Cell Biol. 11, 502–514 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Chauhan, V. P. et al. Normalization of tumour blood vessels improves the supply of nanomedicines in a size-dependent method. Nat. Nanotechnol. 7, 383–388 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Orsenigo, F. et al. Phosphorylation of VE-cadherin is modulated by haemodynamic forces and contributes to the regulation of vascular permeability in vivo. Nat. Commun. 3, 1208 (2012).

    Article 

    Google Scholar
     

  • Wessel, F. et al. Leukocyte extravasation and vascular permeability are every managed in vivo by totally different tyrosine residues of VE-cadherin. Nat. Immunol. 15, 223–230 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Paul, R. et al. Src deficiency or blockade of Src exercise in mice gives cerebral safety following stroke. Nat. Med. 7, 222–227 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Miller, M. A. et al. Radiation remedy primes tumors for nanotherapeutic supply by way of macrophage-mediated vascular bursts. Sci. Transl. Med. 9, eaal0225 (2017).

    Article 

    Google Scholar
     

  • Matsumoto, Y. et al. Vascular bursts improve permeability of tumour blood vessels and enhance nanoparticle supply. Nat. Nanotechnol. 11, 533–538 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Igarashi, Ok. et al. Vascular bursts act as a flexible tumor vessel permeation route for blood-borne particles and cells. Small 17, 2103751 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Naumenko, V. A. et al. Extravasating neutrophils open vascular barrier and enhance liposomes supply to tumors. ACS Nano 13, 12599–12612 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Yeh, Y. T. et al. Three-dimensional forces exerted by leukocytes and vascular endothelial cells dynamically facilitate diapedesis. Proc. Natl Acad. Sci. USA 115, 133–138 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Pittet, M. J., Garris, C. S., Arlauckas, S. P. & Weissleder, R. Recording the wild lives of immune cells. Sci. Immunol. 3, eaaq0491 (2018).

    Article 

    Google Scholar
     

  • Combes, F., Meyer, E. & Sanders, N. N. Immune cells as tumor drug supply autos. J. Management. Launch 327, 70–87 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Kurz, A. R. M. et al. MST1-dependent vesicle trafficking regulates neutrophil transmigration by means of the vascular basement membrane. J. Clin. Make investments. 126, 4125–4139 (2016).

    Article 

    Google Scholar
     

  • Sreeramkumar, V. et al. Neutrophils scan for activated platelets to provoke irritation. Science 346, 1234–1238 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Franco, A. T., Corken, A. & Ware, J. Platelets on the interface of thrombosis, irritation, and most cancers. Blood 126, 582–588 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Lv, Y. L. et al. Close to-infrared light-triggered platelet arsenal for mixed photothermal–immunotherapy towards most cancers. Sci. Adv. 7, eabd7614 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Miller, M. A., Askevold, B., Yang, Ok. S., Kohler, R. H. & Weissleder, R. Platinum compounds for high-resolution in vivo most cancers imaging. ChemMedChem 9, 1131–1135 (2014).

    Article 
    CAS 

    Google Scholar
     



  • Supply hyperlink

    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    - Advertisment -
    Google search engine

    Most Popular

    Recent Comments