Dewhirst, M. W. & Secomb, T. W. Transport of medicine from blood vessels to tumour tissue. Nat. Rev. Most cancers 17, 738–750 (2017).
Blanco, E., Shen, H. & Ferrari, M. Ideas of nanoparticle design for overcoming organic limitations to drug supply. Nat. Biotechnol. 33, 941–951 (2015).
Wilhelm, S. et al. Evaluation of nanoparticle supply to tumours. Nat. Rev. Mater. 1, 16014 (2016).
Sindhwani, S. et al. The entry of nanoparticles into stable tumours. Nat. Mater. 19, 566–575 (2020).
Mitchell, M. J. et al. Engineering precision nanoparticles for drug supply. Nat. Rev. Drug Discov. 20, 101–124 (2021).
Wettschureck, N., Strilic, B. & Offermanns, S. Passing the vascular barrier: endothelial signaling processes controlling extravasation. Physiol. Rev. 99, 1467–1525 (2019).
Glassman, P. M. et al. Focusing on drug supply within the vascular system: concentrate on endothelium. Adv. Drug Deliv. Rev. 157, 96–117 (2020).
Setyawati, M. I., Tay, C. Y., Docter, D., Stauber, R. H. & Leong, D. T. Understanding and exploiting nanoparticles’ intimacy with the blood vessel and blood. Chem. Soc. Rev. 44, 8174–8199 (2015).
Cahill, P. A. & Redmond, E. M. Vascular endothelium—gatekeeper of vessel well being. Atherosclerosis 248, 97–109 (2016).
Zhou, Q. et al. Enzyme-activatable polymer–drug conjugate augments tumour penetration and therapy efficacy. Nat. Nanotechnol. 14, 799–809 (2019).
El-Kareh, A. W. & Secomb, T. W. A mathematical mannequin for comparability of bolus injection, steady infusion, and liposomal supply of doxorubicin to tumor cells. Neoplasia 2, 325–338 (2000).
Hendriks, B. S. et al. Multiscale kinetic modeling of liposomal doxorubicin supply quantifies the function of tumor and drug-specific parameters in native supply to tumors. CPT Pharmacomet. Syst. Pharmacol. 1, e15 (2012).
Harashima, H., Iida, S., Urakami, Y., Tsuchihashi, M. & Kiwada, H. Optimization of antitumor impact of liposomally encapsulated doxorubicin primarily based on simulations by pharmacokinetic/pharmacodynamic modeling. J. Management. Launch 61, 93–106 (1999).
Jayadev, R. & Sherwood, D. R. Basement membranes. Curr. Biol. 27, R207–R211 (2017).
Nikolova, G., Strilic, B. & Lammert, E. The vascular area of interest and its basement membrane. Tendencies Cell Biol. 17, 19–25 (2007).
Reuten, R. et al. Basement membrane stiffness determines metastases formation. Nat. Mater. 20, 892–903 (2021).
Rowe, R. G. & Weiss, S. J. Breaching the basement membrane: who, when and the way? Tendencies Cell Biol. 18, 560–574 (2008).
Chaudhuri, O. et al. Extracellular matrix stiffness and composition collectively regulate the induction of malignant phenotypes in mammary epithelium. Nat. Mater. 13, 970–978 (2014).
Zhang, X. L. et al. The endothelial basement membrane acts as a checkpoint for entry of pathogenic T cells into the mind. J. Exp. Med. 217, e20191339 (2020).
Du, B. J. et al. Glomerular barrier behaves as an atomically exact bandpass filter in a sub-nanometre regime. Nat. Nanotechnol. 12, 1096–1102 (2017).
Baluk, P., Morikawa, S., Haskell, A., Mancuso, M. & McDonald, D. M. Abnormalities of basement membrane on blood vessels and endothelial sprouts in tumors. Am. J. Pathol. 163, 1801–1815 (2003).
Yuan, F. et al. Microvascular permeability and interstitial penetration of sterically stabilized (stealth) liposomes in a human tumor xenograft. Most cancers Res. 54, 3352–3356 (1994).
Yokoi, Ok. et al. Capillary-wall collagen as a biophysical marker of nanotherapeutic permeability into the tumor microenvironment. Most cancers Res. 74, 4239–4246 (2014).
Miao, L. & Huang, L. Exploring the tumor microenvironment with nanoparticles. Most cancers Deal with. Res. 166, 193–226 (2015).
Wang, S. W., Liu, J., Goh, C. C., Ng, L. G. R. & Liu, B. NIR-II-excited intravital two-photon microscopy distinguishes deep cerebral and tumor vasculatures with an ultrabright NIR-I AIE luminogen. Adv. Mater. 31, 1904447 (2019).
Iliff, J. J. et al. A paravascular pathway facilitates CSF movement by means of the mind parenchyma and the clearance of interstitial solutes, together with amyloid β. Sci. Transl. Med. 4, 147ra111 (2012).
Yu, X. et al. Immune modulation of liver sinusoidal endothelial cells by melittin nanoparticles suppresses liver metastasis. Nat. Commun. 10, 574 (2019).
Mikelis, C. M. et al. RhoA and ROCK mediate histamine-induced vascular leakage and anaphylactic shock. Nat. Commun. 6, 6725 (2015).
Bazzoni, G. & Dejana, E. Endothelial cell-to-cell junctions: molecular group and function in vascular homeostasis. Physiol. Rev. 84, 869–901 (2004).
Mak, Ok. M. & Mei, R. Basement membrane kind IV collagen and laminin: an outline of their biology and worth as fibrosis biomarkers of liver illness. Anat. Rec. 300, 1371–1390 (2017).
Track, J. et al. Endothelial basement membrane laminin 511 contributes to endothelial junctional tightness and thereby inhibits leukocyte transmigration. Cell Rep. 18, 1256–1269 (2017).
Chang, J. L. & Chaudhuri, O. Past proteases: basement membrane mechanics and most cancers invasion. J. Cell Biol. 218, 2456–2469 (2019).
Rayagiri, S. S. et al. Basal lamina reworking on the skeletal muscle stem cell area of interest mediates stem cell self-renewal. Nat. Commun. 9, 1075 (2018).
Liotta, L. A. et al. Metastatic potential correlates with enzymatic degradation of basement-membrane collagen. Nature 284, 67–68 (1980).
Reymond, N., d’Agua, B. B. & Ridley, A. J. Crossing the endothelial barrier throughout metastasis. Nat. Rev. Most cancers 13, 858–870 (2013).
Kelley, L. C., Lohmer, L. L., Hagedorn, E. J. & Sherwood, D. R. Traversing the basement membrane in vivo: a variety of methods. J. Cell Biol. 204, 291–302 (2014).
Zindel, J. et al. Primordial GATA6 macrophages perform as extravascular platelets in sterile harm. Science 371, eabe0595 (2021).
Li, M. et al. Chemotaxis-driven supply of nano-pathogenoids for full eradication of tumors post-phototherapy. Nat. Commun. 11, 1126 (2020).
Wang, J. et al. Visualizing the perform and destiny of neutrophils in sterile harm and restore. Science 358, 111–116 (2017).
Harris, T. J. C. & Tepass, U. Adherens junctions: from molecules to morphogenesis. Nat. Rev. Mol. Cell Biol. 11, 502–514 (2010).
Chauhan, V. P. et al. Normalization of tumour blood vessels improves the supply of nanomedicines in a size-dependent method. Nat. Nanotechnol. 7, 383–388 (2012).
Orsenigo, F. et al. Phosphorylation of VE-cadherin is modulated by haemodynamic forces and contributes to the regulation of vascular permeability in vivo. Nat. Commun. 3, 1208 (2012).
Wessel, F. et al. Leukocyte extravasation and vascular permeability are every managed in vivo by totally different tyrosine residues of VE-cadherin. Nat. Immunol. 15, 223–230 (2014).
Paul, R. et al. Src deficiency or blockade of Src exercise in mice gives cerebral safety following stroke. Nat. Med. 7, 222–227 (2001).
Miller, M. A. et al. Radiation remedy primes tumors for nanotherapeutic supply by way of macrophage-mediated vascular bursts. Sci. Transl. Med. 9, eaal0225 (2017).
Matsumoto, Y. et al. Vascular bursts improve permeability of tumour blood vessels and enhance nanoparticle supply. Nat. Nanotechnol. 11, 533–538 (2016).
Igarashi, Ok. et al. Vascular bursts act as a flexible tumor vessel permeation route for blood-borne particles and cells. Small 17, 2103751 (2021).
Naumenko, V. A. et al. Extravasating neutrophils open vascular barrier and enhance liposomes supply to tumors. ACS Nano 13, 12599–12612 (2019).
Yeh, Y. T. et al. Three-dimensional forces exerted by leukocytes and vascular endothelial cells dynamically facilitate diapedesis. Proc. Natl Acad. Sci. USA 115, 133–138 (2018).
Pittet, M. J., Garris, C. S., Arlauckas, S. P. & Weissleder, R. Recording the wild lives of immune cells. Sci. Immunol. 3, eaaq0491 (2018).
Combes, F., Meyer, E. & Sanders, N. N. Immune cells as tumor drug supply autos. J. Management. Launch 327, 70–87 (2020).
Kurz, A. R. M. et al. MST1-dependent vesicle trafficking regulates neutrophil transmigration by means of the vascular basement membrane. J. Clin. Make investments. 126, 4125–4139 (2016).
Sreeramkumar, V. et al. Neutrophils scan for activated platelets to provoke irritation. Science 346, 1234–1238 (2014).
Franco, A. T., Corken, A. & Ware, J. Platelets on the interface of thrombosis, irritation, and most cancers. Blood 126, 582–588 (2015).
Lv, Y. L. et al. Close to-infrared light-triggered platelet arsenal for mixed photothermal–immunotherapy towards most cancers. Sci. Adv. 7, eabd7614 (2021).
Miller, M. A., Askevold, B., Yang, Ok. S., Kohler, R. H. & Weissleder, R. Platinum compounds for high-resolution in vivo most cancers imaging. ChemMedChem 9, 1131–1135 (2014).