Monday, December 26, 2022
HomeNanotechnologyBiomimetic cell-derived nanocarriers in most cancers analysis | Journal of Nanobiotechnology

Biomimetic cell-derived nanocarriers in most cancers analysis | Journal of Nanobiotechnology


  • Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug supply. Nat Rev Drug Discov. 2021;20:101–24.

    Article 
    CAS 

    Google Scholar
     

  • Solar T, Zhang YS, Pang B, Hyun DC, Yang M, Xia Y. Engineered nanoparticles for drug supply in most cancers remedy. Angew Chem Int Ed. 2014;53:12320–64.

    CAS 

    Google Scholar
     

  • Pelaz B, Alexiou C, Alvarez-Puebla RA, Alves F, Andrews AM, Ashraf S, Balogh LP, Ballerini L, Bestetti A, Brendel C, et al. Numerous purposes of nanomedicine. ACS Nano. 2017;11:2313–81.

    Article 
    CAS 

    Google Scholar
     

  • Bourquin J, Milosevic A, Hauser D, Lehner R, Clean F, Petri-Fink A, Rothen-Rutishauser B. Biodistribution, clearance, and long-term destiny of clinically related nanomaterials. Adv Mater. 2018;30:1704307.

    Article 

    Google Scholar
     

  • Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC. Most cancers nanotechnology: the affect of passive and lively focusing on within the period of contemporary most cancers biology. Adv Drug Deliv Rev. 2014;66:2–25.

    Article 
    CAS 

    Google Scholar
     

  • Albanese A, Tang PS, Chan WCW. The impact of nanoparticle dimension, form, and floor chemistry on organic techniques. Annu Rev Biomed Eng. 2012;14:1–16.

    Article 
    CAS 

    Google Scholar
     

  • Bates DO. Regulation of microvascular permeability by vascular endothelial progress elements. J Anat. 2002;200(6):581–97.

    Article 
    CAS 

    Google Scholar
     

  • Kiessling F, Hennink WE, Storm G. Drug focusing on to tumors: rules, pitfalls and (pre-) scientific progress. J Management Launch. 2012;161:175–87.

    Article 

    Google Scholar
     

  • Lammers T, Hennink WE, Storm G. Tumour-targeted nanomedicines: rules and apply. Br J Most cancers. 2008;99:392–7.

    Article 
    CAS 

    Google Scholar
     

  • Misra R, Acharya S, Sahoo SK. Most cancers nanotechnology: utility of nanotechnology in most cancers remedy. Drug Discov As we speak. 2010;15:842–50.

    Article 
    CAS 

    Google Scholar
     

  • Acharya S, Dilnawaz F, Sahoo SK. Focused epidermal progress issue receptor nanoparticle bioconjugates for breast most cancers remedy. Biomaterials. 2009;30:5737–50.

    Article 
    CAS 

    Google Scholar
     

  • Guo J, Gao X, Su L, Xia H, Gu G, Pang Z, Jiang X, Yao L, Chen J, Chen H. Aptamer-functionalized PEG-PLGA nanoparticles for enhanced anti-glioma. drug supply Biomaterials. 2011;32:8010–20.

    CAS 

    Google Scholar
     

  • Hong M, Zhu S, Jiang Y, Tang G, Solar C, Fang C, Shi B, Pei Y. Novel anti-tumor technique: PEG-hydroxycamptothecin conjugate loaded transferrin-PEG-nanoparticles. J Management Launch. 2010;141:22–9.

    Article 
    CAS 

    Google Scholar
     

  • Grasp AM, Sen Gupta A. EGF receptor-targeted nanocarriers for enhanced most cancers remedy. Nanomed (Lond). 2012;12:1895–906.

    Article 

    Google Scholar
     

  • Nukolova NV, Oberoi HS, Cohen SM, Kabanov AV, Bronich TK. Folate-decorated nanogels for focused remedy of ovarian most cancers. Biomaterials. 2011;32:5417–26.

    Article 
    CAS 

    Google Scholar
     

  • Xiong H, Du S, Ni J, Zhou J, Yao J. Mitochondria and nuclei dual-targeted heterogeneous hydroxyapatite nanoparticles for enhancing therapeutic efficacy of doxorubicin. Biomaterials. 2016;94:70–83.

    Article 
    CAS 

    Google Scholar
     

  • Xu C, Xie J, Kohler N, Walsh EG, Chin YE, Solar S. Monodisperse magnetite nanoparticles coupled with nuclear localization sign peptide for cell-nucleus focusing on. Asian J Chem. 2008;3:548–52.

    Article 
    CAS 

    Google Scholar
     

  • Koshkaryev A, Piroyan A, Torchilin VP. Elevated apoptosis in most cancers cells in vitro and in vivo by ceramides in transferrin-modified liposomes. Most cancers Bio Ther. 2012;13:50–60.

    Article 
    CAS 

    Google Scholar
     

  • Chugh V, Vijaya Krishna Ok, Pandit A. Cell membrane-coated mimics: a methodological strategy for fabrication, characterization for therapeutic purposes, and challenges for scientific translation. ACS Nano. 2021;15:17080–123.

    Article 
    CAS 

    Google Scholar
     

  • Banskota S, Raguram A, Suh S, Du SW, Davis JR, Choi EH, Wang X, Nielsen SC, Newby GA, Randolph PB. Engineered virus-like particles for environment friendly in vivo supply of therapeutic proteins. Cell. 2022;185:250–65. e216.

    Article 
    CAS 

    Google Scholar
     

  • Yang B, Chen Y, Shi J. Exosome biochemistry and superior nanotechnology for next-generation theranostic platforms. Adv Mater. 2019;31:1802896.

    Article 

    Google Scholar
     

  • Polo E, Collado M, Pelaz B, Del Pino P. Advances towards extra environment friendly focused supply of nanoparticles in vivo: understanding interactions between nanoparticles and cells. ACS Nano. 2017;11:2397–402.

    Article 
    CAS 

    Google Scholar
     

  • Bertoli F, Garry D, Monopoli MP, Salvati A, Dawson KA. The intracellular future of the protein corona: a research on its mobile internalization and evolution. ACS Nano. 2016;10:10471–9.

    Article 
    CAS 

    Google Scholar
     

  • Cai L, Yang C, Jia W, Liu Y, Xie R, Lei T, Yang Z, He X, Tong R, Gao H. Endo/lysosome-escapable supply depot for bettering BBB transcytosis and neuron focused remedy of Alzheimer’s illness. Adv Funct Mater. 2020;30:1909999.

    Article 
    CAS 

    Google Scholar
     

  • Gilleron J, Querbes W, Zeigerer A, Borodovsky A, Marsico G, Schubert U, Manygoats Ok, Seifert S, Andree C, Stöter M. Picture-based evaluation of lipid nanoparticle–mediated siRNA supply, intracellular trafficking and endosomal escape. Nat biotechnol. 2013;31:638–46.

    Article 
    CAS 

    Google Scholar
     

  • Kim Ok, Ryu SM, Kim ST, Baek G, Kim D, Lim Ok, Chung E, Kim S, Kim JS. Extremely environment friendly RNA-guided base enhancing in mouse embryos. Nat biotechnol. 2017;35:435–7.

    Article 
    CAS 

    Google Scholar
     

  • Clift D, McEwan WA, Labzin LI, Konieczny V, Mogessie B, James LC, Schuh M. A way for the acute and fast degradation of. Endogenous Proteins Cell. 2017;171:1692-706.e1618.

    CAS 

    Google Scholar
     

  • König I, Zarrine-Afsar A, Aznauryan M, Soranno A, Wunderlich B, Dingfelder F, Stüber JC, Plückthun A, Nettels D, Schuler B. Single-molecule spectroscopy of protein conformational dynamics in reside eukaryotic cells. Nat Strategies. 2015;12:773–9.

    Article 

    Google Scholar
     

  • Gao W, Chan JM, Farokhzad OC. PH-responsive nanoparticles for drug supply. Mol Pharm. 2010;7:1913–20.

    Article 
    CAS 

    Google Scholar
     

  • Li Z, Clemens DL, Lee BY, Dillon BJ, Horwitz MA, Zink JI. Mesoporous silica nanoparticles with pH-sensitive nanovalves for supply of moxifloxacin present Improved remedy of deadly pneumonic tularemia. ACS Nano. 2015;9:10778–89.

    Article 
    CAS 

    Google Scholar
     

  • Remant RB, Chandrashekaran V, Cheng B, Chen H, Peña MMO, Zhang J, Montgomery J, Xu P. Redox potential ultrasensitive nanoparticle for the focused supply of camptothecin to HER2-positive most cancers cells. Mol Pharm. 2014;11:1897–905.

    Article 

    Google Scholar
     

  • Renoux B, Raes F, Legigan T, Péraudeau E, Eddhif B, Poinot P, Tranoy-Opalinski I, Alsarraf J, Koniev O, Kolodych S, et al. Focusing on the tumour microenvironment with an enzyme-responsive drug supply system for the environment friendly remedy of breast and pancreatic cancers. Chem Sci. 2017;8:3427–33.

    Article 
    CAS 

    Google Scholar
     

  • Guisasola E, Asín L, Beola L, De La Fuente JM, Baeza A, Vallet-Regí M. Past conventional hyperthermia: in vivo most cancers remedy with magnetic-responsive mesoporous silica nanocarriers. ACS Appl Mater Interfaces. 2018;10:12518–25.

    Article 
    CAS 

    Google Scholar
     

  • Saint-Cricq P, Deshayes S, Zink JI, Kasko AM. Magnetic area activated drug supply utilizing thermodegradable azo-functionalised PEG-coated core-shell mesoporous silica nanoparticles. Nanoscale. 2015;7:13168–72.

    Article 
    CAS 

    Google Scholar
     

  • Paris JL, Cabanas MV, Manzano M, Vallet-Regí M. Polymer-grafted mesoporous silica nanoparticles as ultrasound-responsive drug carriers. ACS Nano. 2015;9:11023–33.

    Article 
    CAS 

    Google Scholar
     

  • Qiu M, Wang D, Liang W, Liu L, Zhang Y, Chen X, Sang DK, Xing C, Li Z, Dong B, et al. Novel idea of the good NIR-light-controlled drug launch of black phosphorus nanostructure for most cancers remedy. Proc Natl Acad Sci U S A. 2018;115:501–6.

    Article 
    CAS 

    Google Scholar
     

  • Lin C, Engbersen JFJ. Impact of chemical functionalities in poly(amido amine)s for non-viral gene transfection. J Management Launch. 2008;132:267–72.

    Article 
    CAS 

    Google Scholar
     

  • Erazo-Oliveras A, Najjar Ok, Dayani L, Wang TY, Johnson GA, Pellois JP. Protein supply into reside cells by incubation with an endosomolytic agent. Nat Strategies. 2014;11:861–7.

    Article 
    CAS 

    Google Scholar
     

  • Li W, Nicol F, Szoka FC. GALA: a designed artificial pH-responsive amphipathic peptide with purposes in drug and gene supply. Adv Drug Deliv Rev. 2004;56:967–85.

    Article 
    CAS 

    Google Scholar
     

  • Akishiba M, Takeuchi T, Kawaguchi Y, Sakamoto Ok, Yu HH, Nakase I, Takatani-Nakase T, Madani F, Gräslund A, Futaki S. Cytosolic antibody supply by lipid-sensitive endosomolytic peptide. Nat Chem. 2017;9:751–61.

    Article 
    CAS 

    Google Scholar
     

  • Reissmann S, Filatova MP. New era of cell-penetrating peptides: performance and potential scientific utility. J Pept Sci. 2021;27:e3300.

    Article 
    CAS 

    Google Scholar
     

  • Futaki S, Nakase I. Cell-surface interactions on arginine-rich cell-penetrating peptides enable for multiplex modes of internalization. Acc Chem Res. 2017;50:2449–56.

    Article 
    CAS 

    Google Scholar
     

  • Peraro L, Kritzer JA. Rising strategies and design rules for cell-penetrant. Peptides Angew Chem Int Ed. 2018;57:11868–81.

    Article 
    CAS 

    Google Scholar
     

  • Barba-Bon A, Salluce G, Lostalé-Seijo I, Assaf Ok, Hennig A, Montenegro J, Nau WM. Boron clusters as broadband membrane carriers. Nature. 2022;603:637–42.

    Article 
    CAS 

    Google Scholar
     

  • Heldwein EE, Krummenacher C. Entry of herpesviruses into mammalian cells. Cell Mol Life Sci. 2008;65:1653–68.

    Article 
    CAS 

    Google Scholar
     

  • Spear PG. Herpes simplex virus: receptors and ligands for cell entry. Cell Microbiol. 2004;6:401–10.

    Article 
    CAS 

    Google Scholar
     

  • Maurer UE, Sodeik B, Grünewald Ok. Native 3D intermediates of membrane fusion in herpes simplex virus 1 entry. Proc Natl Acad Sci U S A. 2008;105:10559–64.

    Article 
    CAS 

    Google Scholar
     

  • Brian Dyer R, Eller MW. Dynamics of hemagglutinin-mediated membrane fusion. Proc Natl Acad Sci U S A. 2018;115:8655–7.

    Article 

    Google Scholar
     

  • Ghosh S, Brown AM, Jenkins C, Campbell Ok. Viral vector techniques for gene remedy: a complete literature assessment of progress and biosafety challenges. Appl Biosaf. 2020;25:7–18.

    Article 

    Google Scholar
     

  • Daemen T, De Mare A, Bungener L, De Jonge J, Huckriede A, Wilschut J. Virosomes for antigen and DNA supply. Adv Drug Deliv Rev. 2005;57:451–63.

    Article 
    CAS 

    Google Scholar
     

  • Zhao Q, Chen W, Chen Y, Zhang L, Zhang J, Zhang Z. Self-assembled virus-like particles from rotavirus structural protein VP6 for focused drug supply. Bioconj Chem. 2011;22:346–52.

    Article 
    CAS 

    Google Scholar
     

  • Dashti NH, Abidin RS, Sainsbury F. Programmable in vitro coencapsidation of visitor proteins for intracellular supply by virus-like particles. ACS Nano. 2018;12:4615–23.

    Article 
    CAS 

    Google Scholar
     

  • Abbing A, Blaschke UK, Grein S, Kretschmar M, Stark CMB, Thies MJW, Walter J, Weigand M, Woith DC, Hess J, Reiser COA. Environment friendly intracellular supply of a protein and a low molecular weight substance through recombinant polyomavirus-like particles. J Biol Chem. 2004;279:27410–21.

    Article 
    CAS 

    Google Scholar
     

  • Ashley CE, Carnes EC, Phillips GK, Durfee PN, Buley MD, Lino CA, Padilla DP, Phillips B, Carter MB, Willman CL, et al. Cell-specific supply of various cargos by bacteriophage MS2 virus-like particles. ACS Nano. 2011;5:5729–45.

    Article 
    CAS 

    Google Scholar
     

  • Wen AM, Shukla S, Saxena P, Aljabali AAA, Yildiz I, Dey S, Mealy JE, Yang AC, Evans DJ, Lomonossoff GP, Steinmetz NF. Inside engineering of a viral nanoparticle and its tumor homing properties. Biomacromolecules. 2012;13:3990–4001.

    Article 
    CAS 

    Google Scholar
     

  • Kaczmarczyk SJ, Sitaraman Ok, Younger HA, Hughes SH, Chatterjee DK. Protein supply utilizing engineered virus-like particles. Proc Natl Acad Sci U S A. 2011;108:16998–7003.

    Article 
    CAS 

    Google Scholar
     

  • Abraham A, Natraj U, Karande AA, Gulati A, Murthy MRN, Murugesan S, Mukunda P, Savithri HS. Intracellular supply of antibodies by chimeric Sesbania mosaic virus (SeMV) virus like particles. Sci Rep. 2016;6:1–12.

    Article 

    Google Scholar
     

  • Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SR. Nanoparticle-based Medicines: a assessment of FDA-Authorised supplies and scientific trials thus far. Pharm Res. 2016;33:2373–87.

    Article 
    CAS 

    Google Scholar
     

  • Kranz LM, Diken M, Haas H, Kreiter S, Loquai C, Reuter KC, Meng M, Fritz D, Vascotto F, Hefesha H. Systemic RNA supply to dendritic cells exploits antiviral defence for most cancers immunotherapy. Nature. 2016;534:396–401.

    Article 

    Google Scholar
     

  • Grunwitz C, Salomon N, Vascotto F, Selmi A, Bukur T, Diken M, Kreiter S, Türeci Ö, Sahin U. HPV16 RNA-LPX vaccine mediates full regression of aggressively rising HPV-positive mouse tumors and establishes protecting T cell reminiscence. Oncoimmunology. 2019;8:e1629259.

    Article 

    Google Scholar
     

  • Sahin U, Oehm P, Derhovanessian E, Jabulowsky RA, Vormehr M, Gold M, Maurus D, Schwarck-Kokarakis D, Kuhn AN, Omokoko T. An RNA vaccine drives immunity in checkpoint-inhibitor-treated melanoma. Nature. 2020;585:107–12.

    Article 
    CAS 

    Google Scholar
     

  • Mulligan MJ, Lyke KE, Kitchin N, Absalon J, Gurtman A, Lockhart S, Neuzil Ok, Raabe V, Bailey R, Swanson KA. Part I/II research of COVID-19 RNA vaccine BNT162b1 in adults. Nature. 2020;586:589–93.

    Article 
    CAS 

    Google Scholar
     

  • Al-jamal T, Kostarelos Ok. Liposomes: from a clinically established Drug Supply System to a nanoparticle platform for theranostic nanomedicine. Acc Chem Res. 2011;44:48–8.

    Article 

    Google Scholar
     

  • Muthu MS, Feng SS. Theranostic liposomes for most cancers prognosis and remedy: present growth and pre-clinical success. Skilled Opin Drug Deliv. 2013;10:151–5.

    Article 
    CAS 

    Google Scholar
     

  • Boyoglu-Barnum S, Ellis D, Gillespie RA, Hutchinson GB, Park Y-J, Moin SM, Acton OJ, Ravichandran R, Murphy M, Pettie D. Quadrivalent influenza nanoparticle vaccines induce broad safety. Nature. 2021;592:623–8.

    Article 
    CAS 

    Google Scholar
     

  • Knight FC, Gilchuk P, Kumar A, Becker KW, Sevimli S, Jacobson ME, Suryadevara N, Wang-Bishop L, Boyd KL, Crowe JE Jr. Mucosal immunization with a pH-responsive nanoparticle vaccine induces protecting CD8 + lung-resident reminiscence T cells. ACS Nano. 2019;13:10939–60.

    Article 
    CAS 

    Google Scholar
     

  • Mu Q, Lin G, Jeon M, Wang H, Chang F-C, Revia RA, Yu J, Zhang M. Iron oxide nanoparticle focused chemo-immunotherapy for triple detrimental breast most cancers. Mater As we speak. 2021;50:149–69.

    Article 
    CAS 

    Google Scholar
     

  • Anselmo AC, Mitragotri S. Nanoparticles within the clinic: an replace. Bioeng Transl Med. 2019;4:e10143.

    Article 

    Google Scholar
     

  • Lo Giudice MC, Herda LM, Polo E, Dawson KA. In situ characterization of nanoparticle biomolecular interactions in advanced organic media by circulate cytometry. Nat Commun. 2016;7:1–10.

    Article 

    Google Scholar
     

  • Moghimi SM, Hunter AC, Andresen TL. Elements controlling nanoparticle pharmacokinetics: an built-in evaluation and perspective. Annu Rev Pharmacol Toxicol. 2012;52:481–503.

    Article 
    CAS 

    Google Scholar
     

  • Immordino ML, Dosio F, Cattel L. Stealth liposomes: assessment of the essential science, rationale, and scientific purposes, current and potential. Int J Nanomed. 2006;1:297–315.

    CAS 

    Google Scholar
     

  • Torchilin VP. Current advances with liposomes as pharmaceutical carriers. In Nat Rev Drug Discov. 2005;4:145–60.

    Article 
    CAS 

    Google Scholar
     

  • Melenhorst JJ, Chen GM, Wang M, Porter DL, Chen C, Collins MA, Gao P, Bandyopadhyay S, Solar H, Zhao Z. Decade-long leukaemia remissions with persistence of CD4 + CAR T cells. Nature. 2022;602:503–9.

    Article 
    CAS 

    Google Scholar
     

  • Sabu C, Rejo C, Kotta S, Pramod Ok. Bioinspired and biomimetic techniques for superior drug and gene supply. J Management Launch. 2018;287:142–55.

    Article 
    CAS 

    Google Scholar
     

  • Fang RH, Kroll AV, Gao W, Zhang L. Cell Membrane Coating Nanotechnology Adv Mater. 2018;30:1–34.


    Google Scholar
     

  • Chai Z, Hu X, Wei X, Zhan C, Lu L, Jiang Ok, Su B, Ruan H, Ran D, Fang RH, et al. A facile strategy to functionalizing cell membrane-coated nanoparticles with neurotoxin-derived peptide for brain-targeted drug supply. J Management Launch. 2017;264:102–11.

    Article 
    CAS 

    Google Scholar
     

  • Luk BT, Fang RH, Hu CMJ, Copp JA, Thamphiwatana S, Dehaini D, Gao W, Zhang Ok, Li S, Zhang L. Secure and immunocompatible nanocarriers cloaked in RBC membranes for drug supply to deal with stable tumors. Theranostics. 2016;6:1004–11.

    Article 
    CAS 

    Google Scholar
     

  • Qiao Z, Wang Z, Zhang C, Yuan S, Zhu Y, Wang J. Engineering red-blood‐cell‐membrane–coated nanoparticles for broad biomedical purposes. AIChE J. 2012;59:215–28.

    Article 

    Google Scholar
     

  • Lang T, Yin Q, Li Y. Progress of cell-derived Biomimetic Drug Supply Methods for Most cancers Remedy. Adv Ther. 2018;1:1800053–3.

    Article 

    Google Scholar
     

  • Wu Z, Esteban-Fernández De Ávila B, Martín A, Christianson C, Gao W, Thamphiwatana SK, Escarpa A, He Q, Zhang L, Wang J. RBC micromotors carrying a number of cargos in direction of potential theranostic purposes. Nanoscale. 2015;7:13680–6.

    Article 
    CAS 

    Google Scholar
     

  • Shi Q, Montgomery RR. Platelets as supply techniques for illness remedies. Adv Drug Deliv Rev. 2010;62:1196–203.

    Article 
    CAS 

    Google Scholar
     

  • Levy O, Brennen WN, Han E, Rosen DM, Musabeyezu J, Safaee H, Ranganath S, Ngai J, Heinelt M, Milton Y, et al. A prodrug-doped mobile computer virus for the potential remedy of prostate most cancers. Biomaterials. 2016;91:140–50.

    Article 
    CAS 

    Google Scholar
     

  • Fu J, Wang D, Mei D, Zhang H, Wang Z, He B, Dai W, Zhang H, Wang X, Zhang Q. Macrophage mediated biomimetic supply system for the remedy of lung metastasis of breast most cancers. J Management Launch. 2015;204:11–9.

    Article 
    CAS 

    Google Scholar
     

  • Rosenthal JA, Chen L, Baker JL, Putnam D, DeLisa MP. Pathogen-like particles: biomimetic vaccine carriers engineered on the nanoscale. Curr Opin Biotechnol. 2014;28:51–8.

    Article 
    CAS 

    Google Scholar
     

  • Paulitschke M, Nash GB, Anstee DJ, Tanner MJA, Gratzer WB. Perturbation of crimson blood cell membrane rigidity by extracellular ligands. Blood. 1995;86:342–8.

    Article 
    CAS 

    Google Scholar
     

  • Naldini L. Ex vivo gene switch and correction for cell-based therapies. Nat Rev Genet. 2011;12:301–15.

    Article 
    CAS 

    Google Scholar
     

  • Van Niel G, D’Angelo G, Raposo G. Shedding gentle on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 2018;19:213–28.

    Article 

    Google Scholar
     

  • Lamichhane TN, Jeyaram A, Patel DB, Parajuli B, Livingston NK, Arumugasaamy N, Schardt JS, Jay SM. Oncogene knockdown through lively loading of small RNAs into extracellular vesicles by sonication. Cell Mol Bioeng. 2016;9:315–24.

    Article 
    CAS 

    Google Scholar
     

  • Ohno SI, Takanashi M, Sudo Ok, Ueda S, Ishikawa A, Matsuyama N, Fujita Ok, Mizutani T, Ohgi T, Ochiya T, et al. Systemically injected exosomes focused to EGFR ship antitumor microrna to breast most cancers cells. Mol Ther. 2013;21:185–91.

    Article 
    CAS 

    Google Scholar
     

  • Tian Y, Li S, Track J, Ji T, Zhu M, Anderson GJ, Wei J, Nie G. A doxorubicin supply platform utilizing engineered pure membrane vesicle exosomes for focused tumor remedy. Biomaterials. 2014;35:2383–90.

    Article 
    CAS 

    Google Scholar
     

  • Rachakatla RS, Balivada S, Web optimization GM, Myers CB, Wang H, Samarakoon TN, Dani R, Pyle M, Kroh FO, Walker B, et al. Attenuation of mouse melanoma by A/C magnetic area after supply of bi-magnetic nanoparticles by neural progenitor cells. ACS Nano. 2010;4:7093–104.

    Article 
    CAS 

    Google Scholar
     

  • Kooijmans SAA, Vader P, van Dommelen SM, van Solinge WW, Schiffelers RM. Exosome mimetics: a novel class of drug supply techniques. Int J Nanomed. 2012;7:1525–41.

    CAS 

    Google Scholar
     

  • Hu CMJ, Zhang L, Aryal S, Cheung C, Fang RH, Zhang L. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic supply platform. Proc Natl Acad Sci U S A. 2011;108:10980–5.

    Article 
    CAS 

    Google Scholar
     

  • Hu CMJ, Fang RH, Luk BT, Chen KNH, Carpenter C, Gao W, Zhang Ok, Zhang L. ‘marker-of-self’ functionalization of nanoscale particles by means of a top-down mobile membrane coating strategy. Nanoscale. 2013;5:2664–8.

    Article 
    CAS 

    Google Scholar
     

  • Luk BT, Jack Hu CM, Fang RH, Dehaini D, Carpenter C, Gao W, Zhang L. Interfacial interactions between pure RBC membranes and artificial polymeric nanoparticles. Nanoscale. 2014;6:2730–7.

    Article 
    CAS 

    Google Scholar
     

  • Zhai Y, Su J, Ran W, Zhang P, Yin Q, Zhang Z, Yu H, Li Y. Preparation and utility of cell membrane-camouflaged nanoparticles for most cancers remedy. Theranostics. 2017;7:2575–92.

    Article 
    CAS 

    Google Scholar
     

  • Reuven EM, Leviatan Ben-Arye S, Yu H, Duchi R, Perota A, Conchon S, Bachar Abramovitch S, Soulillou JP, Galli C, Chen X, Padler-karavani V. Biomimetic glyconanoparticle vaccine for most cancers immunotherapy. ACS Nano. 2019;13:2936–47.

    Article 
    CAS 

    Google Scholar
     

  • Liang X, Ye X, Wang C, Xing C, Miao Q, Xie Z, Chen X, Zhang X, Zhang H, Mei L. Photothermal most cancers immunotherapy by erythrocyte membrane-coated black phosphorus formulation. J Management Launch. 2019;296:150–61.

    Article 
    CAS 

    Google Scholar
     

  • Gentry PA. The mammalian blood platelet: its position in haemostasis, irritation and tissue restore. J Comp Pathol. 1992;107:243–70.

    Article 
    CAS 

    Google Scholar
     

  • Ojha A, Nandi D, Batra H, Singhal R, Annarapu GK, Bhattacharyya S, Seth T, Dar L, Medigeshi GR, Vrati S, et al. Platelet activation determines the severity of thrombocytopenia in dengue an infection. Sci Rep. 2017;7:41697.

    Article 
    CAS 

    Google Scholar
     

  • Schumacher D, Strilic B, Sivaraj KK, Wettschureck N, Offermanns S. Platelet-derived nucleotides promote Tumor-Cell Transendothelial Migration and Metastasis through P2Y2 receptor. Most cancers Cell. 2013;24:130–7.

    Article 
    CAS 

    Google Scholar
     

  • Homosexual LJ, Felding-Habermann B. Contribution of platelets to tumour metastasis. Nat Rev Most cancers. 2011;11:123–34.

    Article 
    CAS 

    Google Scholar
     

  • Chaffer CL, Weinberg RA. A perspective on most cancers cell metastasis. Sci: Proc Am Assoc Adv Sci. 2011;331:1559–64.

    Article 
    CAS 

    Google Scholar
     

  • Guo Y, Wang D, Track Q, Wu T, Zhuang X, Bao Y, Kong M, Qi Y, Tan S, Zhang Z. Erythrocyte membrane-enveloped polymeric nanoparticles as nanovaccine for induction of antitumor immunity in opposition to melanoma. ACS Nano. 2015;9:6918–33.

    Article 
    CAS 

    Google Scholar
     

  • Su J, Solar H, Meng Q, Yin Q, Zhang P, Zhang Z, Yu H, Li Y. Bioinspired nanoparticles with NIR-controlled drug launch for synergetic chemophotothermal remedy of metastatic breast most cancers. Adv Funct Mater. 2016;26:7495–506.

    Article 
    CAS 

    Google Scholar
     

  • Su J, Solar H, Meng Q, Zhang P, Yin Q, Li Y. Enhanced blood suspensibility and laser-activated tumor-specific drug launch of theranostic mesoporous silica nanoparticles by functionalizing with. Erythrocyte Membr Theranostics. 2017;7:523–37.

    Article 
    CAS 

    Google Scholar
     

  • Piao J-G, Wang L, Gao F, You Y-Z, Xiong Y, Yang L. Erythrocyte membrane is another coating to polyethylene glycol for prolonging the circulation lifetime of gold nanocages for photothermal remedy. ACS Nano. 2014;8:10414–25.

    Article 
    CAS 

    Google Scholar
     

  • Hu Q, Solar W, Qian C, Wang C, Bomba HN, Gu Z. Anticancer platelet-mimicking nanovehicles. Adv Mater. 2015;27:7043–50.

    Article 
    CAS 

    Google Scholar
     

  • Hu Q, Solar W, Qian C, Bomba HN, Xin H, Gu Z. Relay drug supply for amplifying focusing on sign and enhancing anticancer efficacy. Adv Mater. 2017;29:1605803–3.

    Article 

    Google Scholar
     

  • Shang Y, Wang Q, Wu B, Zhao Q, Li J, Huang X, Chen W, Gui R. Platelet-membrane-camouflaged black phosphorus quantum dots improve anticancer impact mediated by apoptosis and autophagy. ACS Appli Mater Interfaces. 2019;11:28254–66.

    Article 
    CAS 

    Google Scholar
     

  • Rao L, Bu L-L, Meng Q-F, Cai B, Deng W-W, Li A, Li Ok, Guo S-S, Zhang W-F, Liu W, et al. Antitumor platelet-mimicking magnetic nanoparticles. Adv Funct Mater. 2017;27:1604774.

    Article 

    Google Scholar
     

  • Ye H, Wang Ok, Wang M, Liu R, Track H, Li N, Lu Q, Zhang W, Du Y, Yang W, et al. Bioinspired nanoplatelets for chemo-photothermal remedy of breast most cancers metastasis inhibition. Biomaterials. 2019;206:1–12.

    Article 
    CAS 

    Google Scholar
     

  • Xue J, Zhao Z, Zhang L, Xue L, Shen S, Wen Y, Wei Z, Wang L, Kong L, Solar H, et al. Neutrophil-mediated anticancer drug supply for suppression of postoperative malignant glioma recurrence. Nat Nanotechnol. 2017;12:692–700.

    Article 
    CAS 

    Google Scholar
     

  • Cao X, Hu Y, Luo S, Wang Y, Gong T, Solar X, Fu Y, Zhang Z. Neutrophil-mimicking therapeutic nanoparticles for focused chemotherapy of pancreatic carcinoma. Acta Pharm Sinic B. 2019;9:575–89.

    Article 

    Google Scholar
     

  • Parodi A, Quattrocchi N, Van De Ven AL, Chiappini C, Evangelopoulos M, Martinez JO, Brown BS, Khaled SZ, Yazdi IK, Enzo MV, et al. Artificial nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like capabilities. Nat Nanotechnol. 2013;8:61–8.

    Article 
    CAS 

    Google Scholar
     

  • Wang Q, Ren Y, Mu J, Egilmez NK, Zhuang X, Deng Z, Zhang L, Yan J, Miller D, Zhang H-G. Grapefruit-derived nanovectors use an activated leukocyte trafficking pathway to ship therapeutic brokers to inflammatory tumor websites. Most cancers Res. 2015;75:2520–9.

    Article 
    CAS 

    Google Scholar
     

  • Corbo C, Parodi A, Evangelopoulos M, Engler A, Matsunami DK, Engler RC, Molinaro A, Scaria R, Salvatore S, Tasciotti F. Proteomic profiling of a biomimetic drug supply platform. Curr drug targets. 2015;16(13):1540–7.

    Article 
    CAS 

    Google Scholar
     

  • Xuan M, Shao J, Dai L, Li J, He Q. Macrophage cell membrane camouflaged au nanoshells for in vivo extended circulation life and enhanced most cancers photothermal remedy. ACS Appl Mater Interfaces. 2016;8:9610–8.

    Article 
    CAS 

    Google Scholar
     

  • Rao L, He Z, Meng Q-F, Zhou Z, Bu L-L, Guo S-S, Liu W, Zhao X-Z. Efficient most cancers focusing on and imaging utilizing macrophage membrane-camouflaged upconversion nanoparticles. J Biomed Mater Res A. 2017;105:521–30.

    Article 
    CAS 

    Google Scholar
     

  • Näkki S, Martinez JO, Evangelopoulos M, Xu W, Lehto VP, Tasciotti E. Chlorin e6 functionalized theranostic multistage nanovectors transported by stem cells for efficient photodynamic remedy. ACS Appl Mater Interfaces. 2017;9:23441–9.

    Article 

    Google Scholar
     

  • Changyong G, Jurado-Sánchez B. Stem cell membrane-coated nanogels for extremely environment friendly in vivo tumor focused drug supply. Small. 2016;12(30):4056–62.

    Article 

    Google Scholar
     

  • Tang J, Shen D, Caranasos TG, Wang Z, Vandergriff AC, Allen TA, Hensley MT, Dinh P-U, Cores J, Li T-S, et al. Therapeutic microparticles functionalized with biomimetic cardiac stem cell membranes and secretome. Nat Commun. 2017;8:13724.

    Article 
    CAS 

    Google Scholar
     

  • Zhu J-Y, Zheng D-W, Zhang M-Ok, Yu W-Y, Qiu W-X, Hu J-J, Feng J, Zhang X-Z. Preferential most cancers cell self-recognition and tumor self-targeting by coating nanoparticles with homotypic most cancers cell membranes. Nano Lett. 2016;16:5895–901.

    Article 
    CAS 

    Google Scholar
     

  • Fang RH, Hu CMJ, Luk BT, Gao W, Copp JA, Tai Y, O’Connor DE, Zhang L. Most cancers cell membrane-coated nanoparticles for anticancer vaccination and drug supply. Nano Lett. 2014;14:2181–8.

    Article 
    CAS 

    Google Scholar
     

  • Solar H, Su J, Meng Q, Yin Q, Chen L, Gu W, Zhang P, Zhang Z, Yu H, Wang S, Li Y. Most cancers-cell-biomimetic nanoparticles for focused remedy of homotypic tumors. Adv Mater. 2016;28:9581–8.

    Article 
    CAS 

    Google Scholar
     

  • Rao L, Bu L-L, Cai B, Xu J-H, Li A, Zhang W-F, Solar Z-J, Guo S-S, Liu W, Wang T-H, Zhao X-Z. Most cancers cell membrane-coated upconversion nanoprobes for extremely particular tumor imaging. Adv Mater. 2016;28:3460–6.

    Article 
    CAS 

    Google Scholar
     

  • Liu C-M, Chen G-B, Chen H-H, Zhang J-B, Li H-Z, Sheng M-X, Weng W-B, Guo S-M. Most cancers cell membrane-cloaked mesoporous silica nanoparticles with a pH-sensitive gatekeeper for most cancers remedy. Colloids Surf B. 2019;175:477–86.

    Article 
    CAS 

    Google Scholar
     

  • Solar H, Su J, Meng Q, Yin Q, Chen L, Gu W, Zhang Z, Yu H, Zhang P, Wang S, Li Y. Most cancers cell membrane-coated gold nanocages with hyperthermia-triggered drug launch and homotypic goal inhibit progress and metastasis of breast most cancers. Adv Funct Mater. 2017;3:27.


    Google Scholar
     

  • Gao W, Fang RH, Thamphiwatana S, Luk BT, Li J, Angsantikul P, Zhang Q, Hu C-MJ, Zhang L. Modulating antibacterial immunity through bacterial membrane-coated nanoparticles. Nano Lett. 2015;15:1403–9.

    Article 
    CAS 

    Google Scholar
     

  • Zhang Y, Chen Y, Lo C, Zhuang J, Angsantikul P, Zhang Q, Wei X, Zhou Z, Obonyo M, Fang RH. Inhibition of pathogen adhesion by bacterial outer membrane-coated nanoparticles. Angew Chem Int Ed. 2019;58:11404–8.

    Article 
    CAS 

    Google Scholar
     

  • Hafsi M, Preveral S, Hoog C, Hérault J, Perrier GA, Lefèvre CT, Michel H, Pignol D, Doyen J, Pourcher T. RGD-functionalized magnetosomes are environment friendly tumor radioenhancers for X-rays and protons. Nanotechnol Biol Med. 2020;23:102084.

    Article 
    CAS 

    Google Scholar
     

  • Patel RB, Ye M, Carlson PM, Jaquish A, Zangl L, Ma B, Wang Y, Arthur I, Xie R, Brown RJ. Improvement of an in situ most cancers vaccine through combinational radiation and bacterial-membrane‐coated nanoparticles. Adv Mater. 2019;31:1902626.

    Article 
    CAS 

    Google Scholar
     

  • Molinaro R, Corbo C, Martinez JO, Taraballi F, Evangelopoulos M, Minardi S, Yazdi IK, Zhao P, De Rosa E, Sherman MB, et al. Biomimetic proteolipid vesicles for focusing on infected tissues. Nat Mater. 2016;15:1037–46.

    Article 
    CAS 

    Google Scholar
     

  • Martinez JO, Molinaro R, Hartman KA, Boada C, Sukhovershin R, De Rosa E, Kirui D, Zhang S, Evangelopoulos M, Carter AM, et al. Biomimetic nanoparticles with enhanced affinity in direction of activated endothelium as versatile instruments for theranostic drug supply. Theranostics. 2018;8:1131–45.

    Article 
    CAS 

    Google Scholar
     

  • Corradetti B, Taraballi F, Martinez JO, Minardi S, Basu N, Bauza G, Evangelopoulos M, Powell S, Corbo C, Tasciotti E. Hyaluronic acid coatings as a easy and environment friendly strategy to enhance MSC homing towards the location of irritation. Sci Rep. 2017;7:1–12.

    Article 

    Google Scholar
     

  • Toledano Furman NE, Lupu-Haber Y, Bronshtein T, Kaneti L, Letko N, Weinstein E, Baruch L, Machluf M. Reconstructed stem cell nanoghosts: a pure tumor focusing on platform. Nano Lett. 2013;13:3248–55.

    Article 
    CAS 

    Google Scholar
     

  • Siegel RL, Miller KD, Fedewa SA, Ahnen DJ, Meester RGS, Barzi A, Jemal A. Colorectal most cancers statistics, 2017. CA Most cancers J Clin. 2017;67:177–93.

    Article 

    Google Scholar
     

  • Heimburg J, Yan J, Morey S, Glinskii OV, Huxley VH, Wild L, Klick R, Roy R, Glinsky VV, Rittenhouse-Olson Ok. Inhibition of spontaneous breast most cancers metastasis by anti—Thomsen-Friedenreich antigen monoclonal antibody JAA-F11. Neoplasia. 2006;8:939–48.

    Article 
    CAS 

    Google Scholar
     

  • Zhao Q, Barclay M, Hilkens J, Guo X, Barrow H, Rhodes JM, Yu LG. Interplay between circulating galectin-3 and cancer-associated MUC1 enhances tumour cell homotypic aggregation and prevents anoikis. Mol Most cancers. 2010;9:1–12.

    Article 
    CAS 

    Google Scholar
     

  • Fidler IJ. The pathogenesis of most cancers metastasis: the ‘seed and soil’ speculation revisited. Nat Rev Most cancers. 2003;3:453–8.

    Article 
    CAS 

    Google Scholar
     

  • Glinsky VV, Glinsky GV, Glinskii OV, Huxley VH, Turk JR, Mossine VV, Deutscher SL, Pienta KJ, Quinn TP. Intravascular metastatic most cancers cell homotypic aggregation on the websites of major attachment to the endothelium. Most cancers Res. 2003;63:3805–11.

    CAS 

    Google Scholar
     

  • Naor D, Sionov RV, Ish-Shalom D. CD44: construction, operate, and affiliation with the malignant course of. Adv Most cancers Res. 1997;71:241–319.

    Article 
    CAS 

    Google Scholar
     

  • Ito Ok, Ralph SJ. Inhibiting galectin-1 reduces murine lung metastasis with elevated CD4 + and CD8 + T cells and decreased most cancers cell adherence. Clin Exp Metastasis. 2012;29:561–72.

    Article 
    CAS 

    Google Scholar
     

  • Wang D, Dong H, Li M, Cao Y, Yang F, Zhang Ok, Dai W, Wang C, Zhang X. Erythrocyte–most cancers hybrid membrane camouflaged hole copper sulfide nanoparticles for extended circulation life and homotypic-targeting photothermal/chemotherapy of melanoma. ACS Nano. 2018;12:5241–52.

    Article 
    CAS 

    Google Scholar
     

  • Kroll AV, Fang RH, Jiang Y, Zhou J, Wei X, Yu CL, Gao J, Luk BT, Dehaini D, Gao W, Zhang L. Nanoparticulate supply of most cancers cell membrane elicits multiantigenic antitumor immunity. Adv Mater. 2017;29:1703969–9.

    Article 

    Google Scholar
     

  • Fontana F, Shahbazi MA, Liu D, Zhang H, Mäkilä E, Salonen J, Hirvonen JT, Santos HA. Multistaged nanovaccines primarily based on porous silicon@acetalated dextran@most cancers cell membrane for most cancers immunotherapy. Adv Mater. 2017;29:1603239–9.

    Article 

    Google Scholar
     

  • Lollini P-L, Cavallo F, Nanni P, Forni G. Vaccines for tumour prevention. Nat Rev Most cancers. 2006;6:204–16.

    Article 
    CAS 

    Google Scholar
     

  • Lokhov PG, Balashova EE. Mobile most cancers vaccines: an replace on the event of vaccines generated from cell floor antigens. J Most cancers. 2010;1:230–41.

    Article 
    CAS 

    Google Scholar
     

  • Li Z, Wang Y, Liu J, Rawding P, Bu J, Hong S, Hu Q. Chemically and biologically engineered bacteria-based supply techniques for rising prognosis and superior remedy. Adv Mater. 2021;33:2102580.

    Article 
    CAS 

    Google Scholar
     

  • Lee EY, Bang JY, Park GW, Choi DS, Kang JS, Kim HJ, Park KS, Lee JO, Kim YK, Kwon KH. International proteomic profiling of native outer membrane vesicles derived from Escherichia coli. Proteomics. 2007;7:3143–53.

    Article 
    CAS 

    Google Scholar
     

  • Kuehn MJ, Kesty NC. Bacterial outer membrane vesicles and the host–pathogen interplay. Genes Dev. 2005;19:2645–55.

    Article 
    CAS 

    Google Scholar
     

  • Poetsch A, Wolters D. Bacterial membrane proteomics. Proteomics. 2008;8:4100–22.

    Article 
    CAS 

    Google Scholar
     

  • Acevedo R, Fernández S, Zayas C, Acosta A, Sarmiento ME, Ferro VA, Rosenqvist E, Campa C, Cardoso D, Garcia L. Bacterial outer membrane vesicles and vaccine purposes. Entrance Immunol. 2014;5:121.

    Article 

    Google Scholar
     

  • Kim OY, Lee J, Gho YS. Extracellular vesicle mimetics: novel alternate options to extracellular vesicle-based theranostics, drug supply, and vaccines. Semin Cell Dev Biol. 2017;67:74–82.

    Article 
    CAS 

    Google Scholar
     

  • Kim OY, Park HT, Dinh NTH, Choi SJ, Lee J, Kim JH, Lee S-W, Gho YS. Bacterial outer membrane vesicles suppress tumor by interferon-γ-mediated antitumor response. Nat Commun. 2017;8:1–9.


    Google Scholar
     

  • Cheng Ok, Zhao R, Li Y, Qi Y, Wang Y, Zhang Y, Qin H, Qin Y, Chen L, Li C. Bioengineered bacteria-derived outer membrane vesicles as a flexible antigen show platform for tumor vaccination through plug-and-display know-how. Nat Commun. 2021;12:1–16.


    Google Scholar
     

  • Li Z, Wang Y, Ding Y, Repp L, Kwon GS, Hu Q. Cell-based supply techniques: rising carriers for immunotherapy. Adv Funct Mater. 2021;31::2100088.

    Article 
    CAS 

    Google Scholar
     

  • Brooks JP, Edwards DJ, Harwich MD, Rivera MC, Fettweis JM, Serrano MG, Reris RA, Sheth NU, Huang B, Girerd P. The reality about metagenomics: quantifying and counteracting bias in 16S rRNA research. BMC Microbiol. 2015;15:1–14.

    Article 

    Google Scholar
     

  • Krishnan N, Kubiatowicz LJ, Holay M, Zhou J, Fang RH, Zhang L. Bacterial membrane vesicles for vaccine purposes. Adv Drug Deliv Rev. 2022;185:114294.

    Article 
    CAS 

    Google Scholar
     

  • Ai X, Wang S, Duan Y, Zhang Q, Chen MS, Gao W, Zhang L. Rising approaches to functionalizing cell membrane-coated nanoparticles. Biochemistry. 2020;60:941–55.

    Article 

    Google Scholar
     

  • Su J, Solar H, Meng Q, Yin Q, Tang S, Zhang P, Chen Y, Zhang Z, Yu H, Li Y. Lengthy circulation red-blood‐cell‐mimetic nanoparticles with peptide‐enhanced tumor penetration for concurrently inhibiting progress and lung metastasis of breast most cancers. Adv Funct Mater. 2016;26:1243–52.

    Article 
    CAS 

    Google Scholar
     

  • Wang J, Wang Z, Zhong Y, Zou Y, Wang C, Wu H, Lee A, Yang W, Wang X, Liu Y. Central metal-derived co-assembly of biomimetic GdTPP/ZnTPP porphyrin nanocomposites for enhanced dual-modal imaging-guided photodynamic remedy. Biomaterials. 2020;229:119576.

    Article 
    CAS 

    Google Scholar
     

  • Cheng S, Xu C, Jin Y, Li Y, Zhong C, Ma J, Yang J, Zhang N, Li Y, Wang C. Synthetic mini dendritic cells enhance T cell–primarily based immunotherapy for ovarian most cancers. Adv Sci. 2020;7:1903301.

    Article 
    CAS 

    Google Scholar
     



  • Supply hyperlink

    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    - Advertisment -
    Google search engine

    Most Popular

    Recent Comments