Saturday, October 14, 2023
HomeNanotechnologyBiodegradable polymeric nanoparticles enhance danger of cardiovascular ailments by inducing endothelium dysfunction...

Biodegradable polymeric nanoparticles enhance danger of cardiovascular ailments by inducing endothelium dysfunction and irritation | Journal of Nanobiotechnology


  • Kamaly N, Yameen B, Wu J, Farokhzad OC. Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug launch. Chem Rev. 2016;116:2602–63.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rai P, Mehrotra S, Priya S, Gnansounou E, Sharma SK. Current advances within the sustainable design and purposes of biodegradable polymers. Bioresour Technol. 2021;325:124739.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Junaid M, Liu S, Chen G, Liao H, Wang J. Transgenerational impacts of micro(nano)plastics within the aquatic and terrestrial surroundings. J Hazard Mater. 2023;443:130274.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao D, Liu X, Junaid M, Liao H, Chen G, Wu Y, et al. Toxicological impacts of micro(nano)plastics within the benthic surroundings. Sci Complete Environ. 2022;836:155620.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Leslie HA, van Velzen MJM, Brandsma SH, Vethaak AD, Garcia-Vallejo JJ, Lamoree MH. Discovery and quantification of plastic particle air pollution in human blood. Environ Int. 2022;163:107199.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Medici S, Peana M, Pelucelli A, Zoroddu MA. An up to date overview on steel nanoparticles toxicity. Semin Most cancers Biol. 2021;76:17–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cui L, Wang X, Solar B, Xia T, Hu S. Predictive metabolomic signatures for security evaluation of steel oxide nanoparticles. ACS Nano. 2019;13:13065–82.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Solar D, Gong L, Xie J, Gu X, Li Y, Cao Q, et al. Toxicity of silicon dioxide nanoparticles with various sizes on the cornea and protein corona as a technique for remedy. Sci Bull. 2018;63:907–16.

    Article 
    CAS 

    Google Scholar
     

  • Kong L, Hu W, Gao X, Wu Y, Xue Y, Cheng Okay, et al. Molecular mechanisms underlying nickel nanoparticle induced rat Sertoli-germ cells apoptosis. Sci Complete Environ. 2019;692:240–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Magaye RR, Yue X, Zou B, Shi H, Yu H, Liu Okay, et al. Acute toxicity of nickel nanoparticles in rats after intravenous injection. Int J Nanomedicine. 2014;9:1393–402.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu Y, Kong L. Advance on toxicity of steel nickel nanoparticles. Environ Geochem Well being. 2020;42:2277–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Inexperienced DS, Boots B, Blockley DJ, Rocha C, Thompson R. Impacts of discarded plastic luggage on marine assemblages and ecosystem functioning. Environ Sci Technol. 2015;49:5380–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Inexperienced DS, Boots B, Sigwart J, Jiang S, Rocha C. Results of standard and biodegradable microplastics on a marine ecosystem engineer (Arenicola marina) and sediment nutrient biking. Environ Pollut Barking Essex. 1987;2016(208):426–34.


    Google Scholar
     

  • Fodor-Kardos A, Kiss ÁF, Monostory Okay, Feczkó T. Sustained in vitro interferon-beta launch and in vivo toxicity of PLGA and PEG-PLGA nanoparticles. RSC Adv. 2020;10:15893–900.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thackaberry EA, Farman C, Zhong F, Lorget F, Staflin Okay, Cercillieux A, et al. Analysis of the toxicity of intravitreally injected PLGA microspheres and rods in monkeys and rabbits: results of depot measurement on inflammatory response. Make investments Ophthalmol Vis Sci. 2017;58:4274–85.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grabowski N, Hillaireau H, Vergnaud J, Santiago LA, Kerdine-Romer S, Pallardy M, et al. Toxicity of surface-modified PLGA nanoparticles towards lung alveolar epithelial cells. Int J Pharm. 2013;454:686–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Track P, Fang Z, Wang H, Cai Y, Rahimi Okay, Zhu Y, et al. International and regional prevalence, burden, and danger components for carotid atherosclerosis: a scientific evaluate, meta-analysis, and modelling examine. Lancet Glob Well being. 2020;8:e721–9.

    Article 
    PubMed 

    Google Scholar
     

  • Libby P, Buring JE, Badimon L, Hansson GK, Deanfield J, Bittencourt MS, et al. Atherosclerosis. Nat Rev Dis Primer. 2019;5:56.

    Article 

    Google Scholar
     

  • Giacoppo D, Alfonso F, Xu B, Claessen BEPM, Adriaenssens T, Jensen C, et al. Drug-coated balloon angioplasty versus drug-eluting stent implantation in sufferers with coronary stent restenosis. J Am Coll Cardiol. 2020;75:2664–78.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Giustino G, Colombo A, Camaj A, Yasumura Okay, Mehran R, Stone GW, et al. Coronary in-stent restenosis. J Am Coll Cardiol. 2022;80:348–72.

    Article 
    PubMed 

    Google Scholar
     

  • Machatschek R, Lendlein A. Elementary insights in PLGA degradation from skinny movie research. J Managed Launch. 2020;319:276–84.

    Article 
    CAS 

    Google Scholar
     

  • Yin T, Du R, Wang Y, Huang J, Ge S, Huang Y, et al. Two-stage degradation and novel purposeful endothelium traits of a 3-D printed bioresorbable scaffold. Bioact Mater. 2022;10:378–396.

  • Zare EN, Jamaledin R, Naserzadeh P, Afjeh-Dana E, Ashtari B, Hosseinzadeh M, et al. Metallic-based nanostructures/PLGA nanocomposites: antimicrobial exercise, cytotoxicity, and their biomedical purposes. ACS Appl Mater Interfaces. 2020;12:3279–300.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang G, Cong Y, Liu F-L, Solar J, Zhang J, Cao G, et al. A nanomaterial concentrating on the spike protein captures SARS-CoV-2 variants and promotes viral elimination. Nat Nanotechnol. 2022;17:993–1003.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tsoi KM, MacParland SA, Ma X-Z, Spetzler VN, Echeverri J, Ouyang B, et al. Mechanism of hard-nanomaterial clearance by the liver. Nat Mater. 2016;15:1212–21.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yin T, Li Y, Ren Y, Fuad ARM, Hu F, Du R, et al. Phagocytosis of polymeric nanoparticles aided activation of macrophages to extend atherosclerotic plaques in ApoE/ mice. J Nanobiotechnol. 2021;19:121.

    Article 
    CAS 

    Google Scholar
     

  • Wang Y, Wang G. Polymeric nanomicelles: a possible hazard for the cardiovascular system? Nanomed. 2017;12:1355–8.

    Article 
    CAS 

    Google Scholar
     

  • Yoon J-Okay, Kim D-H, Kang M-L, Jang H-Okay, Park H-J, Lee JB, et al. Anti-atherogenic impact of stem cell nanovesicles concentrating on disturbed circulation websites. Small Weinh Bergstr Ger. 2020;16:e2000012.

    Article 

    Google Scholar
     

  • Tao M, Mauro CR, Yu P, Favreau JT, Nguyen B, Gaudette GR, et al. A simplified murine intimal hyperplasia mannequin based on a focal carotid stenosis. Am J Pathol. 2013;182:277–87.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Souilhol C, Serbanovic-Canic J, Fragiadaki M, Chico TJ, Ridger V, Roddie H, et al. Endothelial responses to shear stress in atherosclerosis: a novel function for developmental genes. Nat Rev Cardiol. 2020;17:52–63.

    Article 
    PubMed 

    Google Scholar
     

  • Driessen R, Zhao F, Hofmann S, Bouten C, Sahlgren C, Stassen O. Computational characterization of the Dish-In-A-Dish, a excessive yield tradition platform for endothelial shear stress research on the orbital shaker. Micromachines. 2020;11:E552.

    Article 

    Google Scholar
     

  • Filipovic N, Ghimire Okay, Saveljic I, Milosevic Z, Ruegg C. Computational modeling of shear forces and experimental validation of endothelial cell responses in an orbital nicely shaker system. Comput Strategies Biomech Biomed Eng. 2016;19:581–90.

    Article 

    Google Scholar
     

  • Wang Y, Xu Y, Yan S, Cao Okay, Zeng X, Zhou Y, et al. Adenosine kinase is vital for neointima formation after vascular harm by inducing aberrant DNA hypermethylation. Cardiovasc Res. 2021;117:561–75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Setyawati MI, Tay CY, Bay BH, Leong DT. Gold nanoparticles induced endothelial leakiness is determined by particle measurement and endothelial cell origin. ACS Nano. 2017;11:5020–30.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Edsfeldt A, Osterlund J, Solar J, Pan M, Tengryd C, Nitulescu M, et al. Circulating CD31 displays endothelial exercise and is related to a decrease danger for cardiovascular issues. Eur Coronary heart J. 2022;43:ehac544.3054.

    Article 

    Google Scholar
     

  • de Maat S, Clark CC, Barendrecht AD, Smits S, van Kleef ND, El Otmani H, et al. Microlyse: a thrombolytic agent that targets VWF for clearance of microvascular thrombosis. Blood. 2022;139:597–607.

    Article 
    PubMed 

    Google Scholar
     

  • Giri H, Panicker SR, Cai X, Biswas I, Weiler H, Rezaie AR. Thrombomodulin is crucial for sustaining quiescence in vascular endothelial cells. Proc Natl Acad Sci USA. 2021;118:e2022248118.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fang J, Zhang Z, Shang L, Luo Y, Lin Y, Yuan Y, et al. Hepatoma cell-secreted exosomal microRNA-103 will increase vascular permeability and promotes metastasis by concentrating on junction proteins. Hepatology. 2018;68:1459–75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Libby P. Irritation in atherosclerosis—Now not a concept. Clin Chem. 2021;67:131–42.

    Article 
    PubMed 

    Google Scholar
     

  • Xu J, Wang J, Qiu J, Liu H, Wang Y, Cui Y, et al. Nanoparticles retard immune cells recruitment in vivo by inhibiting chemokine expression. Biomaterials. 2021;265:120392.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mohammadpanah M, Heidari MM, Khatami M, Hadadzadeh M. Relationship of hypomethylation CpG islands in interleukin-6 gene promoter with IL-6 mRNA ranges in sufferers with coronary atherosclerosis. J Cardiovasc Thorac Res. 2020;12:221–8.

    Article 

    Google Scholar
     

  • Xiong S, George S, Yu H, Damoiseaux R, France B, Ng KW, et al. Measurement influences the cytotoxicity of poly (lactic-co-glycolic acid) (PLGA) and titanium dioxide (TiO(2)) nanoparticles. Arch Toxicol. 2013;87:1075–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen D, Weng L, Chen C, Zheng J, Wu T, Zeng S, et al. Irritation and dysfunction in human aortic endothelial cells related to poly-l-lactic acid degradation in vitro are alleviated by curcumin. J Biomed Mater Res A. 2019;107:2756–63.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yin Y, Wang J, Yang M, Du R, Pontrelli G, McGinty S, et al. Penetration of the blood-brain barrier and the anti-tumour impact of a novel PLGA-lysoGM1/DOX micelle drug supply system. Nanoscale. 2020;12:2946–60.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Flores AM, Hosseini-Nassab N, Jarr Okay-U, Ye J, Zhu X, Wirka R, et al. Professional-efferocytic nanoparticles are particularly taken up by lesional macrophages and stop atherosclerosis. Nat Nanotechnol. 2020;15:154–61.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baimanov D, Wang J, Zhang J, Liu Okay, Cong Y, Shi X, et al. In situ evaluation of nanoparticle tender corona and dynamic evolution. Nat Commun. 2022;13:5389.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao W, Solar Y, Cai M, Zhao Y, Cao W, Liu Z, et al. Copper sulfide nanoparticles as a photothermal change for TRPV1 signaling to attenuate atherosclerosis. Nat Commun. 2018;9:231.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Walker J, Albert J, Liang D, Solar J, Schutzman R, Kumar R, et al. In vitro degradation and erosion conduct of economic PLGAs used for managed drug supply. Drug Deliv Transl Res. 2023;13:237–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zeng C-H, Liu L-L, Zhu H-D, Teng G-J. The exploration of a novel biodegradable drug-eluting biliary stent: preliminary work. Cardiovasc Intervent Radiol. 2021;44:1633–42.

    Article 
    PubMed 

    Google Scholar
     

  • Cedervall T, Lynch I, Lindman S, Berggård T, Thulin E, Nilsson H, et al. Understanding the nanoparticle-protein corona utilizing strategies to quantify alternate charges and affinities of proteins for nanoparticles. Proc Natl Acad Sci USA. 2007;104:2050–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang J, Wang G, Shan H, Wang X, Wang C, Zhuang X, et al. Gradiently degraded electrospun polyester scaffolds with cytostatic for urothelial carcinoma remedy. Biomater Sci. 2019;7:963–74.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zeng J, Martin A, Han X, Shirihai OS, Grinstaff MW. Biodegradable PLGA nanoparticles restore lysosomal acidity and defend neural PC-12 cells in opposition to mitochondrial toxicity. Ind Eng Chem Res. 2019;58:13910–7.

    Article 
    CAS 

    Google Scholar
     

  • Areny-Balagueró A, Mekseriwattana W, Camprubí-Rimblas M, Stephany A, Roldan A, Solé-Porta A, et al. Fluorescent PLGA nanocarriers for pulmonary administration: affect of the floor cost. Pharmaceutics. 2022;14:1447.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abulateefeh SR. Lengthy-acting injectable PLGA/PLA depots for leuprolide acetate: profitable translation from bench to clinic. Drug Deliv Transl Res. 2023;13:520–30.

    Article 
    PubMed 

    Google Scholar
     

  • Park Okay, Skidmore S, Hadar J, Garner J, Park H, Otte A, et al. Injectable, long-acting PLGA formulations: analyzing PLGA and understanding microparticle formation. J Management Launch Off J Management Launch Soc. 2019;304:125–34.

    Article 
    CAS 

    Google Scholar
     

  • Dai Z, Zhu MM, Peng Y, Jin H, Machireddy N, Qian Z, et al. Endothelial and clean muscle cell interplay through foxm1 signaling mediates vascular transforming and pulmonary hypertension. Am J Respir Crit Care Med. 2018;198:788–802.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Supply hyperlink

    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    - Advertisment -
    Google search engine

    Most Popular

    Recent Comments