Novoselov, Okay. S. et al. Two-dimensional gasoline of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).
Katsnelson, M., Novoselov, Okay. & Geim, A. Chiral tunnelling and the Klein paradox in graphene. Nat. Phys. 2, 620–625 (2006).
Younger, A. F. & Kim, P. Quantum interference and Klein tunnelling in graphene heterojunctions. Nat. Phys. 5, 222–226 (2009).
Wang, Y. et al. Observing atomic collapse resonances in synthetic nuclei on graphene. Science 340, 734–737 (2013).
Lu, J. et al. Pissed off supercritical collapse in tunable cost arrays on graphene. Nat. Commun. 10, 477 (2019).
Chen, S. et al. Electron optics with p-n junctions in ballistic graphene. Science 353, 1522–1525 (2016).
Cheianov, V. V., Fal’ko, V. & Altshuler, B. The focusing of electron movement and a Veselago lens in graphene p-n junctions. Science 315, 1252–1255 (2007).
Cheianov, V. V. & Fal’ko, V. I. Selective transmission of Dirac electrons and ballistic magnetoresistance of n−p junctions in graphene. Phys. Rev. B 74, 041403 (2006).
Liu, M.-H., Gorini, C. & Richter, Okay. Creating and steering extremely directional electron beams in graphene. Phys. Rev. Lett. 118, 066801 (2017).
Chakraborty, T. Quantum Dots: A Survey of the Properties of Synthetic Atoms (Elsevier, 1999).
Reimann, S. M. & Manninen, M. Digital construction of quantum dots. Rev. Mod. Phys. 74, 1283 (2002).
Kouwenhoven, L. P., Austing, D. & Tarucha, S. Few-electron quantum dots. Rep. Prog. Phys. 64, 701 (2001).
Hanson, R., Kouwenhoven, L. P., Petta, J. R., Tarucha, S. & Vandersypen, L. M. Spins in few-electron quantum dots. Rev. Mod. Phys. 79, 1217 (2007).
Lodahl, P., Mahmoodian, S. & Stobbe, S. Interfacing single photons and single quantum dots with photonic nanostructures. Rev. Mod. Phys. 87, 347 (2015).
Zhao, Y. et al. Creating and probing electron whispering-gallery modes in graphene. Science 348, 672–675 (2015).
Freitag, N. M. et al. Electrostatically confined monolayer graphene quantum dots with orbital and valley splittings. Nano Lett. 16, 5798–5805 (2016).
Gutiérrez, C., Brown, L., Kim, C.-J., Park, J. & Pasupathy, A. N. Klein tunnelling and electron trapping in nanometre-scale graphene quantum dots. Nat. Phys. 12, 1069–1075 (2016).
Lee, J. et al. Imaging electrostatically confined Dirac fermions in graphene quantum dots. Nat. Phys. 12, 1032–1036 (2016).
Ghahari, F. et al. An on/off Berry section change in round graphene resonators. Science 356, 845–849 (2017).
Jiang, Y. et al. Tuning a round p–n junction in graphene from quantum confinement to optical guiding. Nat. Nanotechnol. 12, 1045–1049 (2017).
Bai, Okay.-Okay. et al. Producing atomically sharp p−n junctions in graphene and testing quantum electron optics on the nanoscale. Phys. Rev. B 97, 045413 (2018).
Freitag, N. M. et al. Giant tunable valley splitting in edge-free graphene quantum dots on boron nitride. Nat. Nanotechnol. 13, 392–397 (2018).
Quezada-López, E. A. et al. Complete electrostatic modeling of uncovered quantum dots in graphene/hexagonal boron nitride heterostructures. Nanomaterials 10, 1154 (2020).
Behn, W. A. et al. Measuring and tuning the potential panorama of electrostatically outlined quantum dots in graphene. Nano Lett. 21, 5013–5020 (2021).
Zhang, J., Jiang, Y.-P., Ma, X.-C. & Xue, Q.-Okay. Berry-phase change in electrostatically confined topological floor states. Phys. Rev. Lett. 128, 126402 (2022).
Rodriguez-Nieva, J. F. & Levitov, L. S. Berry section jumps and large nonreciprocity in Dirac quantum dots. Phys. Rev. B 94, 235406 (2016).
Ge, Z. et al. Visualization and manipulation of bilayer graphene quantum dots with damaged rotational symmetry and nontrivial topology. Nano Lett. 20, 8682–8688 (2020).
Bethe, H. A. & Salpeter, E. E. Quantum Mechanics of One- and Two-Electron Atoms (Springer Science & Enterprise Media, 2012).
Rinaldi, R. et al. Zeeman impact in parabolic quantum dots. Phys. Rev. Lett. 77, 342 (1996).
Paskov, P. et al. Magnetoluminescence of extremely excited InAs/GaAs self-assembled quantum dots. Phys. Rev. B 62, 7344 (2000).
Raymond, S. et al. Excitonic vitality shell construction of self-assembled InGaAs/GaAs quantum dots. Phys. Rev. Lett. 92, 187402 (2004).
Ren, Y.-N., Cheng, Q., Solar, Q.-F. & He, L. Realizing valley-polarized vitality spectra in bilayer graphene quantum dots by way of constantly tunable Berry phases. Phys. Rev. Lett. 128, 206805 (2022).
Tong, C. et al. Tunable valley splitting and bipolar operation in graphene quantum dots. Nano Lett. 21, 1068–1073 (2021).
Ge, Z. et al. Management of large topological magnetic second and valley splitting in trilayer graphene. Phys. Rev. Lett. 127, 136402 (2021).
Lenz, J. & Edelstein, S. Magnetic sensors and their functions. IEEE Sens. J. 6, 631–649 (2006).
Degen, C. L., Reinhard, F. & Cappellaro, P. Quantum sensing. Rev. Mod. Phys. 89, 035002 (2017).
Fu, Z.-Q. et al. Relativistic synthetic molecules realized by two coupled graphene quantum dots. Nano Lett. 20, 6738–6743 (2020).
Ashcroft, N. W. & Mermin, N. D. Stable State Physics (Cengage Studying, 1976).
Arimondo, E., Ciampini, D. & Rizzo, C. Chapter one—spectroscopy of pure and synthetic atoms in magnetic fields. In Advances In Atomic, Molecular, and Optical Physics 65, 1–66 (Elsevier, 2016).
Ambegaokar, V. & Eckern, U. Coherence and chronic currents in mesoscopic rings. Phys. Rev. Lett. 65, 381 (1990).
Bleszynski-Jayich, A. et al. Persistent currents in regular metallic rings. Science 326, 272–275 (2009).
Mooij, J. et al. Josephson persistent-current qubit. Science 285, 1036–1039 (1999).
Nisoli, C., Moessner, R. & Schiffer, P. Colloquium: synthetic spin ice: designing and imaging magnetic frustration. Rev. Mod. Phys. 85, 1473 (2013).
Zomer, P., Sprint, S., Tombros, N. & Van Wees, B. A switch method for prime mobility graphene units on commercially obtainable hexagonal boron nitride. Appl. Phys. Lett. 99, 232104 (2011).
Goossens, A. et al. Mechanical cleansing of graphene. Appl. Phys. Lett. 100, 073110 (2012).