Background
Fee limiting is a way used to guard providers from overload. As well as, it may be used to forestall hunger of a multi-tenant useful resource by a couple of very giant prospects. At Rockset, we primarily use charge limiting to guard our:
- metadata retailer from overload attributable to too many API requests.
- log retailer from filling up attributable to mismatched enter and output charges
- management airplane from too many state transitions.
We use Redisson RateLimiter which makes use of Redis below the hood to trace charge utilization. At a really primary degree, our utilization of the library appears to be like like this (omitting particular enterprise logic for higher readability):
class RedisRateLimiter {
non-public remaining RRateLimiter rateLimitService = ...;
public boolean isNotRateLimited(String key, int requestedTokens) {
return rateLimitService.purchase(key, requestedTokens);
}
}
Let’s not dive into the main points of RRateLimiter
, however suffice it to say that this makes a community name to Redis. RedisRateLimiter.purchase
will return true if requestedTokens
wouldn’t exceed your charge restrict and false in any other case.
Drawback
Lately, we noticed that attributable to many requests to Redis, the CPU on our Redis cluster was getting near 100%. The very first thing we tried was vertically scaling up our Redis occasion to purchase us time. Nonetheless, vertical scaling has its personal limits and each few weeks we might find yourself with one other surge in Redis CPU.
We additionally seen that Redisson makes use of Lua scripting on the server facet and seen that lua compilation was taking over a good chunk of CPU time. One other low hanging fruit we tried was configuring Redisson to cache lua compilation on the server facet, lowering CPU time spent on this activity. Since this was a easy config change, it didn’t require a code deploy and was simple to get out.
Aside from vertical scaling and bettering configuration, we brainstormed a couple of different approaches to the issue:
- We might shard Redis over the speed restrict keys to unfold the load and horizontally scale.
- We might queue charge restrict requests domestically and have a single thread that periodically (i.e. each 50ms) takes n gadgets off the queue and requests a bigger batch of tokens from Redis.
- We might proactively reserve bigger batches of tokens and cache them domestically. When a request for tokens is available in, attempt getting back from the native cache. If that does not exist, go fetch a bigger batch. That is analogous to Malloc not making a sys name each time reminiscence is requested and as an alternative reserving bigger chunks that it manages.
Horizontally scaling Redis by sharding is a good long-term resolution; it’s in all probability one thing we’re going to finish up doing sooner or later.
The issue with the second strategy is it raises a couple of complexities: How steadily does the thread pull from the queue and ballot? Do you cap the dimensions of the queue and in that case, what occurs if the queue is full? How do you even set the cap on the queue? What if Redis has 50 tokens and we batch 10 requests every needing 10 tokens (asking Redis for a complete of 100 tokens)? Ideally 5 requests ought to succeed, however in actuality all 10 would fail. These issues are solvable, however would make the implementation fairly advanced. Thus, we ended up implementing the third resolution.
As proven in the direction of the top of the submit, this implementation diminished Redis connections on charge restrict calls by 96%. The remainder of this submit will discover how we applied the third strategy. It goes into a number of the pitfalls, complexities, and issues to contemplate when engaged on a batch-oriented resolution akin to this one.
Implementation
Word that code introduced on this weblog is in Java. Not all error dealing with is proven for simplicity. Additionally, I’ll reference a now()
technique which merely returns the unix timestamp in seconds from epoch.
Let’s begin easy:
class RedisRateLimiter {
non-public remaining RRateLimiter rateLimitService = ...;
non-public remaining lengthy batchSize = ...;
non-public remaining lengthy timeWindowSecs = ...;
non-public lengthy reservedTokens = 0;
non-public lengthy expirationTs = 0;
public boolean isNotRateLimited(String key, int requestedTokens) {
// On this case, we'd as properly make a direct name to
// simplify issues.
if (requestedTokens > batchSize) {
return rateLimitService.purchase(key, requestedTokens);
}
if (reservedTokens >= requestedTokens && expirationTs <= now()) {
reservedTokens -= requestedTokens;
return true;
}
if (rateLimitService.purchase(key, batchSize)) {
reservedTokens = batchSize - requestedTokens;
expirationTs = now() + timeWindowSecs;
return true;
}
return false;
}
}
This code appears to be like high-quality upon first look, however what occurs if a number of threads must name isNotRateLimited
on the identical time? The above code is definitely not thread secure. I’ll go away as an train to the reader why making reservedTokens
into an Atomic variable will not clear up the issue (though do tell us in case you provide you with a intelligent lock-free resolution). If Atomic
s will not work, we will attempt utilizing Lock
s as an alternative:
class RedisRateLimiter {
non-public remaining RRateLimiter rateLimitService = ...;
non-public remaining lengthy batchSize = ...;
non-public remaining lengthy timeWindowSecs = ...;
non-public remaining Lock lock = new ReentrantLock();
non-public lengthy reservedTokens = 0;
non-public lengthy expirationTs = 0;
public boolean isNotRateLimited(String key, int requestedTokens) {
// On this case, we'd as properly make a direct name to
// simplify issues.
if (requestedTokens > batchSize) {
return rateLimitService.purchase(key, requestedTokens);
}
lock.lock();
attempt {
if (reservedTokens >= requestedTokens && expirationTs <= now()) {
reservedTokens -= requestedTokens;
return true;
} else if (expirationTs <= now()) {
// Deplete remaining tokens
requestedTokens -= reservedTokens;
reservedTokens = 0;
}
} lastly {
// Simple to miss; do not lock throughout the community request.
lock.unlock();
}
if (rateLimitService.purchase(key, batchSize)) {
lock.lock();
reservedTokens = (batchSize - requestedTokens);
expirationTs = now() + timeWindowSecs;
lock.unlock();
return true;
}
return false;
}
}
Whereas at first look this appears to be like right, there may be one delicate drawback with it. What occurs if a number of threads see there aren’t sufficient reservedTokens
? To illustrate reservedTokens
is 0, our batchSize
is 100, and 5 threads request 20 tokens every concurrently.
All 5 threads will see that there aren’t sufficient reserved tokens and every will fetch 100 tokens. Now, this machine is left with 450 reservedTokens
and 5x too many requests to the exterior retailer. Can we do higher? All we actually want is for one thread to go and fetch a batch after which the opposite 4 threads can simply make the most of that batch. 1 community name, and fewer wasted tokens.
With some booleans and situation variables, we will fairly simply obtain this. Should you’re unfamiliar with how situation variables work, take a look at the java docs; most languages may have some kind of situation variable implementation as properly. This is the code:
class RedisRateLimiter {
non-public remaining RRateLimiter rateLimitService = ...;
non-public remaining lengthy batchSize = ...;
non-public remaining lengthy timeWindowSecs = ...;
non-public remaining Lock lock = new ReentrantLock();
non-public remaining Situation fetchCondition = lock.newCondition();
non-public boolean fetchInProgress = false;
non-public lengthy reservedTokens = 0;
non-public lengthy expirationTs = 0;
public boolean isNotRateLimited(String key, int requestedTokens) {
// On this case, we'd as properly make a direct name to
// simplify issues.
if (requestedTokens > batchSize) {
return rateLimitService.purchase(key, requestedTokens);
}
boolean doFetch = false;
lock.lock();
attempt {
if (reservedTokens >= requestedTokens && expirationTs <= now()) {
reservedTokens -= requestedTokens;
return true;
} else if (expirationTs <= now()) {
requestedTokens -= reservedTokens;
reservedTokens = 0;
}
if (fetchInProgress) {
// Thread is already fetching; let's watch for it to complete.
fetchCondition.await();
if (reservedTokens >= requestedTokens) {
reservedTokens -= requestedTokens;
return true;
}
return false;
} else {
doFetch = true; // This thread ought to fetch the batch
fetchInProgress = true; // Keep away from different threads from fetching.
}
} lastly {
lock.unlock();
}
if (doFetch) {
boolean acquired = rateLimitService.purchase(key, batchSize);
lock.lock();
if (acquired) {
reservedTokens = (batchSize - requestedTokens);
expirationTs = now() + timeWindowSecs;
}
fetchCondition.signalAll(); // Get up ready threads
lock.unlock();
return acquired;
}
return false;
}
}
Now, we’ll solely ever have one thread at a time fetching a batch. Whereas the code is logically right, we’d find yourself charge limiting a thread too aggressively:
To illustrate our batch dimension is 100 and we’ve 5 threads requesting 25 tokens every concurrently. The primary thread (name it T1
) will fetch the batch from the exterior service. The opposite 4 threads will wait on the situation variable. Nonetheless, the fifth thread may have waited for no motive as a result of the primary 4 threads will deplete all of the tokens within the fetched batch. As an alternative, it may need been higher to both:
- Instantly return false for the fifth thread (this may charge restrict too aggressively)
- Or have the fifth thread make a direct name to the exterior service, not ready on the primary thread.
The second resolution is applied beneath:
class RedisRateLimiter {
non-public remaining RRateLimiter rateLimitService = ...;
non-public remaining lengthy batchSize = ...;
non-public remaining lengthy timeWindowSecs = ...;
non-public remaining Lock lock = new ReentrantLock();
non-public remaining Situation fetchCondition = lock.newCondition();
non-public boolean fetchInProgress = false;
non-public lengthy reservedTokens = 0;
non-public lengthy expirationTs = 0;
// Variety of tokens that ready threads will deplete.
non-public lengthy unreservedFetchTokens = 0;
// Utilized by ready threads to find out if the fetch they're
// ready for succeeded or not.
non-public boolean didFetchSucceed = false;
public boolean isNotRateLimited(String key, int requestedTokens) {
// On this case, we'd as properly make a direct name to
// simplify issues.
if (requestedTokens > batchSize) {
return rateLimitService.purchase(key, requestedTokens);
}
boolean doFetch = false;
lock.lock();
attempt {
if (reservedTokens >= requestedTokens && expirationTimesatmp <= now()) {
reservedTokens -= requestedTokens;
return true;
} else if (expirationTimestamp <= now()) {
requestedTokens -= reservedTokens;
reservedTokens = 0;
}
if (fetchInProgress) {
if (unreservedFetchTokens >= requestedTokens) {
// Reserve your spot in line
unreservedFetchTokens -= requestedTokens;
fetchCondition.await();
// If we get right here and the fetch succeeded, then we
// are high-quality.
return didFetchSucceed;
}
} else {
doFetch = true;
fetchInProgress = true;
unreservedFetchTokens = batch - requestedTokens;
}
} lastly {
lock.unlock();
}
if (doFetch) {
boolean acquired = rateLimitService.purchase(key, batchSize);
lock.lock();
didFetchSucceed = acquired;
if (acquired) {
reservedTokens = unreservedFetchTokens;
expirationTs = now() + timeWindowSecs;
}
fetchCondition.signalAll(); // Get up ready threads
lock.unlock();
return acquired;
}
// If we get right here, it means there weren't sufficient
// unreservedFetchTokens. Let's simply make our personal
// name slightly than ready in line.
return rateLimitService.purchase(key, tokensRequested);
}
}
Lastly, we have arrived at an appropriate resolution. In apply, the lock competition must be minimal as we’re solely setting a couple of primitive values. However, as with something, you must benchmark this resolution on your use case and see if it is sensible.
Setting the batch dimension
One remaining query is the best way to set batchSize
. There’s a tradeoff right here: If batchSize
is simply too low, the variety of requests to Redis will strategy the variety of requests to isNotRateLimited
. If batchSize
is simply too excessive, hosts will reserve too many tokens, ravenous out different hosts. One factor to contemplate is whether or not these hosts could be auto scaled. In that case, as soon as numHosts * batchSize
exceeds the speed restrict, different hosts will begin getting starved out even when the variety of requests is below the speed restrict.
To deal with a few of this, it might be fascinating to discover utilizing a dynamically set batch dimension. If this machine used up all the final batch, perhaps it will probably request 1.5x
the batch subsequent time (with a cap in fact). Alternatively, if batches are going to waste, maybe solely ask for half the batch subsequent time.
Outcomes
As an preliminary place to begin, we set the batchSize to be 1/1000 of the speed restrict for a given useful resource. For our workload, this resulted in ~4% of charge restrict requests going to Redis, an enormous enchancment. This may be seen within the chart beneath, the place the x-axis is time and the y-axis is % of requests hitting Redis:
Bettering our charge limiting at Rockset is an ongoing course of and this in all probability received’t be the final enchancment we have to make on this space. Keep tuned for extra. And in case you’re considering fixing all these issues, we’re hiring!
A fast apart
As an apart, the next code has a really delicate concurrency bug. Can you notice it?
class RedisRateLimiter {
non-public remaining RRateLimiter rateLimitService = ...;
non-public remaining lengthy batchSize = ...;
non-public remaining lengthy timeWindowSecs = ...;
non-public remaining Lock lock = new ReentrantLock();
non-public remaining Situation fetchCondition = lock.newCondition();
non-public boolean fetchInProgress = false;
non-public lengthy reservedTokens = 0;
non-public lengthy expirationTs = 0;
// Variety of tokens that ready threads will deplete.
non-public lengthy unreservedFetchTokens = 0;
public boolean isNotRateLimited(String key, int requestedTokens) {
// On this case, we'd as properly make a direct name to
// simplify issues.
if (requestedTokens > batchSize) {
return rateLimitService.purchase(key, requestedTokens);
}
boolean doFetch = false;
lock.lock();
attempt {
if (reservedTokens >= requestedTokens) {
reservedTokens -= requestedTokens;
return true;
} else if (expirationTimestamp <= now()) {
requestedTokens -= reservedTokens;
reservedTokens = 0;
}
if (fetchInProgress) {
if (unreservedFetchTokens >= requestedTokens) {
// Reserve your spot in line
unreservedFetchTokens -= requestedTokens;
fetchCondition.await();
if (reservedTokens >= requestedTokens) {
reservedTokens -= requestedTokens;
return true;
}
return false;
}
} else {
doFetch = true;
fetchInProgress = true;
unreservedFetchTokens = batch - requestedTokens;
}
} lastly {
lock.unlock();
}
if (doFetch) {
boolean acquired = rateLimitService.purchase(key, batchSize);
lock.lock();
if (acquired) {
reservedTokens = (batchSize - requestedTokens);
expirationTs = now() + timeWindowSecs;
}
fetchCondition.signalAll(); // Get up ready threads
lock.unlock();
return acquired;
}
// If we get right here, it means there weren't sufficient
// unreservedFetchTokens. Let's simply make our personal
// name slightly than ready in line.
return rateLimitService.purchase(key, tokensRequested);
}
}
Trace: Even when rateLimitService.purchase
at all times returned true, you may find yourself in conditions the place isNotRateLimited
returns false
.