Monday, September 4, 2023
HomeNanotechnologyAtomically exact vacancy-assembled quantum antidots

Atomically exact vacancy-assembled quantum antidots


  • Fuechsle, M. et al. A single-atom transistor. Nat. Nanotechnol. 7, 242–246 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Huff, T. et al. Binary atomic silicon logic. Nat. Electron. 1, 636–643 (2018).

    Article 

    Google Scholar
     

  • Achal, R. et al. Lithography for strong and editable atomic-scale silicon units and reminiscences. Nat. Commun. 9, 2778 (2018).

    Article 

    Google Scholar
     

  • Kalff, F. E. et al. A kilobyte rewritable atomic reminiscence. Nat. Nanotechnol. 11, 926–929 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Amlani, I. et al. Digital logic gate utilizing quantum-dot mobile automata. Science 284, 289–291 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Imre, A. et al. Majority logic gate for magnetic quantum-dot mobile automata. Science 311, 205–208 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Kim, D. et al. Quantum management and course of tomography of a semiconductor quantum dot hybrid qubit. Nature 511, 70–74 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Fölsch, S., Martínez-Blanco, J., Yang, J., Kanisawa, Ok. & Erwin, S. C. Quantum dots with single-atom precision. Nat. Nanotechnol. 9, 505–508 (2014).

    Article 

    Google Scholar
     

  • Du, A. et al. Dots versus antidots: computational exploration of construction, magnetism, and half-metallicity in boron-nitride nanostructures. J. Am. Chem. Soc. 131, 17354–17359 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Mitterreiter, E. et al. The function of chalcogen vacancies for atomic defect emission in MoS2. Nat. Commun. 12, 3822 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Flindt, C., Mortensen, N. A. & Jauho, A.-P. Quantum computing by way of defect states in two-dimensional antidot lattices. Nano Lett. 5, 2515–2518 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Pedersen, T. G. et al. Graphene antidot lattices: designed defects and spin qubits. Phys. Rev. Lett. 100, 136804 (2008).

    Article 

    Google Scholar
     

  • Besteiro, L. V., Kong, X.-T., Wang, Z., Hartland, G. & Govorov, A. O. Understanding hot-electron era and plasmon rest in steel nanocrystals: quantum and classical mechanisms. ACS Photon. 4, 2759–2781 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, H. et al. Massive-scale mesoscopic transport in nanostructured graphene. Phys. Rev. Lett. 110, 066805 (2013).

    Article 

    Google Scholar
     

  • Clavero, C. Plasmon-induced hot-electron era at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic units. Nat. Photon. 8, 95–103 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Goldman, V. J. & Su, B. Resonant tunneling within the quantum corridor regime: measurement of fractional cost. Science 267, 1010–1012 (1995).

    Article 
    CAS 

    Google Scholar
     

  • Maasilta, I. J. & Goldman, V. J. Tunneling via a coherent ‘quantum antidot molecule’. Phys. Rev. Lett. 84, 1776–1779 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Sim, H.-S. et al. Coulomb blockade and kondo impact in a quantum Corridor antidot. Phys. Rev. Lett. 91, 266801 (2003).

    Article 

    Google Scholar
     

  • Park, M., Harrison, C., Chaikin, P. M., Register, R. A. & Adamson, D. H. Block copolymer lithography: periodic arrays of ~1011 holes in 1 sq. centimeter. Science 276, 1401–1404 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Sinitskii, A. & Tour, J. M. Patterning graphene via the self-assembled templates: towards periodic two-dimensional graphene nanostructures with semiconductor properties. J. Am. Chem. Soc. 132, 14730–14732 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Sandner, A. et al. Ballistic transport in graphene antidot lattices. Nano Lett. 15, 8402–8406 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Jessen, B. S. et al. Lithographic band construction engineering of graphene. Nat. Nanotechnol. 14, 340–346 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Khajetoorians, A. A., Wegner, D., Otte, A. F. & Swart, I. Creating designer quantum states of matter atom-by-atom. Nat. Rev. Phys. 1, 703–715 (2019).

    Article 

    Google Scholar
     

  • Gomes, Ok. Ok., Mar, W., Ko, W., Guinea, F. & Manoharan, H. C. Designer Dirac fermions and topological phases in molecular graphene. Nature 483, 306–310 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Slot, M. R. et al. Experimental realization and characterization of an digital Lieb lattice. Nat. Phys. 13, 672–676 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Kempkes, S. N. et al. Design and characterization of electrons in a fractal geometry. Nat. Phys. 15, 127–131 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Drost, R., Ojanen, T., Harju, A. & Liljeroth, P. Topological states in engineered atomic lattices. Nat. Phys. 13, 668–671 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Xu, J. et al. Quantum antidot formation and correlation to optical shift of gold nanoparticles embedded in MgO. Phys. Rev. Lett. 88, 175502 (2002).

    Article 

    Google Scholar
     

  • Liu, Y., Xu, F., Zhang, Z., Penev, E. S. & Yakobson, B. I. Two-dimensional mono-elemental semiconductor with electronically inactive defects: the case of phosphorus. Nano Lett. 14, 6782–6786 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Nguyen, G. D. et al. 3D imaging and manipulation of subsurface selenium vacancies in PdSe2. Phys. Rev. Lett. 121, 086101 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Liu, M., Nam, H., Kim, J., Fiete, G. A. & Shih, C.-Ok. Affect of nanosize gap defects and their geometric preparations on the superfluid density in atomically skinny single crystals of indium superconductor. Phys. Rev. Lett. 127, 127003 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Li, X. et al. Ordered clustering of single atomic Te vacancies in atomically skinny PtTe2 promotes hydrogen evolution catalysis. Nat. Commun. 12, 2351 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zhussupbekov, Ok. et al. Imaging and identification of level defects in PtTe2. npj 2D Mater. Appl. 5, 14 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Leo, G., Fabian, M., Nikolaj, M., Peter, L. & Gerhard, M. The chemical construction of a molecule resolved by atomic power microscopy. Science 325, 1110–1114 (2009).

    Article 

    Google Scholar
     

  • Barja, S. et al. Figuring out substitutional oxygen as a prolific level defect in monolayer transition steel dichalcogenides. Nat. Commun. 10, 3382 (2019).

    Article 

    Google Scholar
     

  • Schuler, B. et al. How substitutional level defects in two-dimensional WS2 induce cost localization, spin–orbit splitting, and pressure. ACS Nano 13, 10520–10534 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Cochrane, Ok. A. et al. Spin-dependent vibronic response of a carbon radical ion in two-dimensional WS2. Nat. Commun. 12, 7287 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Guo, G. Y. & Liang, W. Y. The digital buildings of platinum dichalcogenides: PtS2, PtSe2 and PtTe2. J. Phys. C: Strong State Phys. 19, 995 (1986).

    Article 
    CAS 

    Google Scholar
     

  • Aghajanian, M. et al. Resonant and certain states of charged defects in two-dimensional semiconductors. Phys. Rev. B 101, 081201 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Fang, H. et al. Digital self-passivation of single emptiness in black phosphorus by way of ionization. Phys. Rev. Lett. 128, 176801 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Schuler, B. et al. Massive spin-orbit splitting of deep in-gap defect states of engineered sulfur vacancies in monolayer WS2. Phys. Rev. Lett. 123, 076801 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Gross, L. et al. Investigating atomic distinction in atomic power microscopy and Kelvin probe power microscopy on ionic techniques utilizing functionalized suggestions. Phys. Rev. B 90, 155455 (2014).

    Article 

    Google Scholar
     

  • Cai, Y., Ke, Q., Zhang, G., Yakobson, B. I. & Zhang, Y.-W. Extremely itinerant atomic vacancies in phosphorene. J. Am. Chem. Soc. 138, 10199–10206 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Trevethan, T., Latham, C. D., Heggie, M. I., Briddon, P. R. & Rayson, M. J. Emptiness diffusion and coalescence in graphene directed by defect pressure fields. Nanoscale 6, 2978–2986 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Ishizuka, H. & Nagaosa, N. Spin chirality induced skew scattering and anomalous Corridor impact in chiral magnets. Sci. Adv. 4, eaap9962 (2018).

    Article 

    Google Scholar
     

  • Fujishiro, Y. et al. Big anomalous Corridor impact from spin-chirality scattering in a chiral magnet. Nat. Commun. 12, 317 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Arh, T. et al. The Ising triangular-lattice antiferromagnet neodymium heptatantalate as a quantum spin liquid candidate. Nat. Mater. 21, 416–422 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Bezanson, J., Edelman, A., Karpinski, S. & Shah, V. B. Julia: a recent method to numerical computing. SIAM Rev. 59, 65–98 (2017).

    Article 

    Google Scholar
     

  • Kresse, G. & Furthmüller, J. Environment friendly iterative schemes for ab initio total-energy calculations utilizing a plane-wave foundation set. Phys. Rev. B 54, 11169–11186 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Blöchl, P. E. Projector augmented-wave methodology. Phys. Rev. B 50, 17953–17979 (1994).

    Article 

    Google Scholar
     

  • Perdew, J. P., Burke, Ok. & Ernzerhof, M. Generalized gradient approximation made easy. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Moellmann, J. & Grimme, S. DFT-D3 research of some molecular crystals. J. Phys. Chem. C 118, 7615–7621 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Henkelman, G., Uberuaga, B. P. & Jónsson, H. A climbing picture nudged elastic band methodology for locating saddle factors and minimal vitality paths. J. Chem. Phys. 113, 9901–9904 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software program mission for quantum simulations of supplies. J. Phys. Condens. Matter 21, 395502 (2009).

    Article 

    Google Scholar
     

  • Giannozzi, P. et al. Superior capabilities for supplies modelling with Quantum ESPRESSO. J. Phys. Condens. Matter 29, 465901 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Dal Corso, A. Pseudopotentials periodic desk: from H to Pu. Comput. Mater. Sci. 95, 337–350 (2014).

    Article 
    CAS 

    Google Scholar
     



  • Supply hyperlink

    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    - Advertisment -
    Google search engine

    Most Popular

    Recent Comments