Monday, October 23, 2023
HomeNanotechnologyAssessment article laser-induced hyperthermia on graphene oxide composites | Journal of Nanobiotechnology

Assessment article laser-induced hyperthermia on graphene oxide composites | Journal of Nanobiotechnology


  • Mallory M, Gogineni E, Jones GC, Greer L, Simone CB. Therapeutic hyperthermia: the outdated, the brand new, and the upcoming. Crit Rev Oncol Hematol. 2016;97:56–64. Accessible from: https://doi.org/10.1016/j.critrevonc.2015.08.003.

    Article 
    PubMed 

    Google Scholar
     

  • Chicheł A, Skowronek J, Kubaszewska M, Kanikowski M. Hyperthermia – Description of a technique and a evaluation of medical purposes. Studies Pract Oncol Radiother [Internet]. 2007;12(5):267–75. Accessible from: https://doi.org/10.1016/S1507-1367(10)60065-X.

  • Robinson J, Wizenberg M, M., McCready W. Mixed hyperthermia and radiation counsel a substitute for heavy particle remedy for lowered oxygen enhancement ratios. Nature. 1974;251:521–2. Accessible from: https://doi.org/10.1038/251521a0.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tune CW, Lokshina A, Rhee JG, Patten M, Levitt SH. Implication of blood stream in hyperthermic remedy of tumors. IEEE Trans Biomed Eng. 1984;BME–31(1):9–16. Accessible from: https://doi.org/10.1109/TBME.1984.325364.

    Article 

    Google Scholar
     

  • Tsuchido T, Katsui N, Takeuchi A, Takano M, Shibasaki I. Destruction of the outer membrane permeability barrier of Escherichia coli by warmth remedy. Appl Environ Microbiol. 1985;50(2):298–303. Accessible from: https://doi.org/10.1128/aem.50.2.298-303.1985.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tune CW, Kang MS, Rhee JG, Levitt SH. The impact of hyperthermia on vascular perform, pH, and cell survival. Radiology. 1980;137(3):795–803. Accessible from: https://doi.org/10.1148/radiology.137.3.7444064.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Borráez Segura BA, Díez Rivera MC. RICE. Fundamentos de Cirugía Common. Editorial Universidad Tecnológica de Pereira; 2020.

  • Wang S, Weng J, Fu X, Lin J, Fan W, Lu N, et al. Black phosphorus nanosheets for delicate hyperthermia-enhanced chemotherapy and chemo-photothermal mixture remedy. Nanotheranostics. 2017;1(2):208–16. Accessible from: https://doi.org/10.7150/ntno.18767.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brace C. Thermal tumor ablation in medical use. IEEE Pulse. 2011;2(5):28–38. Accessible from: https://doi.org/10.1109/mpul.2011.942603.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang B, Wang Y, Liu J, Zhai G. Current developments of phototherapy based mostly on graphene household nanomaterials. Curr Med Chem. 2016;24(3):268–91. Accessible from: https://doi.org/10.2174/0929867323666161019141817.

    Article 

    Google Scholar
     

  • Habash RWY. Therapeutic hyperthermia [Internet]. 1stVol. 157, Handbook of Scientific Neurology., Elsevier BV. ; 2018. 853–868 p. Accessible from: https://doi.org/10.1016/B978-0-444-64074-1.00053-7.

  • Oh J, Yoon H, Park JH. Nanoparticle platforms for mixed photothermal and photodynamic remedy. Biomed Eng Lett. 2013;3(2):67–73. Accessible from: https://doi.org/10.1007/s13534-013-0097-8.

    Article 

    Google Scholar
     

  • Gollavelli G, Ghule AV, Ling YC. Multimodal Imaging and Phototherapy of Most cancers and bacterial an infection by Graphene and associated nanocomposites. Molecules. 2022;27(17). Accessible from: https://doi.org/10.3390/molecules27175588.

  • Zhang X, Wang S, Cheng G, Yu P, Chang J. Mild-Responsive Nanomaterials for Most cancers Remedy. Engineering [Internet]. 2022;13:18–30. Accessible from: https://doi.org/10.1016/j.eng.2021.07.023.

  • Du T, Cao J, Xiao Z, Liu J, Wei L, Li C et al. Van-mediated self-aggregating photothermal brokers mixed with multifunctional magnetic nickel oxide nanoparticles for exact elimination of bacterial infections. J Nanobiotechnology [Internet]. 2022;20(1):1–21. Accessible from: https://doi.org/10.1186/s12951-022-01535-1.

  • Tune C, Li F, Guo X, Chen W, Dong C, Zhang J, et al. Gold nanostars for most cancers cell-targeted SERS-imaging and NIR light-triggered plasmonic photothermal remedy (PPTT) within the first and second organic home windows. J Mater Chem B. 2019;7(12):2001–8. Accessible from: https://doi.org/10.1039/C9TB00061E.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Assi HTI, Arsenault MG, Whelan WM, Kumaradas JC. A brand new thermal dose mannequin based mostly on Vogel-Tammann-Fulcher behaviour in thermal injury processes. Int J Hyperth [Internet]. 2022;39(1):697–705. Accessible from: https://doi.org/10.1080/02656736.2022.2065367.

  • Van Rhoon GC. Is CEM43 nonetheless a related thermal dose parameter for hyperthermia remedy monitoring? Int J Hyperth. 2016;32(1):50–62. Accessible from: https://doi.org/10.3109/02656736.2015.1114153.

    Article 

    Google Scholar
     

  • Dewhirst MW, Viglianti BL, Lora-Michiels M, Hanson M, Hoopes PJ. Primary ideas of thermal dosimetry and thermal thresholds for tissue injury from hyperthermia. Int J Hyperth. 2003;19(3):267–94. Accessible from: https://doi.org/10.1080/0265673031000119006.

    Article 
    CAS 

    Google Scholar
     

  • Zhang B, Wang Y, Zhai G. Biomedical purposes of the graphene-based supplies. Mater Sci Eng C [Internet]. 2016;61:953–64. Accessible from: https://doi.org/10.1016/j.msec.2015.12.073.

  • Muazim Okay, Hussain Z. Graphene oxide — A platform in direction of theranostics. Mater Sci Eng C [Internet]. 2017;76:1274–88. Accessible from: https://doi.org/10.1016/j.msec.2017.02.121.

  • Yang Okay, Zhang S, Zhang G, Solar X, Lee ST, Liu Z. Graphene in mice: Ultrahigh in vivo tumor uptake and environment friendly photothermal remedy. Nano Lett. 2010;10(9):3318–23. Accessible from: https://doi.org/10.1021/nl100996u.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Renteria JD, Ramirez S, Malekpour H, Alonso B, Centeno A, Zurutuza A, et al. Strongly anisotropic thermal conductivity of free-standing lowered Graphene Oxide Movies annealed at excessive temperature. Adv Funct Mater. 2015;25(29):4664–72. Accessible from: https://doi.org/10.1002/adfm.201501429.

    Article 
    CAS 

    Google Scholar
     

  • Savchuk OA, Carvajal JJ, Massons J, Aguiló M, Díaz F. Dedication of photothermal conversion effectivity of graphene and graphene oxide by way of an integrating sphere methodology. Carbon N Y. 2016;103:134–41. Accessible from: https://doi.org/10.1016/j.carbon.2016.02.075.

    Article 
    CAS 

    Google Scholar
     

  • Huang Q, Li MY, Wang LL, Yuan H, Wang M, Wu Y, et al. Synthesis of novel cyclodextrin-modified lowered graphene oxide composites by a easy hydrothermal methodology. RSC Adv. 2018;8(66):37623–30. Accessible from: https://doi.org/10.1039/C8RA07807F.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jun SW, Manivasagan P, Kwon J, Nguyen VT, Mondal S, Ly CD et al. Folic acid–conjugated chitosan-functionalized graphene oxide for extremely environment friendly photoacoustic imaging-guided tumor-targeted photothermal remedy. Int J Biol Macromol [Internet]. 2020;155:961–71. Accessible from: https://doi.org/10.1016/j.ijbiomac.2019.11.055.

  • Wang Y, Zhang H, Xie J, Liu Y, Wang S, Zhao Q. Three dimensional mesoporous carbon nanospheres as carriers for chemo-photothermal remedy in contrast with two dimensional graphene oxide nanosheets. Colloids Surfaces A Physicochem Eng Asp [Internet]. 2020;590(January):124498. Accessible from: https://doi.org/10.1016/j.colsurfa.2020.124498.

  • Zhang Y, Li B, an, Li Z yuan, xia, Yu N, ying H, Zhang Y. Synthesis and characterization of Tamoxifen citrate modified lowered graphene oxide nano sheets for breast most cancers remedy. J Photochem Photobiol B Biol [Internet]. 2018;180(December 2017):68–71. Accessible from: https://doi.org/10.1016/j.jphotobiol.2017.12.017.

  • Li C, Chen X, Zhang Z, Jiang G. Synthesis of Neogambogic Acid Mediated Decreased Graphene Oxide Nanosheets as Photothermal Radiotherapy Brokers and Impact on Breast Most cancers Cells. J Clust Sci [Internet]. 2020;31(5):1097–102. Accessible from: https://doi.org/10.1007/s10876-019-01717-2.

  • Chang G, Wang Y, Gong B, Xiao Y, Chen Y, Wang S, et al. Decreased graphene oxide/amaranth extract/AuNPs composite hydrogel on tumor cells as built-in platform for localized and a number of synergistic remedy. ACS Appl Mater Interfaces. 2015;7(21):11246–56. Accessible from: https://doi.org/10.1021/acsami.5b03907.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chang X, Zhang M, Wang C, Zhang J, Wu H, Yang S. Graphene oxide / BaHoF5 / PEG nanocomposite for dual-modal imaging and warmth shock protein inhibitor-sensitized tumor photothermal remedy. Carbon N Y [Internet]. 2020;158:372–85. Accessible from: https://doi.org/10.1016/j.carbon.2019.10.105.

  • Ma Y, Yan F, Liu L, Wei WJ, Zhao Z, Solar J. The improved photo-thermal remedy of Floor improved photoactive cadmium sulfide (CdS) quantum dots entrenched graphene oxide nanoflakes in tumor remedy. J Photochem Photobiol B Biol [Internet]. 2019;192(26):34–9. Accessible from: https://doi.org/10.1016/j.jphotobiol.2018.12.014.

  • Thapa RK, Soe ZC, Ou W, Poudel Okay, Jeong JH, Jin SG et al. Palladium nanoparticle-decorated 2-D graphene oxide for efficient photodynamic and photothermal remedy of prostate strong tumors. Colloids Surfaces B Biointerfaces [Internet]. 2018;169(Might):429–37. Accessible from: https://doi.org/10.1016/j.colsurfb.2018.05.051.

  • Akhavan O, Ghaderi E, Aghayee S, Fereydooni Y, Talebi A. The usage of a glucose-reduced graphene oxide suspension for photothermal most cancers remedy. J Mater Chem. 2012;22(27):13773–81. Accessible from: https://doi.org/10.1039/C2JM31396K.

    Article 
    CAS 

    Google Scholar
     

  • Wang C, Wang X, Chen Y, Fang Z. In-vitro photothermal remedy utilizing plant extract polyphenols functionalized graphene sheets for remedy of lung most cancers. J Photochem Photobiol B Biol [Internet]. 2020;204(415):111587. Accessible from: https://doi.org/10.1016/j.jphotobiol.2019.111587.

  • Ma L, Feng X, Liang H, Wang Okay, Tune Y, Tan L et al. A novel photothermally managed multifunctional scaffold for medical remedy of osteosarcoma and tissue regeneration. Mater At present [Internet]. 2020;36(xx):48–62. Accessible from: https://doi.org/10.1016/j.mattod.2019.12.005.

  • Sang R, Chen M, Yang Y, Li Y, Shi J, Deng Y, et al. HAp@GO drug supply car with dual-stimuli-triggered drug launch property and environment friendly synergistic remedy perform in opposition to most cancers. J Biomed Mater Res – Half A. 2019;107(10):2296–309. Accessible from: https://doi.org/10.1002/jbm.a.36738.

    Article 
    CAS 

    Google Scholar
     

  • Kang S, Hong YL, Ku BC, Lee S, Ryu S, Min DH, et al. Synthesis of biologically-active lowered graphene oxide by utilizing fucoidan as a multifunctional agent for mixture most cancers remedy. Nanotechnology. 2018;29:47. Accessible from: https://doi.org/10.1088/1361-6528/aadfa5.

    Article 

    Google Scholar
     

  • Zaharie-Butucel D, Potara M, Suarasan S, Licarete E, Astilean S. Environment friendly mixed near-infrared-triggered remedy: Phototherapy over chemotherapy in chitosan-reduced graphene oxide-IR820 dye-doxorubicin nanoplatforms. J Colloid Interface Sci [Internet]. 2019;552:218–29. Accessible from: https://doi.org/10.1016/j.jcis.2019.05.050.

  • Kargar S, Khoei S, Khoee S, Shirvalilou S, Mahdavi SR. Analysis of the mixed impact of NIR laser and ionizing radiation on mobile damages induced by IUdR-loaded PLGA-coated Nano-graphene oxide. Photodiagnosis Photodyn Ther [Internet]. 2018;21(September 2017):91–7. Accessible from: https://doi.org/10.1016/j.pdpdt.2017.11.007.

  • He S, Li J, Chen M, Deng L, Yang Y, Zeng Z, et al. Graphene oxide-template gold nanosheets as extremely environment friendly near-infrared hyperthermia brokers for most cancers remedy. Int J Nanomedicine. 2020;15:8451–63. Accessible from: https://doi.org/10.2147/ijn.s265134.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Podolska MJ, Barras A, Alexiou C, Frey B, Gaipl U, Boukherroub R, et al. Graphene Oxide Nanosheets for localized Hyperthermia—Physicochemical characterization, Biocompatibility, and induction of Tumor Cell Dying. Cells. 2020;9:776–94. Accessible from: https://doi.org/10.3390/cells9030776.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Costa-Almeida R, Bogas D, Fernandes JR, Timochenco L, Silva FALS, Meneses J, et al. Close to-infrared radiation-based delicate photohyperthermia remedy of non-melanoma pores and skin most cancers with PEGylated lowered nanographene oxide. Polym (Basel). 2020;12(8):1–19. Accessible from: https://doi.org/10.3390/polym12081840.


    Google Scholar
     

  • Yan M, Liu Y, Zhu X, Wang X, Liu L, Solar H, et al. Nanoscale lowered graphene oxide-mediated Photothermal Remedy along with IDO inhibition and PD-L1 blockade synergistically promote Antitumor Immunity. ACS Appl Mater Interfaces. 2019;11(2):1876–85. Accessible from: https://doi.org/10.1021/acsami.8b18751.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jung HS, Kong WH, Sung DK, Lee MY, Beack SE, Keum DH, et al. Nanographene oxide-hyaluronic acid conjugate for photothermal ablation remedy of pores and skin most cancers. ACS Nano. 2014;8(1):260–8. Accessible from: https://doi.org/10.1021/nn405383a.

    Article 
    CAS 

    Google Scholar
     

  • Robinson JT, Tabakman SM, Liang Y, Wang H, Sanchez Casalongue H, Vinh D, et al. Ultrasmall lowered graphene oxide with excessive near-infrared absorbance for photothermal remedy. J Am Chem Soc. 2011;133(17):6825–31. Accessible from: https://doi.org/10.1021/ja2010175.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wen C, Cheng R, Gong T, Huang Y, Li D, Zhao X et al. β-Cyclodextrin-cholic acid-hyaluronic acid polymer coated Fe3O4-graphene oxide nanohybrids as native chemo-photothermal synergistic brokers for enhanced liver tumor remedy. Colloids Surfaces B Biointerfaces [Internet]. 2021;199(November 2020):111510. Accessible from: https://doi.org/10.1016/j.colsurfb.2020.111510.

  • Wu J, Li Z, Li Y, Pettitt A, Zhou F. Photothermal results of lowered graphene oxide on pancreatic most cancers. Technol Most cancers Res Deal with. 2018;17:1–7. Accessible from: https://doi.org/10.1177/1533034618768637.

    Article 
    CAS 

    Google Scholar
     

  • Lim JH, Kim DE, Kim EJ, Ahrberg CD, Chung BG. Purposeful graphene oxide-based nanosheets for Photothermal Remedy. Macromol Res. 2018;26(6):557–65. Accessible from: https://doi.org/10.1007/s13233-018-6067-3.

    Article 
    CAS 

    Google Scholar
     

  • Chen X, Li C, Wang X, Zhao X. Infrared heating of lowered graphene oxide nanosheets as photothermal radiation therapeutic brokers for tumor regressions. Mater Res Specific. 2019;6(8). Accessible from: https://doi.org/10.1088/2053-1591/ab13c3.

  • Gai L-X, Wang W-Q, Wu X, Su X-J, Yang F-C. NIR absorbing lowered graphene oxide for photothermal radiotherapy for remedy of esophageal most cancers. J Photochem Photobiol B Biol [Internet]. 2019 Might;194(6):188–93. Accessible from: https://doi.org/10.1016/j.jphotobiol.2019.03.014.

  • Maddinedi SB, Sonamuthu J, SuzuK Yildiz S, Han G, Cai Y, Gao J et al. Silk sericin induced fabrication of lowered graphene oxide and its in-vitro cytotoxicity, photothermal analysis. J Photochem Photobiol B Biol [Internet]. 2018;186(July):189–96. Accessible from: https://doi.org/10.1016/j.jphotobiol.2018.07.020.

  • Gulzar A, Xu J, Yang D, Xu L, He F, Gai S, et al. Nano-graphene oxide-UCNP-Ce6 covalently constructed nanocomposites for NIR-mediated bioimaging and PTT/PDT combinatorial remedy. Dalt Trans. 2018;47(11):3931–9. Accessible from: https://doi.org/10.1039/C7DT04141A.

    Article 
    CAS 

    Google Scholar
     

  • Zhang X, Luo L, Li L, He Y, Cao W, Liu H et al. Trimodal synergistic antitumor drug supply system based mostly on graphene oxide. Nanomedicine Nanotechnology, Biol Med [Internet]. 2019;15(1):142–52. Accessible from: https://doi.org/10.1016/j.nano.2018.09.008.

  • Mauro N, Scialabba C, Agnello S, Cavallaro G, Giammona G. Folic acid-functionalized graphene oxide nanosheets by way of plasma etching as a platform to mix NIR anticancer phototherapy and focused drug supply. Mater Sci Eng C [Internet]. 2020;107(July 2019):110201. Accessible from: https://doi.org/10.1016/j.msec.2019.110201.

  • Zhang W, Guo Z, Huang D, Liu Z, Guo X, Zhong H. Synergistic impact of chemo-photothermal remedy utilizing PEGylated graphene oxide. Biomaterials [Internet]. 2011;32(33):8555–61. Accessible from: https://doi.org/10.1016/j.biomaterials.2011.07.071.

  • Mun SG, Choi HW, Lee JM, Lim JH, Ha JH, Kang MJ et al. rGO nanomaterial-mediated most cancers focusing on and photothermal remedy in a microfluidic co-culture platform. Nano Converg [Internet]. 2020;7(1). Accessible from: https://doi.org/10.1186/s40580-020-0220-3.

  • GLOBOCAN. Worldwide Company for Analysis on Most cancers. Most cancers At present. [Internet]. Estimated age-standardized incidence charges (World) in 2020, worldwide, each sexes, all ages. 2020 [cited 2021 Jan 8]. Accessible from: https://www.iarc.who.int/.

  • Wu X, Suo Y, Shi H, Liu R, Wu F, Wang T et al. Deep-Tissue Photothermal Remedy Utilizing Laser Illumination at NIR-IIa Window. Nano-Micro Lett [Internet]. 2020;12(1):1–13. Accessible from: https://doi.org/10.1007/s40820-020-0378-6.

  • Vila M, Matesanz MC, Gonçalves G, Feito MJ, Linares J, Marques PAAP et al. Triggering cell loss of life by nanographene oxide mediated hyperthermia. Nanotechnology. 2014;25(3). Accessible from: https://doi.org/10.1088/0957-4484/25/3/035101.

  • Bhuyan BK, Day KJ, Edgerton CE, Ogunbase O. Sensitivity of various cell traces and of various phases within the cell cycle to Hyperthermia. Most cancers Res. 1977;37(10):3780–4.

    CAS 
    PubMed 

    Google Scholar
     

  • Raaphorst GP, Romano SL, Mitchell JB, Bedford JS, Dewey WC. Intrinsic variations in warmth and/or x-ray sensitivity of seven mammalian cell traces cultured and handled underneath similar circumstances. Most cancers Res. 1979;39(February):396–401.

    CAS 
    PubMed 

    Google Scholar
     

  • Lepock JR. Mobile results of hyperthermia: relevance to the minimal dose for thermal injury. Int J Hyperth. 2003;19(3):252–66. Accessible from: https://doi.org/10.1080/0265673031000065042.

    Article 
    CAS 

    Google Scholar
     

  • de Kraker MEA, Davey PG, Grundmann H. Mortality and hospital keep related to resistant Staphylococcus aureus and Escherichia coli bacteremia: estimating the burden of antibiotic resistance in Europe. PLoS Med. 2011;8(10). Accessible from: https://doi.org/10.1371/journal.pmed.1001104.

  • WHO WHO. Antimicrobial resistance [Internet]. 2021 [cited 2022 Sep 23]. Accessible from: https://www.who.int/news-room/fact-sheets/element/antimicrobial-resistance.

  • Shi L, Chen J, Teng L, Wang L, Zhu G, Liu S, et al. The antibacterial purposes of Graphene and its derivatives. Small. 2016;12(31):4165–84. Accessible from: https://doi.org/10.1002/smll.201601841.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li X, Li F, Gao Z, Fang L. Toxicology of graphene oxide nanosheets in opposition to Paecilomyces catenlannulatus. Bull Environ Contam Toxicol [Internet]. 2015;95(1):25–30. Accessible from: https://doi.org/10.1007/s00128-015-1499-3.

  • Pieper H, Chercheja S, Eigler S, Halbig CE, Filipovic MR, Mokhir A. Endoperoxides revealed as origin of the toxicity of Graphene Oxide. Angew Chemie – Int Ed. 2016;55(1):405–7. Accessible from: https://doi.org/10.1002/anie.201507070.

    Article 
    CAS 

    Google Scholar
     

  • Ibelli T, Templeton S, Levi-Polyachenko N. Progress on using hyperthermia for mitigating bacterial infections. Int J Hyperth [Internet]. 2018;34(2):144–56. Accessible from: https://doi.org/10.1080/02656736.2017.1369173.

  • Wu X, Li H, Xiao N. Development of Close to-infrared (NIR) laser interceded floor enactment of proline functionalized graphene oxide with silver nanoparticles for proficient antibacterial, antifungal and wound recuperating remedy in nursing care in hospitals. J Photochem Photobiol B Biol [Internet]. 2018;187(27):89–95. Accessible from: https://doi.org/10.1016/j.jphotobiol.2018.07.015.

  • Shahnawaz Khan M, Abdelhamid HN, Wu HF. Close to infrared (NIR) laser mediated floor activation of graphene oxide nanoflakes for environment friendly antibacterial, antifungal and wound therapeutic remedy. Colloids Surfaces B Biointerfaces [Internet]. 2015;127:281–91. Accessible from: https://doi.org/10.1016/j.colsurfb.2014.12.049.

  • Feng Y, Chen Q, Yin Q, Pan G, Tu Z, Liu L. Decreased Graphene Oxide Functionalized with Gold Nanostar Nanocomposites for synergistically killing Micro organism by way of intrinsic antimicrobial exercise and photothermal ablation. ACS Appl Bio Mater. 2019;2(2):747–56. Accessible from: https://doi.org/10.1021/acsabm.8b00608.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng YW, Wang SH, Liu CM, Chien MY, Hsu CC, Liu TY. Amino-modified graphene oxide nanoplatelets for photo-thermal and anti-bacterial functionality. Surf Coatings Technol [Internet]. 2020;385(January):125441. Accessible from: https://doi.org/10.1016/j.surfcoat.2020.125441.

  • Ma G, Qi J, Cui Q, Bao X, Gao D, Xing C. Graphene oxide composite for selective recognition, capturing, photothermal killing of micro organism over mammalian cells. Polym (Basel). 2020;12(5):1–14. Accessible from: https://doi.org/10.3390/polym12051116.


    Google Scholar
     

  • Zhang Q, Liu X, Tan L, Cui Z, Li Z, Liang Y et al. An UV to NIR-driven platform based mostly on crimson phosphorus/graphene oxide movie for speedy microbial inactivation. Chem Eng J [Internet]. 2020;383(July 2019):123088. Accessible from: https://doi.org/10.1016/j.cej.2019.123088.

  • Li Y, Liu X, Tan L, Cui Z, Yang X, Zheng Y, et al. Fast Sterilization and Accelerated Wound Therapeutic utilizing Zn2 + and Graphene Oxide modified g-C3N4 underneath twin gentle irradiation. Adv Funct Mater. 2018;28(30):1–12. Accessible from: https://doi.org/10.1002/adfm.201800299.

    Article 
    CAS 

    Google Scholar
     

  • Wang YW, Fu YY, Wu LJ, Li J, Yang HH, Chen GN. Focused photothermal ablation of pathogenic bacterium, Staphylococcus aureus, with nanoscale lowered graphene oxide. J Mater Chem B. 2013;1(19):2496–501. Accessible from: https://doi.org/10.1039/C3TB20144A.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kaushal S, Pinnaka AK, Soni S, Singhal NK. Antibody assisted graphene oxide coated gold nanoparticles for speedy bacterial detection and close to infrared gentle enhanced antibacterial exercise. Sensors Actuators, B Chem [Internet]. 2021;329(August):129141. Accessible from: https://doi.org/10.1016/j.snb.2020.129141.

  • Kainz Okay, Bauer MA, Madeo F, Carmona-Gutierrez D. Fungal infections in people: the silent disaster. Microb Cell. 2020;7(6):143–5. Accessible from: https://doi.org/10.15698/mic2020.06.718.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Díez-Pascual AM. Antibacterial motion of nanoparticle loaded nanocomposites based mostly on graphene and its derivatives: a mini-review. Int J Mol Sci. 2020;21(10). Accessible from: https://doi.org/10.3390/ijms21103563.

  • Liu S, Zeng TH, Hofmann M, Burcombe E, Wei J, Jiang R, et al. Antibacterial exercise of graphite, graphite oxide, graphene oxide, and lowered graphene oxide: membrane and oxidative stress. ACS Nano. 2011;5(9):6971–80. Accessible from: https://doi.org/10.1021/nn202451x.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pavlovsky L, Sturtevant RA, Youthful JG, Solomon MJ. Results of temperature on the morphological, polymeric, and mechanical properties of Staphylococcus epidermidis bacterial biofilms. Langmuir. 2015;31(6):2036–42. Accessible from: https://doi.org/10.1021/la5044156.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Supply hyperlink

    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    - Advertisment -
    Google search engine

    Most Popular

    Recent Comments