Wednesday, February 8, 2023
HomeNanotechnologyAntibacterial metallic nanoclusters | Journal of Nanobiotechnology

Antibacterial metallic nanoclusters | Journal of Nanobiotechnology


  • Blair JM, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJ. Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol. 2015;13:42–51.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gupta A, Mumtaz S, Li CH, Hussain I, Rotello VM. Combatting antibiotic-resistant micro organism utilizing nanomaterials. Chem Soc Rev. 2019;48:415–27.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kim W, Zhu W, Hendricks GL, Tyne DV, Steele AD, Keohane CE, Fricke N, Conery AL, Shen S, Pan W, Lee Ok, Rajamuthiah R, Fuchs BB, Vlahovska PM, Wuest WM, Gilmore MS, Gao H, Ausubel FM, Mylonakis E. A brand new class of artificial retinoid antibiotics efficient in opposition to bacterial persisters. Nature. 2018;556:103–7.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Guan D, Chen F, Qiu Y, Jiang B, Gong L, Lan L, Huang W. Sulfonium, an underestimated moiety for structural modification, alters antibacterial profile of vancomycin in opposition to multidrug-resistant micro organism. Angew Chem Int Ed. 2019;58:1–7.

    Article 
    CAS 

    Google Scholar
     

  • Mitcheltree MJ, Pisipati A, Syroegin EA, Silvestre KJ, Klepacki D, Mason JD, Terwilliger DW, Testolin G, Pote AR, Wu KJY, Ladley RP, Chatman Ok, Mankin AS, Polikanov YS, Myers AG. An artificial antibiotic class overcoming bacterial multidrug resistance. Nature. 2021;599:507–12.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Huh AJ, Kwon YJ. “Nanoantibiotics”: a brand new paradigm for treating infectious illnesses utilizing nanomaterials within the antibiotics resistant period. J Managed Launch. 2011;156:128–45.

    CAS 
    Article 

    Google Scholar
     

  • Zheng Ok, Setyawati MI, Leong DT, Xie J. Antimicrobial silver nanomaterials. Coordin Chem Rev. 2018;357:1–17.

    CAS 
    Article 

    Google Scholar
     

  • Makabenta JMV, Nabawy A, Li CH, Schmidt-Malan S, Patel R, Rotello VM. Nanomaterial-based therapeutics for antibiotic-resistant bacterial infections. Nat Rev Microbiol. 2021;19:23–36.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Fang G, Li W, Shen X, Perez-Aguilar JM, Chong Y, Gao X, Chai Z, Chen C, Ge C, Zhou R. Differential Pd-nanocrystal aspects show distinct antibacterial exercise in opposition to gram-positive and gram-negative micro organism. Nat Commun. 2018;9:129.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Wang Z, Wang X, Wang Y, Zhu Y, Liu X, Zhou Q. NanoZnO-modified titanium implants for enhanced anti-bacterial exercise, osteogenesis and corrosion resistance. J Nanobiotechnol. 2021;19:353.

    CAS 
    Article 

    Google Scholar
     

  • Barros CHN, Hiebner DW, Fulaz S, Vitale S, Quinn L, Casey E. Synthesis and self-assembly of curcumin-modified amphiphilic polymeric micelles with antibacterial exercise. J Nanobiotechnol. 2021;19:104.

    CAS 
    Article 

    Google Scholar
     

  • Xu S, Chang L, Hu Y, Zhao X, Huang S, Chen Z, Ren X, Mei X. Tea polyphenol modified, photothermal responsive and ROS generative black phosphorus quantum dots as nanoplatforms for selling MRSA contaminated wounds therapeutic in diabetic rats. J Nanobiotechnol. 2021;19:362.

    CAS 
    Article 

    Google Scholar
     

  • Gao W, Zhang L. Nanomaterials arising amid antibiotic resistance. Nat Rev Microbiol. 2021;19:5–6.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Linklater DP, Baulin VA, Juodkazis S, Crawford RJ, Stoodley P, Ivanova EP. Mechano-bactericidal actions of nanostructured surfaces. Nat Rev Microbiol. 2021;19:8–22.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lam SJ, Wong EH, Boyer C, Qiao GG. Antimicrobial polymeric nanoparticles. Prog Polym Sci. 2018;76:40–64.

    CAS 
    Article 

    Google Scholar
     

  • Khan MS, Abdelhamid HN, Wu HF. Close to infrared (NIR) laser mediated floor activation of graphene oxide nanoflakes for environment friendly antibacterial, antifungal and wound therapeutic remedy. Colloids Surf B Biointerfaces. 2015;127:281–91.

    Article 
    CAS 

    Google Scholar
     

  • Yousef MS, Abdelhamid HN, Hidalgo M, Fathy R, Gómez-Gascón L, Dorado J. Antimicrobial exercise of silver-carbon nanoparticles on the bacterial flora of bull semen. Theriogenology. 2021;161:219–27.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Abdelhamid HN, Talib A, Wu HF. Facile synthesis of water soluble silver ferrite (AgFeO2) nanoparticles and their organic software as antibacterial brokers. RSC Adv. 2015;5:34594–602.

    CAS 
    Article 

    Google Scholar
     

  • Zheng Y, Jiang H, Wang X. Side-dependent antibacterial exercise of Au nanocrystals. Chinese language Chem Lett. 2020;31:3183–9.

    CAS 
    Article 

    Google Scholar
     

  • Zhang L, Wang E. Metallic nanoclusters: new fluorescent probes for sensors and bioimaging. Nano Immediately. 2014;9:132–57.

    CAS 
    Article 

    Google Scholar
     

  • Tang M, Zhang J, Yang C, Zheng Y, Jiang H. Gold nanoclusters for bacterial detection and an infection remedy. Entrance Chem. 2020;8:181.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Yuan X, Setyawati MI, Leong DT, Xie J. Ultrasmall Ag+-rich nanoclusters as extremely environment friendly nanoreservoirs for bacterial killing. Nano Res. 2014;7:301–7.

    CAS 
    Article 

    Google Scholar
     

  • Wang S, Wang Y, Peng Y, Yang X. Exploring the antibacteria efficiency of multicolor Ag, Au, and Cu nanoclusters. ACS Appl Mater Interfaces. 2019;11:8461–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zheng Ok, Setyawati MI, Leong DT, Xie J. Antimicrobial gold nanoclusters. ACS Nano. 2017;11:6904–10.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jin R, Zeng C, Zhou M, Chen Y. Atomically exact colloidal metallic nanoclusters and nanoparticles: fundamentals and alternatives. Chem Rev. 2016;116:10346–413.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zheng Ok, Xie J. Cluster supplies as traceable antibacterial brokers. Acc Mater Res. 2021;2:1104–16.

    CAS 
    Article 

    Google Scholar
     

  • Higaki T, Li Q, Zhou M, Zhao S, Li Y, Li S, Jin R. Towards the tailoring chemistry of metallic nanoclusters for enhancing functionalities. Acc Chem Res. 2018;51:2764–73.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wilcoxon JP, Abrams BL. Synthesis, construction and properties of metallic nanoclusters. Chem Soc Rev. 2006;35:1162–94.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Nain A, Tseng YT, Wei SC, Periasamy AP, Huang CC, Tseng FG, Chang HT. Capping 1,3-propanedithiol to spice up the antibacterial exercise of protein-templated copper nanoclusters. J Hazard Mater. 2020;389:121821.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Setyawati MI, Yuan X, Xie J, Leong DT. The affect of lysosomal stability of silver nanomaterials on their toxicity to human cells. Biomaterials. 2014;35:6707–15.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lewinski N, Colvin V, Drezek R. Cytotoxicity of nanoparticles. Small. 2008;4:26–49.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Connor EE, Mwamuka J, Gole A, Murphy CJ, Wyatt MD. Gold nanoparticles are taken up by human cells however don’t trigger acute cytotoxicity. Small. 2005;1:325–7.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Pan Y, Neuss S, Leifert A, Fischler M, Wen F, Simon U, Schmid G, Brandau W, Jahnen-Dechent W. Dimension-dependent cytotoxicity of gold nanoparticles. Small. 2007;3:1941–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zheng Y, Jiang H, Wang X. A number of methods for managed synthesis of atomically exact alloy nanoclusters. Acta Phys Chim Sin. 2018;34:740–54.

    CAS 
    Article 

    Google Scholar
     

  • Zheng Ok, Xie J. Composition-dependent antimicrobial capacity of full-spectrum AuxAg25–x alloy nanoclusters. ACS Nano. 2020;14:11533–41.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zheng Ok, Setyawati MI, Leong DT, Xie J. Overcoming bacterial bodily defenses with molecule-like ultrasmall antimicrobial gold nanoclusters. Bioact Mater. 2021;6:941–50.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tsunoyama H, Sakurai H, Negishi Y, Tsukuda T. Dimension-specific catalytic exercise of polymer-stabilized gold nanoclusters for cardio alcohol oxidation in water. J Am Chem Soc. 2005;127:9374–5.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zheng Y, Liu W, Qin Z, Chen Y, Jiang H, Wang X. Mercaptopyrimidine-conjugated gold nanoclusters as nanoantibiotics for combating multidrug-resistant superbugs. Bioconjugate Chem. 2018;29:3094–103.

    CAS 
    Article 

    Google Scholar
     

  • Zheng Y, Wu J, Jiang H, Wang X. Gold nanoclusters for theranostic functions. Coordin Chem Rev. 2021;431:213689.

    CAS 
    Article 

    Google Scholar
     

  • Zheng Ok, Setyawati MI, Leong DT, Xie J. Floor ligand chemistry of gold nanoclusters determines their antimicrobial capacity. Chem Mater. 2018;30:2800–8.

    CAS 
    Article 

    Google Scholar
     

  • Pranantyo D, Liu P, Zhong W, Kang ET, Chan-Park MB. Antimicrobial peptide-reduced gold nanoclusters with charge-reversal moieties for bacterial focusing on and imaging. Biomacromolecules. 2019;20:2922–33.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Xie Y, Liu Y, Yang J, Liu Y, Hu F, Zhu Ok, Jiang X. Gold nanoclusters for focusing on methicillin-resistant Staphylococcus aureus in vivo. Angew Chem Int Ed. 2018;57:3958–62.

    CAS 
    Article 

    Google Scholar
     

  • Li Y, Zhen J, Tian Q, Shen C, Zhang L, Yang Ok, Shang L. One step synthesis of positively charged gold nanoclusters as efficient antimicrobial nanoagents in opposition to multidrug-resistant micro organism and biofilms. J Colloid Interface Sci. 2020;569:235–43.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Boda SK, Broda J, Schiefer F, Weber-Heynemann J, Hoss M, Simon U, Basu B, Jahnen-Dechent W. Cytotoxicity of ultrasmall gold nanoparticles on planktonic and biofilm encapsulated gram-positive staphylococci. Small. 2015;11:3183–93.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wang Y, Malkmes MJ, Jiang C, Wang P, Zhu L, Zhang H, Zhang Y, Huang H, Jiang L. Antibacterial mechanism and transcriptome evaluation of ultra-small gold nanoclusters instead of dangerous antibiotics in opposition to Gram-negative micro organism. J Hazard Mater. 2021;416:126236.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Landis RF, Li CH, Gupta A, Lee YW, Yazdani M, Ngernyuang N, Altinbasak I, Mansoor S, Khichi MAS, Sanyal A, Rotello VM. Biodegradable nanocomposite antimicrobials for the eradication of multidrug-resistant bacterial biofilms with out gathered resistance. J Am Chem Soc. 2018;140:6176–82.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Park HJ, Kim JY, Kim J, Lee JH, Hahn JS, Gu MB, Yoon J. Silver-ion-mediated reactive oxygen species technology affecting bactericidal exercise. Water Res. 2009;43:1027–32.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yang B, Chen Y, Shi J. Reactive oxygen species (ROS)-based nanomedicine. Chem Rev. 2019;119:4881–985.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kasuga NC, Yoshikawa R, Sakai Y, Nomiya Ok. Syntheses, buildings, and antimicrobial actions of remarkably light-stable and water-soluble silver complexes with amino acid derivatives, silver(I) N-acetylmethioninates. Inorg Chem. 2012;51:1640–7.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yuan X, Setyawati MI, Tan AS, Ong CN, Leong DT, Xie J. Extremely luminescent silver nanoclusters with tunable emissions: cyclic reduction-decomposition synthesis and antimicrobial properties. NPG Asia Mater. 2013;5:e39.

    CAS 
    Article 

    Google Scholar
     

  • Haidari H, Kopecki Z, Shiny R, Cowin AJ, Garg S, Goswami N, Vasilev Ok. Ultrasmall AgNP-impregnated biocompatible hydrogel with extremely efficient biofilm elimination properties. ACS Appl Mater Interfaces. 2020;12:41011–25.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Xia J, Wang W, Hai X, Shuang E, Shu Y, Wang J. Enchancment of antibacterial exercise of copper nanoclusters for selective inhibition on the expansion of gram-positive micro organism. Chinese language Chem. Lett. 2019;30:421–4.

    CAS 
    Article 

    Google Scholar
     

  • Nathan C, Cunningham-Bussel A. Past oxidative stress: an immunologist’s information to reactive oxygen species. Nat Rev Immunol. 2013;13:349–61.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Memar MY, Ghotaslou R, Samiei M, Adibkia Ok. Antimicrobial use of reactive oxygen remedy: present insights. Infect Drug Resist. 2018;11:567–76.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Yang H, Cai R, Zhang Y, Chen Y, Gu B. Gold nanoclusters as an antibacterial different in opposition to Clostridium difficile. Int J Nanomed. 2020;15:6401–8.

    CAS 
    Article 

    Google Scholar
     

  • Zheng Ok, Setyawati MI, Leong DT, Xie J. Observing antimicrobial course of with traceable gold nanoclusters. Nano Res. 2021;14:1026–33.

    CAS 
    Article 

    Google Scholar
     

  • Chang TK, Cheng TM, Chu HL, Tan SH, Kuo JC, Hsu PH, Su CY, Chen HM, Lee CM, Kuo TR. Metabolic mechanism investigation of antibacterial lively cysteine-conjugated gold nanoclusters in Escherichia coli. ACS Sustainable Chem Eng. 2019;7:15479–86.

    CAS 
    Article 

    Google Scholar
     

  • Wu Q, Peng R, Gong F, Luo Y, Zhang H, Cui Q. Aqueous synthesis of N-heterocyclic carbene-protected gold nanoclusters with intrinsic antibacterial exercise. Colloids Surf A Physicochem Eng Asp. 2022;645:128934.

    CAS 
    Article 

    Google Scholar
     

  • Tang Z, Liu Y, He M, Bu W. Chemodynamic remedy: tumour microenvironment-mediated Fenton and Fenton-like reactions. Angew Chem Int Ed. 2019;58:946–56.

    CAS 
    Article 

    Google Scholar
     

  • Tang Z, Zhao P, Wang H, Liu Y, Bu W. Biomedicine meets Fenton chemistry. Chem Rev. 2021;121:1981–2019.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Track M, Cheng Y, Tian Y, Chu C, Zhang C, Lu Z, Chen X, Pang X, Liu G. Sonoactivated chemodynamic remedy: A sturdy ROS technology nanotheranostic eradicates multidrug-resistant bacterial an infection. Adv Funct Mater. 2020;30:2003587.

    CAS 
    Article 

    Google Scholar
     

  • Zhao Y, Ye C, Liu W, Chen R, Jiang X. Tuning the composition of AuPt bimetallic nanoparticles for antibacterial software. Angew Chem Int Ed. 2014;53:8127–31.

    CAS 
    Article 

    Google Scholar
     

  • Neissa J, Pérez-Arnaiz C, Porto V, Busto N, Borrajo E, Leal JM, López-Quintela MA, García B, Dominguez F. Interplay of silver atomic quantum clusters with dwelling organisms: bactericidal impact of Ag3 clusters mediated by disruption of topoisomerase-DNA complexes. Chem Sci. 2015;6:6717–24.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Meng J, Gao Y, Li W, Wang J, Chen X. Gold nanoclusters exert antibacterial results in opposition to gram-negative micro organism by focusing on thiol-redox homeostasis. Talanta. 2021;234:122618.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gong F, Peng R, Wu Q, Zhang H, Luo Y, Cui Q. Imidazole-stabilized gold nanoclusters with thiol depletion capability for antibacterial software. Colloids Surf A Physicochem Eng Asp. 2022;641:128608.

    CAS 
    Article 

    Google Scholar
     

  • Ndugire W, Raviranga NGH, Lao J, Ramström O, Yan M. Gold nanoclusters as nanoantibiotic auranofin analogues. Adv Healthcare Mater. 2022;11:2101032.

    CAS 
    Article 

    Google Scholar
     

  • Buceta D, Busto N, Barone G, Leal JM, Domínguez F, Giovanetti LJ, Requejo FG, García B. López-Quintela López MA. Ag2 and Ag3 clusters: synthesis, characterization, and interplay with DNA. Angew Chem Int Ed. 2015;54:7612–6.

    CAS 
    Article 

    Google Scholar
     

  • Liang J, Xiong H, Wang W, Wen W, Zhang X, Wang S. “Luminescent-off/on” sensing mechanism of antibiotic-capped gold nanoclusters to phosphate-containing metabolites and its antibacterial traits. Sens Actuat B Chem. 2018;255:2170–8.

    CAS 
    Article 

    Google Scholar
     

  • Kalita S, Kandimalla R, Bhowal AC, Kotoky J, Kundu S. Functionalization of β-lactam antibiotic on lysozyme capped gold nanoclusters retrogress MRSA and its persisters following awakening. Sci Rep. 2018;8:1–13.

    CAS 
    Article 

    Google Scholar
     

  • Li Q, Pan Y, Chen T, Du Y, Ge H, Zhang B, Xie J, Yu H, Zhu M. Design and mechanistic research of a novel gold nanocluster-based drug supply system. Nanoscale. 2018;10:10166–72.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Setyawati MI, Kutty RV, Tay CY, Yuan X, Xie J, Leong DT. Novel theranostic DNA nanoscaffolds for the simultaneous detection and killing of Escherichia coli and Staphylococcus aureus. ACS Appl Mater Interfaces. 2014;6:21822–31.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zeng J, Guo Z, Wang Y, Qin Z, Ma Y, Jiang H, Weizmann Y, Wang X. Clever bio-assembly imaging-guided platform for real-time micro organism sterilizing and infectious remedy. Nano Res. 2022;15:4164–74.

    CAS 
    Article 

    Google Scholar
     

  • Xie Y, Zheng W, Jiang X. Close to-infrared light-activated phototherapy by gold nanoclusters for dispersing biofilms. ACS Appl Mater Interfaces. 2020;12:9041–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hwang GB, Wu G, Shin J, Panariello L, Sebastian V, Karu Ok, Allan E, Gavriilidis A, Parkin IP. Steady single-phase synthesis of [Au25(Cys)18] nanoclusters and their photobactericidal enhancement. ACS Appl Mater Interfaces. 2020;12:49021–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hwang GB, Huang H, Wu G, Shin J, Kafizas A, Karu Ok, Toit HD, Alotaibi AM, Mohammad-Hadi L, Allan E, MacRobert AJ, Gavriilidis A, Parkin IP. Photobactericidal exercise activated by thiolated gold nanoclusters at low flux ranges of white mild. Nat Commun. 2020;11:1207.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Nakal-Chidiac A, García O, García-Fernández L, Martín-Saavedra FM, Sánchez-Casanova S, Escudero-Duch C, Román JS, Vilaboa N, Aguilar MR. Chitosan-stabilized silver nanoclusters with luminescent, photothermal and antibacterial properties. Carbohyd Poly. 2020;250:116973.

    CAS 
    Article 

    Google Scholar
     

  • Nel AE, Mädler L, Velegol D, Xia T, Hoek EM, Somasundaran P, Klaessig F, Castranova V, Thompson M. Understanding biophysicochemical interactions on the nano-bio interface. Nat Mater. 2009;8:543–57.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Xie Y, Yang J, Zhang J, Zheng W, Jiang X. Activating the antibacterial impact of 4,6-diamino-2-pyrimidinethio-modified gold nanoparticles by lowering their sizes. Angew Chem Int Ed. 2020;59:23471–5.

    CAS 
    Article 

    Google Scholar
     

  • Lin F, Qi Q, Zhang J, Zhou W, Zhang J, Fu P, Zhang X, Qiao X, Liu M, Pang X, Cui Z. From unimolecular template to silver nanocrystal clusters: An efficient technique to steadiness antibacterial exercise and cytotoxicity. ACS Appl Mater Interfaces. 2021;13:39806–18.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gilroy KD, Ruditskiy A, Peng HC, Qin D, Xia Y. Bimetallic nanocrystals: syntheses, properties, and functions. Chem Rev. 2016;116:10414–72.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kang X, Li Y, Zhu M, Jin R. Atomically exact alloy nanoclusters: syntheses, buildings, and properties. Chem Soc Rev. 2020;49:6443–514.

    PubMed 
    Article 

    Google Scholar
     

  • Zheng Y, Jiang H, Wang X. A number of methods for managed synthesis of atomically exact alloy nanoclusters. Acta Phys Chim Sin. 2018;34:740–54.

    CAS 
    Article 

    Google Scholar
     

  • Zhang Y, Shao Z, Yuan W, Xu H, You X, Liao X. Inexperienced and fast synthesis of cysteine-directed novel AgCu nanocluster hydrogel with good antibacterial exercise. Materialia. 2021;20:101232.

    CAS 
    Article 

    Google Scholar
     

  • Tang Z, Liu S, Chen N, Luo M, Wu J, Zheng Y. Gold nanoclusters deal with intracellular bacterial infections: eliminating phagocytic pathogens and regulating mobile immune response. Colloids Surf B Biointerfaces. 2021;205:111899.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Meng J, Hu Z, He M, Wang J, Chen X. Gold nanocluster floor ligand change: An oxidative stress amplifier for combating multidrug resistance bacterial an infection. J Colloid Interface Sci. 2021;602:846–58.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Javani S, Lorca R, Latorre A, Flors C, Cortajarena AL, Somoza Á. Antibacterial exercise of DNA-stabilized silver nanoclusters tuned by oligonucleotide sequence. ACS Appl Mater Interfaces. 2016;8:10147–54.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yang L, Yao C, Li F, Dong Y, Zhang Z, Yang D. Synthesis of branched DNA scaffolded super-nanoclusters with enhanced antibacterial efficiency. Small. 2018;14:1800185.

    Article 
    CAS 

    Google Scholar
     

  • Wang L, Li S, Yin J, Yang J, Li Q, Zheng W, Liu S, Jiang X. The density of floor coating can contribute to totally different antibacterial actions of gold nanoparticles. Nano Lett. 2020;20:5036–42.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Davies D. Understanding biofilm resistance to antibacterial brokers. Nat Rev Drug Discov. 2003;2:114–22.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gupta A, Das R, Tonga GY, Mizuhara T, Rotello VM. Cost-switchable nanozymes for bioorthogonal imaging of biofilm-associated infections. ACS Nano. 2018;12:89–94.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wu J, Li F, Hu X, Lu J, Solar X, Gao J, Ling D. Responsive meeting of silver nanoclusters with a biofilm regionally amplified bactericidal impact to boost therapies in opposition to multi-drug-resistant bacterial infections. ACS Cent Sci. 2019;5:1366–76.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Goswami N, Shiny R, Visalakshan RM, Biswas B, Zilm P, Vasilev Ok. Core-in-cage construction regulated properties of ultra-small gold nanoparticles. Nanoscale Adv. 2019;1:2356–64.

    CAS 

    Google Scholar
     

  • Wang YW, Tang H, Wu D, Liu D, Liu Y, Cao A, Wang H. Enhanced bactericidal toxicity of silver nanoparticles by the antibiotic gentamicin. Environ Sci Nano. 2016;3:788–98.

    CAS 
    Article 

    Google Scholar
     

  • Zhang J, Chen YP, Miller KP, Ganewatta MS, Bam M, Yan Y, Nagarkatti M, Decho AW, Tang C. Antimicrobial metallopolymers and their bioconjugates with standard antibiotics in opposition to multidrug-resistant micro organism. J Am Chem Soc. 2014;136:4873–6.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zheng Y, Liu W, Chen Y, Li C, Jiang H, Wang X. Conjugating gold nanoclusters and antimicrobial peptides: From aggregation-induced emission to antibacterial synergy. J Colloid Interface Sci. 2019;546:1–10.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zheng Ok, Setyawati MI, Lim TP, Leong DT, Xie J. Antimicrobial cluster bombs: Silver nanoclusters full of daptomycin. ACS Nano. 2016;10:7934–42.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chen W, Chang H, Lu J, Huang Y, Harroun SG, Tseng Y, Li Y, Huang C, Chang H. Self-assembly of antimicrobial peptides on gold nanodots: in opposition to multidrug-resistant micro organism and wound-healing software. Adv Funct Mater. 2015;25:7189–99.

    CAS 
    Article 

    Google Scholar
     

  • Ye Z, Zhu H, Zhang S, Li J, Wang J, Wang E. Extremely environment friendly nanomedicine from cationic antimicrobial peptide-protected Ag nanoclusters. J Mater Chem B. 2021;9:307–13.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hu W, Younis MR, Zhou Y, Wang C, Xia X. In situ fabrication of ultrasmall gold nanoparticles/2D MOFs hybrid as nanozyme for antibacterial remedy. Small. 2020;16:2000553.

    CAS 
    Article 

    Google Scholar
     

  • Li X, Li S, Bai Q, Sui N, Zhu Z. Gold nanoclusters embellished amine-functionalized graphene oxide nanosheets for seize, oxidative stress, and photothermal destruction of micro organism. Colloids Surf B Biointerfaces. 2020;196:111313.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zheng Ok, Li Ok, Chang T, Xie J, Chen P. Synergistic antimicrobial functionality of magnetically oriented graphene oxide conjugated with gold nanoclusters. Adv Funct Mater. 2019;29:1904603.

    CAS 
    Article 

    Google Scholar
     

  • Zheng Ok, Li S, Jing L, Chen P, Xie J. Synergistic antimicrobial titanium carbide (MXene) conjugated with gold nanoclusters. Adv Healthcare Mater. 2020;9:2001007.

    CAS 
    Article 

    Google Scholar
     

  • Li M, Huang L, Wang X, Track Z, Zhao W, Wang Y, Liu J. Direct technology of Ag nanoclusters on decreased graphene oxide nanosheets for environment friendly catalysis, antibacteria and photothermal anticancer functions. J Colloid Interface Sci. 2018;529:444–51.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zou X, Zhang L, Wang Z, Luo Y. Mechanisms of the antimicrobial actions of graphene supplies. J Am Chem Soc. 2016;138:2064–77.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Girija AR, Balasubramanian S, Shiny R, Cowin AJ, Goswami N, Vasilev Ok. Ultrasmall gold nanocluster based mostly antibacterial nanoaggregates for infectious wound therapeutic. ChemNanoMat. 2019;5:1176–81.

    Article 
    CAS 

    Google Scholar
     

  • Wang X, Wang Z, Fang S, Hou Y, Du X, Xie Y, Xue Q, Zhou X, Yuan X. Injectable Ag nanoclusters-based hydrogel for wound therapeutic through eliminating bacterial an infection and selling tissue regeneration. Chem Eng J. 2021;420:127589.

    CAS 
    Article 

    Google Scholar
     

  • Liu J, Liu L, Li S, Kang Q, Zhang R, Zhu Z. Self-assembled nanogels of luminescent thiolated silver nanoclusters and chitosan as bactericidal agent and bacterial sensor. Mater Sci Eng C. 2021;118:111520.

    CAS 
    Article 

    Google Scholar
     

  • Zhu H, Li J, Wang E. Lighting up the gold nanoclusters through host-guest recognition for high-efficiency antibacterial efficiency and imaging. ACS Appl Mater Interfaces. 2019;11:36831–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Liu X, Cheng Z, Wen H, Zhang S, Chen M, Wang J. Hybrids of upconversion nanoparticles and silver nanoclusters guarantee superior bactericidal functionality through mixed sterilization. ACS Appl Mater Interfaces. 2020;12:51285–92.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Liu J, Li S, Fang Y, Zhu Z. Boosting antibacterial exercise with mesoporous silica nanoparticles supported silver nanoclusters. J Colloid Interface Sci. 2019;555:470–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chu G, Zhang C, Liu Y, Cao Z, Wang L, Chen Y, Zhou W, Gao G, Wang Ok, Cui D. A gold nanocluster constructed mixed-metal metal-organic community movie for combating implant-associated infections. ACS Nano. 2020;14:15633–45.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Xie Y, Zhang M, Zhang W, Liu X, Zheng W, Jiang X. Gold nanoclusters-coated orthodontic units can inhibit the formation of Streptococcus mutans biofilm. ACS Biomater Sci Eng. 2020;6:1239–46.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wang L, Hou Q, Zheng W, Jiang X. Fluorescent and antibacterial aminobenzeneboronic acid (ABA)-modified gold nanoclusters for self-monitoring residual dosage and good wound care. ACS Nano. 2021;15:17885–94.

    CAS 
    Article 

    Google Scholar
     

  • Zhuo Y, Zhang Y, Wang B, Cheng S, Yuan R, Liu S, Zhao M, Xu B, Zhang Y, Wang X. Gold nanocluster & indocyanine inexperienced based mostly triple-effective remedy for MRSA contaminated central nervous system. Appl Mater Immediately. 2022;27:101453.

    Article 

    Google Scholar
     

  • Wang Y, Cai R, Chen C. The nano-bio interactions of nanomedicines: understanding the biochemical driving forces and redox reactions. Acc Chem Res. 2019;52:1507–18.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zheng Y, Wang X, Jiang H. Label-free detection of Acinetobacter baumannii by way of the induced fluorescence quenching of thiolated AuAg nanoclusters. Sensor Actuat B Chem. 2018;277:388–93.

    CAS 
    Article 

    Google Scholar
     

  • Tang H, Li Q, Yan W, Jiang X. Reversing the chirality of floor ligands can enhance the biosafety and pharmacokinetics of cationic gold nanoclusters. Angew Chem Int Ed. 2021;60:13829–34.

    CAS 
    Article 

    Google Scholar
     

  • Peng Z, Yuan L, XuHong J, Tian H, Zhang Y, Deng J, Qi X. Chiral nanomaterials for tumor remedy: autophagy, apoptosis, and photothermal ablation. J Nanobiotechnol. 2021;19:220.

    Article 

    Google Scholar
     

  • Li J, Gao G, Tang X, Yu M, He M, Solar T. Isomeric impact of nano-inhibitors on Aβ40 fibrillation on the nano-bio interface. ACS Appl Mater Interfaces. 2021;13:4894–904.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Marrache S, Dhar S. Engineering of blended nanoparticle platform for supply of mitochondria-acting therapeutics. Proc Natl Acad Sci USA. 2012;109:16288–93.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • ZhaoY, Zhang Z, Pan Z, Liu Y. Superior bioactive nanomaterials for biomedical functions. Exploration. 2022;1:20210089.



  • Supply hyperlink

    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    - Advertisment -
    Google search engine

    Most Popular

    Recent Comments