Blair JM, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJ. Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol. 2015;13:42–51.
Gupta A, Mumtaz S, Li CH, Hussain I, Rotello VM. Combatting antibiotic-resistant micro organism utilizing nanomaterials. Chem Soc Rev. 2019;48:415–27.
Kim W, Zhu W, Hendricks GL, Tyne DV, Steele AD, Keohane CE, Fricke N, Conery AL, Shen S, Pan W, Lee Ok, Rajamuthiah R, Fuchs BB, Vlahovska PM, Wuest WM, Gilmore MS, Gao H, Ausubel FM, Mylonakis E. A brand new class of artificial retinoid antibiotics efficient in opposition to bacterial persisters. Nature. 2018;556:103–7.
Guan D, Chen F, Qiu Y, Jiang B, Gong L, Lan L, Huang W. Sulfonium, an underestimated moiety for structural modification, alters antibacterial profile of vancomycin in opposition to multidrug-resistant micro organism. Angew Chem Int Ed. 2019;58:1–7.
Mitcheltree MJ, Pisipati A, Syroegin EA, Silvestre KJ, Klepacki D, Mason JD, Terwilliger DW, Testolin G, Pote AR, Wu KJY, Ladley RP, Chatman Ok, Mankin AS, Polikanov YS, Myers AG. An artificial antibiotic class overcoming bacterial multidrug resistance. Nature. 2021;599:507–12.
Huh AJ, Kwon YJ. “Nanoantibiotics”: a brand new paradigm for treating infectious illnesses utilizing nanomaterials within the antibiotics resistant period. J Managed Launch. 2011;156:128–45.
Zheng Ok, Setyawati MI, Leong DT, Xie J. Antimicrobial silver nanomaterials. Coordin Chem Rev. 2018;357:1–17.
Makabenta JMV, Nabawy A, Li CH, Schmidt-Malan S, Patel R, Rotello VM. Nanomaterial-based therapeutics for antibiotic-resistant bacterial infections. Nat Rev Microbiol. 2021;19:23–36.
Fang G, Li W, Shen X, Perez-Aguilar JM, Chong Y, Gao X, Chai Z, Chen C, Ge C, Zhou R. Differential Pd-nanocrystal aspects show distinct antibacterial exercise in opposition to gram-positive and gram-negative micro organism. Nat Commun. 2018;9:129.
Wang Z, Wang X, Wang Y, Zhu Y, Liu X, Zhou Q. NanoZnO-modified titanium implants for enhanced anti-bacterial exercise, osteogenesis and corrosion resistance. J Nanobiotechnol. 2021;19:353.
Barros CHN, Hiebner DW, Fulaz S, Vitale S, Quinn L, Casey E. Synthesis and self-assembly of curcumin-modified amphiphilic polymeric micelles with antibacterial exercise. J Nanobiotechnol. 2021;19:104.
Xu S, Chang L, Hu Y, Zhao X, Huang S, Chen Z, Ren X, Mei X. Tea polyphenol modified, photothermal responsive and ROS generative black phosphorus quantum dots as nanoplatforms for selling MRSA contaminated wounds therapeutic in diabetic rats. J Nanobiotechnol. 2021;19:362.
Gao W, Zhang L. Nanomaterials arising amid antibiotic resistance. Nat Rev Microbiol. 2021;19:5–6.
Linklater DP, Baulin VA, Juodkazis S, Crawford RJ, Stoodley P, Ivanova EP. Mechano-bactericidal actions of nanostructured surfaces. Nat Rev Microbiol. 2021;19:8–22.
Lam SJ, Wong EH, Boyer C, Qiao GG. Antimicrobial polymeric nanoparticles. Prog Polym Sci. 2018;76:40–64.
Khan MS, Abdelhamid HN, Wu HF. Close to infrared (NIR) laser mediated floor activation of graphene oxide nanoflakes for environment friendly antibacterial, antifungal and wound therapeutic remedy. Colloids Surf B Biointerfaces. 2015;127:281–91.
Yousef MS, Abdelhamid HN, Hidalgo M, Fathy R, Gómez-Gascón L, Dorado J. Antimicrobial exercise of silver-carbon nanoparticles on the bacterial flora of bull semen. Theriogenology. 2021;161:219–27.
Abdelhamid HN, Talib A, Wu HF. Facile synthesis of water soluble silver ferrite (AgFeO2) nanoparticles and their organic software as antibacterial brokers. RSC Adv. 2015;5:34594–602.
Zheng Y, Jiang H, Wang X. Side-dependent antibacterial exercise of Au nanocrystals. Chinese language Chem Lett. 2020;31:3183–9.
Zhang L, Wang E. Metallic nanoclusters: new fluorescent probes for sensors and bioimaging. Nano Immediately. 2014;9:132–57.
Tang M, Zhang J, Yang C, Zheng Y, Jiang H. Gold nanoclusters for bacterial detection and an infection remedy. Entrance Chem. 2020;8:181.
Yuan X, Setyawati MI, Leong DT, Xie J. Ultrasmall Ag+-rich nanoclusters as extremely environment friendly nanoreservoirs for bacterial killing. Nano Res. 2014;7:301–7.
Wang S, Wang Y, Peng Y, Yang X. Exploring the antibacteria efficiency of multicolor Ag, Au, and Cu nanoclusters. ACS Appl Mater Interfaces. 2019;11:8461–9.
Zheng Ok, Setyawati MI, Leong DT, Xie J. Antimicrobial gold nanoclusters. ACS Nano. 2017;11:6904–10.
Jin R, Zeng C, Zhou M, Chen Y. Atomically exact colloidal metallic nanoclusters and nanoparticles: fundamentals and alternatives. Chem Rev. 2016;116:10346–413.
Zheng Ok, Xie J. Cluster supplies as traceable antibacterial brokers. Acc Mater Res. 2021;2:1104–16.
Higaki T, Li Q, Zhou M, Zhao S, Li Y, Li S, Jin R. Towards the tailoring chemistry of metallic nanoclusters for enhancing functionalities. Acc Chem Res. 2018;51:2764–73.
Wilcoxon JP, Abrams BL. Synthesis, construction and properties of metallic nanoclusters. Chem Soc Rev. 2006;35:1162–94.
Nain A, Tseng YT, Wei SC, Periasamy AP, Huang CC, Tseng FG, Chang HT. Capping 1,3-propanedithiol to spice up the antibacterial exercise of protein-templated copper nanoclusters. J Hazard Mater. 2020;389:121821.
Setyawati MI, Yuan X, Xie J, Leong DT. The affect of lysosomal stability of silver nanomaterials on their toxicity to human cells. Biomaterials. 2014;35:6707–15.
Lewinski N, Colvin V, Drezek R. Cytotoxicity of nanoparticles. Small. 2008;4:26–49.
Connor EE, Mwamuka J, Gole A, Murphy CJ, Wyatt MD. Gold nanoparticles are taken up by human cells however don’t trigger acute cytotoxicity. Small. 2005;1:325–7.
Pan Y, Neuss S, Leifert A, Fischler M, Wen F, Simon U, Schmid G, Brandau W, Jahnen-Dechent W. Dimension-dependent cytotoxicity of gold nanoparticles. Small. 2007;3:1941–9.
Zheng Y, Jiang H, Wang X. A number of methods for managed synthesis of atomically exact alloy nanoclusters. Acta Phys Chim Sin. 2018;34:740–54.
Zheng Ok, Xie J. Composition-dependent antimicrobial capacity of full-spectrum AuxAg25–x alloy nanoclusters. ACS Nano. 2020;14:11533–41.
Zheng Ok, Setyawati MI, Leong DT, Xie J. Overcoming bacterial bodily defenses with molecule-like ultrasmall antimicrobial gold nanoclusters. Bioact Mater. 2021;6:941–50.
Tsunoyama H, Sakurai H, Negishi Y, Tsukuda T. Dimension-specific catalytic exercise of polymer-stabilized gold nanoclusters for cardio alcohol oxidation in water. J Am Chem Soc. 2005;127:9374–5.
Zheng Y, Liu W, Qin Z, Chen Y, Jiang H, Wang X. Mercaptopyrimidine-conjugated gold nanoclusters as nanoantibiotics for combating multidrug-resistant superbugs. Bioconjugate Chem. 2018;29:3094–103.
Zheng Y, Wu J, Jiang H, Wang X. Gold nanoclusters for theranostic functions. Coordin Chem Rev. 2021;431:213689.
Zheng Ok, Setyawati MI, Leong DT, Xie J. Floor ligand chemistry of gold nanoclusters determines their antimicrobial capacity. Chem Mater. 2018;30:2800–8.
Pranantyo D, Liu P, Zhong W, Kang ET, Chan-Park MB. Antimicrobial peptide-reduced gold nanoclusters with charge-reversal moieties for bacterial focusing on and imaging. Biomacromolecules. 2019;20:2922–33.
Xie Y, Liu Y, Yang J, Liu Y, Hu F, Zhu Ok, Jiang X. Gold nanoclusters for focusing on methicillin-resistant Staphylococcus aureus in vivo. Angew Chem Int Ed. 2018;57:3958–62.
Li Y, Zhen J, Tian Q, Shen C, Zhang L, Yang Ok, Shang L. One step synthesis of positively charged gold nanoclusters as efficient antimicrobial nanoagents in opposition to multidrug-resistant micro organism and biofilms. J Colloid Interface Sci. 2020;569:235–43.
Boda SK, Broda J, Schiefer F, Weber-Heynemann J, Hoss M, Simon U, Basu B, Jahnen-Dechent W. Cytotoxicity of ultrasmall gold nanoparticles on planktonic and biofilm encapsulated gram-positive staphylococci. Small. 2015;11:3183–93.
Wang Y, Malkmes MJ, Jiang C, Wang P, Zhu L, Zhang H, Zhang Y, Huang H, Jiang L. Antibacterial mechanism and transcriptome evaluation of ultra-small gold nanoclusters instead of dangerous antibiotics in opposition to Gram-negative micro organism. J Hazard Mater. 2021;416:126236.
Landis RF, Li CH, Gupta A, Lee YW, Yazdani M, Ngernyuang N, Altinbasak I, Mansoor S, Khichi MAS, Sanyal A, Rotello VM. Biodegradable nanocomposite antimicrobials for the eradication of multidrug-resistant bacterial biofilms with out gathered resistance. J Am Chem Soc. 2018;140:6176–82.
Park HJ, Kim JY, Kim J, Lee JH, Hahn JS, Gu MB, Yoon J. Silver-ion-mediated reactive oxygen species technology affecting bactericidal exercise. Water Res. 2009;43:1027–32.
Yang B, Chen Y, Shi J. Reactive oxygen species (ROS)-based nanomedicine. Chem Rev. 2019;119:4881–985.
Kasuga NC, Yoshikawa R, Sakai Y, Nomiya Ok. Syntheses, buildings, and antimicrobial actions of remarkably light-stable and water-soluble silver complexes with amino acid derivatives, silver(I) N-acetylmethioninates. Inorg Chem. 2012;51:1640–7.
Yuan X, Setyawati MI, Tan AS, Ong CN, Leong DT, Xie J. Extremely luminescent silver nanoclusters with tunable emissions: cyclic reduction-decomposition synthesis and antimicrobial properties. NPG Asia Mater. 2013;5:e39.
Haidari H, Kopecki Z, Shiny R, Cowin AJ, Garg S, Goswami N, Vasilev Ok. Ultrasmall AgNP-impregnated biocompatible hydrogel with extremely efficient biofilm elimination properties. ACS Appl Mater Interfaces. 2020;12:41011–25.
Xia J, Wang W, Hai X, Shuang E, Shu Y, Wang J. Enchancment of antibacterial exercise of copper nanoclusters for selective inhibition on the expansion of gram-positive micro organism. Chinese language Chem. Lett. 2019;30:421–4.
Nathan C, Cunningham-Bussel A. Past oxidative stress: an immunologist’s information to reactive oxygen species. Nat Rev Immunol. 2013;13:349–61.
Memar MY, Ghotaslou R, Samiei M, Adibkia Ok. Antimicrobial use of reactive oxygen remedy: present insights. Infect Drug Resist. 2018;11:567–76.
Yang H, Cai R, Zhang Y, Chen Y, Gu B. Gold nanoclusters as an antibacterial different in opposition to Clostridium difficile. Int J Nanomed. 2020;15:6401–8.
Zheng Ok, Setyawati MI, Leong DT, Xie J. Observing antimicrobial course of with traceable gold nanoclusters. Nano Res. 2021;14:1026–33.
Chang TK, Cheng TM, Chu HL, Tan SH, Kuo JC, Hsu PH, Su CY, Chen HM, Lee CM, Kuo TR. Metabolic mechanism investigation of antibacterial lively cysteine-conjugated gold nanoclusters in Escherichia coli. ACS Sustainable Chem Eng. 2019;7:15479–86.
Wu Q, Peng R, Gong F, Luo Y, Zhang H, Cui Q. Aqueous synthesis of N-heterocyclic carbene-protected gold nanoclusters with intrinsic antibacterial exercise. Colloids Surf A Physicochem Eng Asp. 2022;645:128934.
Tang Z, Liu Y, He M, Bu W. Chemodynamic remedy: tumour microenvironment-mediated Fenton and Fenton-like reactions. Angew Chem Int Ed. 2019;58:946–56.
Tang Z, Zhao P, Wang H, Liu Y, Bu W. Biomedicine meets Fenton chemistry. Chem Rev. 2021;121:1981–2019.
Track M, Cheng Y, Tian Y, Chu C, Zhang C, Lu Z, Chen X, Pang X, Liu G. Sonoactivated chemodynamic remedy: A sturdy ROS technology nanotheranostic eradicates multidrug-resistant bacterial an infection. Adv Funct Mater. 2020;30:2003587.
Zhao Y, Ye C, Liu W, Chen R, Jiang X. Tuning the composition of AuPt bimetallic nanoparticles for antibacterial software. Angew Chem Int Ed. 2014;53:8127–31.
Neissa J, Pérez-Arnaiz C, Porto V, Busto N, Borrajo E, Leal JM, López-Quintela MA, García B, Dominguez F. Interplay of silver atomic quantum clusters with dwelling organisms: bactericidal impact of Ag3 clusters mediated by disruption of topoisomerase-DNA complexes. Chem Sci. 2015;6:6717–24.
Meng J, Gao Y, Li W, Wang J, Chen X. Gold nanoclusters exert antibacterial results in opposition to gram-negative micro organism by focusing on thiol-redox homeostasis. Talanta. 2021;234:122618.
Gong F, Peng R, Wu Q, Zhang H, Luo Y, Cui Q. Imidazole-stabilized gold nanoclusters with thiol depletion capability for antibacterial software. Colloids Surf A Physicochem Eng Asp. 2022;641:128608.
Ndugire W, Raviranga NGH, Lao J, Ramström O, Yan M. Gold nanoclusters as nanoantibiotic auranofin analogues. Adv Healthcare Mater. 2022;11:2101032.
Buceta D, Busto N, Barone G, Leal JM, Domínguez F, Giovanetti LJ, Requejo FG, García B. López-Quintela López MA. Ag2 and Ag3 clusters: synthesis, characterization, and interplay with DNA. Angew Chem Int Ed. 2015;54:7612–6.
Liang J, Xiong H, Wang W, Wen W, Zhang X, Wang S. “Luminescent-off/on” sensing mechanism of antibiotic-capped gold nanoclusters to phosphate-containing metabolites and its antibacterial traits. Sens Actuat B Chem. 2018;255:2170–8.
Kalita S, Kandimalla R, Bhowal AC, Kotoky J, Kundu S. Functionalization of β-lactam antibiotic on lysozyme capped gold nanoclusters retrogress MRSA and its persisters following awakening. Sci Rep. 2018;8:1–13.
Li Q, Pan Y, Chen T, Du Y, Ge H, Zhang B, Xie J, Yu H, Zhu M. Design and mechanistic research of a novel gold nanocluster-based drug supply system. Nanoscale. 2018;10:10166–72.
Setyawati MI, Kutty RV, Tay CY, Yuan X, Xie J, Leong DT. Novel theranostic DNA nanoscaffolds for the simultaneous detection and killing of Escherichia coli and Staphylococcus aureus. ACS Appl Mater Interfaces. 2014;6:21822–31.
Zeng J, Guo Z, Wang Y, Qin Z, Ma Y, Jiang H, Weizmann Y, Wang X. Clever bio-assembly imaging-guided platform for real-time micro organism sterilizing and infectious remedy. Nano Res. 2022;15:4164–74.
Xie Y, Zheng W, Jiang X. Close to-infrared light-activated phototherapy by gold nanoclusters for dispersing biofilms. ACS Appl Mater Interfaces. 2020;12:9041–9.
Hwang GB, Wu G, Shin J, Panariello L, Sebastian V, Karu Ok, Allan E, Gavriilidis A, Parkin IP. Steady single-phase synthesis of [Au25(Cys)18] nanoclusters and their photobactericidal enhancement. ACS Appl Mater Interfaces. 2020;12:49021–9.
Hwang GB, Huang H, Wu G, Shin J, Kafizas A, Karu Ok, Toit HD, Alotaibi AM, Mohammad-Hadi L, Allan E, MacRobert AJ, Gavriilidis A, Parkin IP. Photobactericidal exercise activated by thiolated gold nanoclusters at low flux ranges of white mild. Nat Commun. 2020;11:1207.
Nakal-Chidiac A, García O, García-Fernández L, Martín-Saavedra FM, Sánchez-Casanova S, Escudero-Duch C, Román JS, Vilaboa N, Aguilar MR. Chitosan-stabilized silver nanoclusters with luminescent, photothermal and antibacterial properties. Carbohyd Poly. 2020;250:116973.
Nel AE, Mädler L, Velegol D, Xia T, Hoek EM, Somasundaran P, Klaessig F, Castranova V, Thompson M. Understanding biophysicochemical interactions on the nano-bio interface. Nat Mater. 2009;8:543–57.
Xie Y, Yang J, Zhang J, Zheng W, Jiang X. Activating the antibacterial impact of 4,6-diamino-2-pyrimidinethio-modified gold nanoparticles by lowering their sizes. Angew Chem Int Ed. 2020;59:23471–5.
Lin F, Qi Q, Zhang J, Zhou W, Zhang J, Fu P, Zhang X, Qiao X, Liu M, Pang X, Cui Z. From unimolecular template to silver nanocrystal clusters: An efficient technique to steadiness antibacterial exercise and cytotoxicity. ACS Appl Mater Interfaces. 2021;13:39806–18.
Gilroy KD, Ruditskiy A, Peng HC, Qin D, Xia Y. Bimetallic nanocrystals: syntheses, properties, and functions. Chem Rev. 2016;116:10414–72.
Kang X, Li Y, Zhu M, Jin R. Atomically exact alloy nanoclusters: syntheses, buildings, and properties. Chem Soc Rev. 2020;49:6443–514.
Zheng Y, Jiang H, Wang X. A number of methods for managed synthesis of atomically exact alloy nanoclusters. Acta Phys Chim Sin. 2018;34:740–54.
Zhang Y, Shao Z, Yuan W, Xu H, You X, Liao X. Inexperienced and fast synthesis of cysteine-directed novel AgCu nanocluster hydrogel with good antibacterial exercise. Materialia. 2021;20:101232.
Tang Z, Liu S, Chen N, Luo M, Wu J, Zheng Y. Gold nanoclusters deal with intracellular bacterial infections: eliminating phagocytic pathogens and regulating mobile immune response. Colloids Surf B Biointerfaces. 2021;205:111899.
Meng J, Hu Z, He M, Wang J, Chen X. Gold nanocluster floor ligand change: An oxidative stress amplifier for combating multidrug resistance bacterial an infection. J Colloid Interface Sci. 2021;602:846–58.
Javani S, Lorca R, Latorre A, Flors C, Cortajarena AL, Somoza Á. Antibacterial exercise of DNA-stabilized silver nanoclusters tuned by oligonucleotide sequence. ACS Appl Mater Interfaces. 2016;8:10147–54.
Yang L, Yao C, Li F, Dong Y, Zhang Z, Yang D. Synthesis of branched DNA scaffolded super-nanoclusters with enhanced antibacterial efficiency. Small. 2018;14:1800185.
Wang L, Li S, Yin J, Yang J, Li Q, Zheng W, Liu S, Jiang X. The density of floor coating can contribute to totally different antibacterial actions of gold nanoparticles. Nano Lett. 2020;20:5036–42.
Davies D. Understanding biofilm resistance to antibacterial brokers. Nat Rev Drug Discov. 2003;2:114–22.
Gupta A, Das R, Tonga GY, Mizuhara T, Rotello VM. Cost-switchable nanozymes for bioorthogonal imaging of biofilm-associated infections. ACS Nano. 2018;12:89–94.
Wu J, Li F, Hu X, Lu J, Solar X, Gao J, Ling D. Responsive meeting of silver nanoclusters with a biofilm regionally amplified bactericidal impact to boost therapies in opposition to multi-drug-resistant bacterial infections. ACS Cent Sci. 2019;5:1366–76.
Goswami N, Shiny R, Visalakshan RM, Biswas B, Zilm P, Vasilev Ok. Core-in-cage construction regulated properties of ultra-small gold nanoparticles. Nanoscale Adv. 2019;1:2356–64.
Wang YW, Tang H, Wu D, Liu D, Liu Y, Cao A, Wang H. Enhanced bactericidal toxicity of silver nanoparticles by the antibiotic gentamicin. Environ Sci Nano. 2016;3:788–98.
Zhang J, Chen YP, Miller KP, Ganewatta MS, Bam M, Yan Y, Nagarkatti M, Decho AW, Tang C. Antimicrobial metallopolymers and their bioconjugates with standard antibiotics in opposition to multidrug-resistant micro organism. J Am Chem Soc. 2014;136:4873–6.
Zheng Y, Liu W, Chen Y, Li C, Jiang H, Wang X. Conjugating gold nanoclusters and antimicrobial peptides: From aggregation-induced emission to antibacterial synergy. J Colloid Interface Sci. 2019;546:1–10.
Zheng Ok, Setyawati MI, Lim TP, Leong DT, Xie J. Antimicrobial cluster bombs: Silver nanoclusters full of daptomycin. ACS Nano. 2016;10:7934–42.
Chen W, Chang H, Lu J, Huang Y, Harroun SG, Tseng Y, Li Y, Huang C, Chang H. Self-assembly of antimicrobial peptides on gold nanodots: in opposition to multidrug-resistant micro organism and wound-healing software. Adv Funct Mater. 2015;25:7189–99.
Ye Z, Zhu H, Zhang S, Li J, Wang J, Wang E. Extremely environment friendly nanomedicine from cationic antimicrobial peptide-protected Ag nanoclusters. J Mater Chem B. 2021;9:307–13.
Hu W, Younis MR, Zhou Y, Wang C, Xia X. In situ fabrication of ultrasmall gold nanoparticles/2D MOFs hybrid as nanozyme for antibacterial remedy. Small. 2020;16:2000553.
Li X, Li S, Bai Q, Sui N, Zhu Z. Gold nanoclusters embellished amine-functionalized graphene oxide nanosheets for seize, oxidative stress, and photothermal destruction of micro organism. Colloids Surf B Biointerfaces. 2020;196:111313.
Zheng Ok, Li Ok, Chang T, Xie J, Chen P. Synergistic antimicrobial functionality of magnetically oriented graphene oxide conjugated with gold nanoclusters. Adv Funct Mater. 2019;29:1904603.
Zheng Ok, Li S, Jing L, Chen P, Xie J. Synergistic antimicrobial titanium carbide (MXene) conjugated with gold nanoclusters. Adv Healthcare Mater. 2020;9:2001007.
Li M, Huang L, Wang X, Track Z, Zhao W, Wang Y, Liu J. Direct technology of Ag nanoclusters on decreased graphene oxide nanosheets for environment friendly catalysis, antibacteria and photothermal anticancer functions. J Colloid Interface Sci. 2018;529:444–51.
Zou X, Zhang L, Wang Z, Luo Y. Mechanisms of the antimicrobial actions of graphene supplies. J Am Chem Soc. 2016;138:2064–77.
Girija AR, Balasubramanian S, Shiny R, Cowin AJ, Goswami N, Vasilev Ok. Ultrasmall gold nanocluster based mostly antibacterial nanoaggregates for infectious wound therapeutic. ChemNanoMat. 2019;5:1176–81.
Wang X, Wang Z, Fang S, Hou Y, Du X, Xie Y, Xue Q, Zhou X, Yuan X. Injectable Ag nanoclusters-based hydrogel for wound therapeutic through eliminating bacterial an infection and selling tissue regeneration. Chem Eng J. 2021;420:127589.
Liu J, Liu L, Li S, Kang Q, Zhang R, Zhu Z. Self-assembled nanogels of luminescent thiolated silver nanoclusters and chitosan as bactericidal agent and bacterial sensor. Mater Sci Eng C. 2021;118:111520.
Zhu H, Li J, Wang E. Lighting up the gold nanoclusters through host-guest recognition for high-efficiency antibacterial efficiency and imaging. ACS Appl Mater Interfaces. 2019;11:36831–8.
Liu X, Cheng Z, Wen H, Zhang S, Chen M, Wang J. Hybrids of upconversion nanoparticles and silver nanoclusters guarantee superior bactericidal functionality through mixed sterilization. ACS Appl Mater Interfaces. 2020;12:51285–92.
Liu J, Li S, Fang Y, Zhu Z. Boosting antibacterial exercise with mesoporous silica nanoparticles supported silver nanoclusters. J Colloid Interface Sci. 2019;555:470–9.
Chu G, Zhang C, Liu Y, Cao Z, Wang L, Chen Y, Zhou W, Gao G, Wang Ok, Cui D. A gold nanocluster constructed mixed-metal metal-organic community movie for combating implant-associated infections. ACS Nano. 2020;14:15633–45.
Xie Y, Zhang M, Zhang W, Liu X, Zheng W, Jiang X. Gold nanoclusters-coated orthodontic units can inhibit the formation of Streptococcus mutans biofilm. ACS Biomater Sci Eng. 2020;6:1239–46.
Wang L, Hou Q, Zheng W, Jiang X. Fluorescent and antibacterial aminobenzeneboronic acid (ABA)-modified gold nanoclusters for self-monitoring residual dosage and good wound care. ACS Nano. 2021;15:17885–94.
Zhuo Y, Zhang Y, Wang B, Cheng S, Yuan R, Liu S, Zhao M, Xu B, Zhang Y, Wang X. Gold nanocluster & indocyanine inexperienced based mostly triple-effective remedy for MRSA contaminated central nervous system. Appl Mater Immediately. 2022;27:101453.
Wang Y, Cai R, Chen C. The nano-bio interactions of nanomedicines: understanding the biochemical driving forces and redox reactions. Acc Chem Res. 2019;52:1507–18.
Zheng Y, Wang X, Jiang H. Label-free detection of Acinetobacter baumannii by way of the induced fluorescence quenching of thiolated AuAg nanoclusters. Sensor Actuat B Chem. 2018;277:388–93.
Tang H, Li Q, Yan W, Jiang X. Reversing the chirality of floor ligands can enhance the biosafety and pharmacokinetics of cationic gold nanoclusters. Angew Chem Int Ed. 2021;60:13829–34.
Peng Z, Yuan L, XuHong J, Tian H, Zhang Y, Deng J, Qi X. Chiral nanomaterials for tumor remedy: autophagy, apoptosis, and photothermal ablation. J Nanobiotechnol. 2021;19:220.
Li J, Gao G, Tang X, Yu M, He M, Solar T. Isomeric impact of nano-inhibitors on Aβ40 fibrillation on the nano-bio interface. ACS Appl Mater Interfaces. 2021;13:4894–904.
Marrache S, Dhar S. Engineering of blended nanoparticle platform for supply of mitochondria-acting therapeutics. Proc Natl Acad Sci USA. 2012;109:16288–93.
ZhaoY, Zhang Z, Pan Z, Liu Y. Superior bioactive nanomaterials for biomedical functions. Exploration. 2022;1:20210089.