Kimble, H. J. The quantum web. Nature 453, 1023 (2008).
Wehner, S., Elkouss, D. & Hanson, R. Quantum web: a imaginative and prescient for the street forward. Science 362, eaam9288 (2018).
Alexeev, Y. et al. Quantum pc programs for scientific discovery. PRX Quantum 2, 017001 (2021).
Ladd, T. D. et al. Quantum computer systems. Nature 464, 45 (2010).
de Leon, N. P. et al. Supplies challenges and alternatives for quantum computing {hardware}. Science 372, eabb2823 (2021).
Gambetta, J. IBM Analysis Weblog https://analysis.ibm.com/weblog/next-wave-quantum-centric-supercomputing (2022).
Awschalom, D. et al. Growth of quantum interconnects (QuICs) for next-generation data applied sciences. PRX Quantum 2, 017002 (2021).
Krastanov, S. et al. Optically-heralded entanglement of superconducting programs in quantum networks. Phys. Rev. Lett. 127, 040503 (2021).
Bravyi, S., Dial, O., Gambetta, J. M., Gil, D. & Nazario, Z. The way forward for quantum computing with superconducting qubits. J. Appl. Phys. 132, 160902 (2022).
Magnard, P. et al. Microwave quantum hyperlink between superconducting circuits housed in spatially separated cryogenic programs. Phys. Rev. Lett. 125, 260502 (2020).
McKenna, T. P. et al. Cryogenic microwave-to-optical conversion utilizing a triply resonant lithium-niobate-on-sapphire transducer. Optica 7, 1737 (2020).
Xu, Y. et al. Bidirectional interconversion of microwave and light-weight with thin-film lithium niobate. Nat. Commun. 12, 4453 (2021).
Sahu, R. et al. Quantum-enabled operation of a microwave-optical interface. Nat. Commun. 13, 1276 (2022).
Vainsencher, A., Satzinger, Ok. J., Peairs, G. A. & Cleland, A. N. Bi-directional conversion between microwave and optical frequencies in a piezoelectric optomechanical gadget. Appl. Phys. Lett. 109, 033107 (2016).
Jiang, W. et al. Environment friendly bidirectional piezo-optomechanical transduction between microwave and optical frequency. Nat. Commun. 11, 1166 (2020).
Mirhosseini, M., Sipahigil, A., Kalaee, M. & Painter, O. Superconducting qubit to optical photon transduction. Nature 588, 599 (2020).
Stockill, R. et al. Extremely-low-noise microwave to optics conversion in gallium phosphide. Nat. Commun. 13, 2496 (2022).
Higginbotham, A. P. et al. Electro-optic correlations enhance an environment friendly mechanical converter. Nat. Phys. 14, 1038 (2018).
Arnold, G. et al. Changing microwave and telecom photons with a silicon photonic nanomechanical interface. Nat. Commun. 11, 4460 (2020).
Han, J. et al. Coherent microwave-to-optical conversion through six-wave mixing in Rydberg atoms. Phys. Rev. Lett. 120, 093201 (2018).
Fernandez-Gonzalvo, X., Horvath, S. P., Chen, Y. H. & Longdell, J. J. Cavity-enhanced Raman heterodyne spectroscopy in Er3+:Y2SiO5 for microwave to optical sign conversion. Phys. Rev. A 100, 033807 (2019).
Bartholomew, J. G. et al. On-chip coherent microwave-to-optical transduction mediated by ytterbium in YVO4. Nat. Commun. 11, 3266 (2020).
Hisatomi, R. et al. Bidirectional conversion between microwave and light-weight through ferromagnetic magnons. Phys. Rev. B 93, 174427 (2016).
Lauk, N. et al. Views on quantum transduction. Quantum Sci. Technol. 5, 20501 (2020).
Han, X., Fu, W., Zou, C.-L., Jiang, L. & Tang, H. X. Microwave-optical quantum frequency conversion. Optica 8, 1050 (2021).
Siddiqi, I. Engineering high-coherence superconducting qubits. Nat. Rev. Mat. 10, 875 (2021).
Krinner, S. et al. Realizing repeated quantum error correction in a distance-three floor code. Nature 605, 669 (2022).
Horsman, C., Fowler, A., Devitt, S. & van Meter, R. Floor code quantum computing by lattice surgical procedure. New J. Phys. 14, 123011 (2012).
Beals, R. et al. Environment friendly distributed quantum computing. Proc. R. Soc. A 469, 20120686 (2013).
Krinner, S. et al. Engineering cryogenic setups for 100-qubit scale superconducting circuit programs. EPJ Quantum Technol. 6, 2 (2019).
Zeuthen, E., Schliesser, A., Sørensen, A. S. & Taylor, J. M. Figures of benefit for quantum transducers. Quantum Sci. Technol. 5, 34009 (2020).
Brubaker, B. M. et al. Optomechanical ground-state cooling in a steady and environment friendly electro-optic transducer. Phys. Rev. X 12, 021062 (2022).
Jiang, W. et al. Optically heralded microwave photon addition. Nat. Phys. https://doi.org/10.1038/s41567-023-02129-w (2023).
Chan, J., Safavi-Naeini, A. H., Hill, J. T., Meenehan, S. & Painter, O. Optimized optomechanical crystal cavity with acoustic radiation protect. Appl. Phys. Lett. 101, 081115 (2012).
Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391 (2014).
Xu, M., Han, X., Fu, W., Zou, C.-L. & Tang, H. X. Frequency-tunable high-Q superconducting resonators through wi-fi management of nonlinear kinetic inductance. Appl. Phys. Lett. 114, 192601 (2019).
Kuwictsova, I. E., Zaitsev, B. D., Joshi, S. G. & Borodina, I. A. Investigation of acoustic waves in skinny plates of lithium niobate and lithium tantalate. IEEE Trans. Ultrason., Ferroelectr., Freq. Management 48, 322 (2001).
Riedinger, R. et al. Non-classical correlations between single photons and phonons from a mechanical oscillator. Nature 530, 313 (2016).
Qiu, L., Shomroni, I., Seidler, P. & Kippenberg, T. J. Laser cooling of a nanomechanical oscillator to its zero-point power. Phys. Rev. Lett. 124, 173601 (2020).
Lecocq, F. et al. Management and readout of a superconducting qubit utilizing a photonic hyperlink. Nature 591, 575 (2021).
Delaney, R. D. et al. Superconducting-qubit readout through low-backaction electro-optic transduction. Nature 606, 489 (2022).