Yuen, H. P. & Chan, V. W. S. Noise in homodyne and heterodyne detection. Decide. Lett. 8, 177–179 (1983).
Massonnet, D. et al. The displacement area of the Landers earthquake mapped by radar interferometry. Nature 364, 138–142 (1993).
Poulton, C. V. et al. Coherent solid-state LIDAR with silicon photonic optical phased arrays. Decide. Lett. 42, 4091–4094 (2017).
Spollard, J. T., Roberts, L. E., Sambridge, C. S., McKenzie, Ok. & Shaddock, D. A. Mitigation of part noise and Doppler-induced frequency offsets in coherent random amplitude modulated continuous-wave LiDAR. Decide. Categorical 29, 9060–9083 (2021).
Lin, V. S. Y., Motesharei, Ok., Dancil, Ok. P. S., Sailor, M. J. & Ghadiri, M. R. A porous silicon-based optical interferometric biosensor. Science 278, 840–843 (1997).
Allsop, T., Reeves, R., Webb, D. J., Bennion, I. & Neal, R. A excessive sensitivity refractometer primarily based upon a protracted interval grating Mach–Zehnder interferometer. Rev. Sci. Instrum. 73, 1702–1705 (2002).
Lee, B. H. et al. Interferometric fiber optic sensors. Sensors 12, 2467–2486 (2012).
Bongs, Ok. et al. Taking atom interferometric quantum sensors from the laboratory to real-world purposes. Nat. Rev. Phys. 1, 731–739 (2019).
Celebrano, M., Kukura, P., Renn, A. & Sandoghdar, V. Single-molecule imaging by optical absorption. Nat. Photon. 5, 95–98 (2011).
Gao, Y., Goodman, A. J., Shen, P.-C., Kong, J. & Tisdale, W. A. Section-modulated degenerate parametric amplification microscopy. Nano Lett. 18, 5001–5006 (2018).
Rivard, M. et al. Imaging the bipolarity of myosin filaments with interferometric second harmonic technology microscopy. Biomed. Decide. Categorical 4, 2078–2086 (2013).
Younger, G. et al. Quantitative mass imaging of single organic macromolecules. Science 360, 423–427 (2018).
Crespi, A. et al. Three-dimensional Mach–Zehnder interferometer in a microfluidic chip for spatially-resolved label-free detection. Lab Chip 10, 1167–1173 (2010).
Sturm, C. et al. All-optical part modulation in a cavity-polariton Mach–Zehnder interferometer. Nat. Commun. 5, 3278 (2014).
Burla, M. et al. 500 GHz plasmonic Mach–Zehnder modulator enabling sub-THz microwave photonics. APL Photonics 4, 056106 (2019).
Amin, R. et al. Sub-wavelength GHz-fast broadband ITO Mach–Zehnder modulator on silicon photonics. Optica 7, 333–335 (2020).
Almeida, V., Barrios, C., Panepucci, R. & Lipson, M. All-optical management of sunshine on a silicon chip. Nature 431, 1081–1084 (2004).
Nozaki, Ok. et al. Sub-femtojoule all-optical switching utilizing a photonic-crystal nanocavity. Nat. Photon. 4, 477–483 (2010).
Guo, Q. et al. Femtojoule femtosecond all-optical switching in lithium niobate nanophotonics. Nat. Photon. 16, 625–631 (2022).
Gigli, C., Li, Q., Chavel, P., Leo, G., Brongersma, M. L. & Lalanne, P. Basic limitations of Huygens’ metasurfaces for optical beam shaping. Laser Photonics Rev. 15, 20000448 (2021).
Chen, W. T., Zhu, A. Y. & Capasso, F. Flat optics with dispersion-engineered metasurfaces. Nat. Rev. Mater. 5, 604–620 (2020).
Neshev, D. & Aharonovich, I. Optical metasurfaces: new technology constructing blocks for multi-functional optics. Gentle Sci. Appl. 7, 58 (2018).
Li, G., Zhang, S. & Zentgraf, T. Nonlinear photonic metasurfaces. Nat. Rev. Mater. 2, 17010 (2017).
Krasnok, A., Tymchenko, M. & Alù, A. Nonlinear metasurfaces: a paradigm shift in nonlinear optics. Mater. Immediately 21, 8–21 (2018).
Bonacina, L., Brevet, P.-F., Finazzi, M. & Celebrano, M. Harmonic technology on the nanoscale. J. Appl. Phys. 127, 230901 (2020).
Vabishchevich, P. & Kivshar, Y. Nonlinear photonics with metasurfaces. Photon. Res. 11, B50–B64 (2023).
Sautter, J. et al. Energetic tuning of all-dielectric metasurfaces. ACS Nano 9, 4308–4315 (2015).
Nemati, A., Wang, Q., Hong, M. & Teng, J. Tunable and reconfigurable metasurfaces and metadevices. Opto-Electron. Adv. 1, 180009 (2018).
Shirmanesh, G. Ok., Sokhoyan, R., Wu, P. C. & Atwater, H. A. Electro-optically tunable multifunctional metasurfaces. ACS Nano 14, 6912–6920 (2020).
Grinblat, G. Nonlinear dielectric nanoantennas and metasurfaces: frequency conversion and wavefront management. ACS Photonics 8, 3406–3432 (2021).
Fedotova, A. et al. Lithium niobate meta-optics. ACS Photonics 9, 3745–3763 (2022).
Camacho-Morales, R. et al. Infrared upconversion imaging in nonlinear metasurfaces. Adv. Photonics 3, 036002 (2021).
Zheng, Z. et al. Third-harmonic technology and imaging with resonant Si membrane metasurface. Opto-Electron Adv. 6, 220174 (2023).
Keren-Zur, S., Tal, M., Fleischer, S., Mittleman, D. M. & Ellenbogen, T. Era of spatiotemporally tailor-made terahertz wavepackets by nonlinear metasurfaces. Nat. Commun. 10, 1778 (2017).
Xomalis, A. et al. Detecting mid-infrared mild by molecular frequency upconversion in dual-wavelength nanoantennas. Science 374, 1268–1271 (2021).
Chen, W. et al. Steady-wave frequency upconversion with a molecular optomechanical nanocavity. Science 374, 1264–1267 (2021).
Salamin, Y. et al. Compact and ultra-efficient broadband plasmonic terahertz area detector. Nat. Commun. 10, 5550 (2019).
Santiago-Cruz, T. et al. Resonant metasurfaces for producing complicated quantum states. Science 377, 991–995 (2022).
Mesch, M., Metzger, B., Hentschel, M. & Giessen, H. Nonlinear plasmonic sensing. Nano Lett. 16, 3155–3159 (2016).
Ghirardini, L. et al. Plasmon-enhanced second harmonic sensing. J. Phys. Chem. C 122, 11475–11481 (2018).
Gao, Y. et al. Nonlinear holographic all-dielectric metasurfaces. Nano Lett. 18, 8054–8061 (2018).
Gigli, C. et al. Tensorial part management in nonlinear meta-optics. Optica 8, 269–276 (2021).
Reineke, B. et al. Silicon metasurfaces for third harmonic geometric part manipulation and multiplexed holography. Nano Lett. 19, 6585–6591 (2019).
Shaltout, A. M., Shalaev, V. M. & Brongersma, M. L. Spatiotemporal mild management with energetic metasurfaces. Science 364, eaat3100 (2019).
Yang, J., Gurung, S., Bej, S., Ni, P. & Lee, H. W. H. Energetic optical metasurfaces: complete evaluate on physics, mechanisms, and potential purposes. Rep. Prog. Phys. 85, 036101 (2022).
Benea-Chelmus, I. C. et al. Gigahertz free-space electro-optic modulators primarily based on Mie resonances. Nat. Commun. 13, 3170 (2022).
Ren, M. et al. Nanostructured plasmonic medium for terahertz bandwidth all-optical switching. Adv. Mater. 23, 5540–5544 (2011).
Shcherbakov, M. R. et al. Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces. Nat. Commun. 8, 17 (2017).
Dhama, R. et al. All-optical switching primarily based on plasmon-induced enhancement of index of refraction. Nat. Commun. 13, 3114 (2022).
Grinblat, G. et al. Environment friendly ultrafast all-optical modulation in a nonlinear crystalline gallium phosphide nanodisk on the anapole excitation. Sci. Adv. 6, eabb3123 (2020).
Pogna, E. A. A. et al. Ultrafast, all optically reconfigurable, nonlinear nanoantenna. ACS Nano 15, 11150–11157 (2021).
Shan, J. Y. et al. Large modulation of optical nonlinearity by Floquet engineering. Nature 600, 235–239 (2021).
Klimmer, S. et al. All-optical polarization and amplitude modulation of second-harmonic technology in atomically skinny semiconductors. Nat. Photon. 15, 837–842 (2021).
Zilli, A. et al. Frequency tripling through sum-frequency technology on the nanoscale. ACS Photonics 8, 1175–1182 (2021).
Gili, V. F. et al. Monolithic AlGaAs second-harmonic nanoantennas. Decide. Categorical 24, 15965–15971 (2016).
Di Francescantonio, A. et al. Coherent management of the nonlinear emission of single plasmonic nanoantennas by dual-beam pumping. Adv. Decide. Mater. 10, 2200757 (2022).
Liu, Z. et al. Excessive-Q quasibound states within the continuum for nonlinear metasurfaces. Phys. Rev. Lett. 123, 253901 (2019).
Vogwell, J., Rego, L., Smirnova, O. & Ayuso, D. Ultrafast management over chiral sum-frequency technology. Sci. Adv. 9, eadj1429 (2023).
Høgstedt, L., Repair, A., Wirth, M., Pedersen, C. & Tidemand-Lichtenberg, P. Upconversion-based LiDAR measurements of atmospheric CO2. Decide. Categorical 24, 5152–5161 (2016).
Yazdanfar, S., Laiho, L. H. & So, P. T. C. Interferometric second harmonic technology microscopy. Decide. Categorical 12, 2739–2745 (2004).
Gehrsitz, S. et al. The refractive index of AlxGa1−xAs beneath the band hole: correct dedication and empirical modeling. J. Appl. Phys. 87, 7825–7837 (2000).
Papatryfonos, Ok. et al. Refractive indices of MBE-grown AlxGa(1–x)As ternary alloys within the clear wavelength area. AIP Adv. 11, 025327 (2021).
Wang, Y., Zilli, A., Sztranyovszky, Z., Langbein, W. & Borri, P. Quantitative optical microspectroscopy, electron microscopy, and modelling of particular person silver nanocubes reveal floor compositional adjustments on the nanoscale. Nanoscale Adv. 2, 2485–2496 (2020).
Yang, J., Hugonin, J.-P. & Lalanne, P. Close to-to-far area transformations for radiative and guided waves. ACS Photonics 3, 395–402 (2016).