de Magalhaes, J. P. How ageing processes affect most cancers. Nat. Rev. Most cancers 13, 357–365 (2013).
Laconi, E., Marongiu, F. & DeGregori, J. Most cancers as a illness of previous age: altering mutational and microenvironmental landscapes. Br. J. Most cancers 122, 943–952 (2020).
Van Herck, Y. et al. Is most cancers biology totally different in older sufferers? Lancet Wholesome Longev. 2, E663–E677 (2021).
Sceneay, J. et al. Interferon signaling is diminished with age and is related to immune checkpoint blockade efficacy in triple-negative breast most cancers. Most cancers Discov. 9, 1208–1227 (2019).
Kaur, A. et al. sFRP2 within the aged microenvironment drives melanoma metastasis and remedy resistance. Nature 532, 250–254 (2016).
Kim, B. Y., Rutka, J. T. & Chan, W. C. Nanomedicine. N. Engl. J. Med. 363, 2434–2443 (2010).
Jiang, W. et al. Designing nanomedicine for immuno-oncology. Nat. Biomed. Eng 1, 0029 (2017).
Rodriguez, P. L. et al. Minimal ‘self’ peptides that inhibit phagocytic clearance and improve supply of nanoparticles. Science 339, 971–975 (2013).
Parodi, A. et al. Artificial nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like capabilities. Nat. Nanotechnol. 8, 61–68 (2013).
Gradishar, W. J. et al. Section III trial of nanoparticle albumin-bound paclitaxel in contrast with polyethylated castor oil-based paclitaxel in girls with breast most cancers. J. Clin. Oncol. 23, 7794–7803 (2005).
Barenholz, Y. Doxil®—the primary FDA-approved nano-drug: classes realized. J. Management. Launch 160, 117–134 (2012).
Mitchell, M. J. et al. Engineering precision nanoparticles for drug supply. Nat. Rev. Drug Discov. 20, 101–124 (2021).
Blanco, E., Shen, H. & Ferrari, M. Ideas of nanoparticle design for overcoming organic obstacles to drug supply. Nat. Biotechnol. 33, 941–951 (2015).
Ngo, W. et al. Figuring out cell receptors for the nanoparticle protein corona utilizing genome screens. Nat. Chem. Biol. 18, 1023–1031 (2022).
Boehnke, N. et al. Massively parallel pooled screening reveals genomic determinants of nanoparticle supply. Science 377, eabm5551 (2022).
Dobrowolski, C. et al. Nanoparticle single-cell multiomic readouts reveal that cell heterogeneity influences lipid nanoparticle-mediated messenger RNA supply. Nat. Nanotechnol. 17, 871–879 (2022).
Jiang, W., Wang, Y., Wargo, J. A., Lang, F. F. & Kim, B. Y. S. Concerns for designing preclinical most cancers immune nanomedicine research. Nat. Nanotechnol. 16, 6–15 (2021).
Ouyang, B. et al. The dose threshold for nanoparticle tumour supply. Nat. Mater. 19, 1362–1371 (2020).
Wilhelm, S. et al. Evaluation of nanoparticle supply to tumours. Nat. Rev. Mater. 1, 1–12 (2016).
Chen, Y. et al. Therapeutic transforming of the tumor microenvironment enhances nanoparticle supply. Adv. Sci. (Weinh.) 6, 1802070 (2019).
Pili, R. et al. Altered angiogenesis underlying age-dependent modifications in tumor progress. J. Natl Most cancers Inst. 86, 1303–1314 (1994).
Marinho, A., Soares, R., Ferro, J., Lacerda, M. & Schmitt, F. C. Angiogenesis in breast most cancers is said to age however to not different prognostic parameters. Pathol. Res. Pract. 193, 267–273 (1997).
Ouyang, B. et al. Impression of tumor obstacles on nanoparticle supply to macrophages. Mol. Pharm. 19, 1917–1925 (2022).
Grolleau, A., Misek, D. E., Kuick, R., Hanash, S. & Mule, J. J. Inducible expression of macrophage receptor Marco by dendritic cells following phagocytic uptake of lifeless cells uncovered by oligonucleotide arrays. J. Immunol. 171, 2879–2888 (2003).
Hamilton, R. F. Jr., Thakur, S. A., Mayfair, J. Okay. & Holian, A. MARCO mediates silica uptake and toxicity in alveolar macrophages from C57BL/6 mice. J. Biol. Chem. 281, 34218–34226 (2006).
Park, J. et al. Intravascular innate immune cells reprogrammed through intravenous nanoparticles to advertise purposeful restoration after spinal wire damage. Proc. Natl Acad. Sci. USA 116, 14947–14954 (2019).
Pikkarainen, T., Brannstrom, A. & Tryggvason, Okay. Expression of macrophage MARCO receptor induces formation of dendritic plasma membrane processes. J. Biol. Chem. 274, 10975–10982 (1999).
Hirano, S., Fujitani, Y., Furuyama, A. & Kanno, S. Macrophage receptor with collagenous construction (MARCO) is a dynamic adhesive molecule that enhances uptake of carbon nanotubes by CHO-K1 cells. Toxicol. Appl Pharm. 259, 96–103 (2012).
van der Laan, L. J. et al. Regulation and purposeful involvement of macrophage scavenger receptor MARCO in clearance of micro organism in vivo. J. Immunol. 162, 939–947 (1999).
Arredouani, M. S. et al. MARCO is the key binding receptor for unopsonized particles and micro organism on human alveolar macrophages. J. Immunol. 175, 6058–6064 (2005).
Li, Z. et al. Growing older-impaired filamentous actin polymerization signaling reduces alveolar macrophage phagocytosis of micro organism. J. Immunol. 199, 3176–3186 (2017).
Ojala, J. R., Pikkarainen, T., Tuuttila, A., Sandalova, T. & Tryggvason, Okay. Crystal construction of the cysteine-rich area of scavenger receptor MARCO reveals the presence of a fundamental and an acidic cluster that each contribute to ligand recognition. J. Biol. Chem. 282, 16654–16666 (2007).
Novakowski, Okay. E. et al. A naturally occurring transcript variant of MARCO reveals the SRCR area is crucial for operate. Immunol. Cell Biol. 94, 646–655 (2016).
Brannstrom, A., Sankala, M., Tryggvason, Okay. & Pikkarainen, T. Arginine residues in area V have a central function for bacteria-binding exercise of macrophage scavenger receptor MARCO. Biochem. Biophys. Res. Commun. 290, 1462–1469 (2002).
Wang, Y. et al. Mutant LKB1 confers enhanced radiosensitization together with trametinib in KRAS-mutant non-small cell lung most cancers. Clin. Most cancers Res. 24, 5744–5756 (2018).
Guilliams, M. et al. Spatial proteogenomics reveals distinct and evolutionarily conserved hepatic macrophage niches. Cell 185, 379–396 (2022).
Tabula Sapiens Consortium. The Tabula Sapiens: a multiple-organ, single-cell transcriptomic atlas of people. Science 376, eabl4896 (2022).
Uhlen, M. et al. Proteomics. Tissue-based map of the human proteome. Science 347, 1260419 (2015).