Friday, August 25, 2023
HomeNanotechnologyAdvances in nanomedicines for lymphatic imaging and remedy | Journal of Nanobiotechnology

Advances in nanomedicines for lymphatic imaging and remedy | Journal of Nanobiotechnology


  • Kase AM, Menke D, Tan W. Breast most cancers metastasis to the bladder: a literature evaluation. BMJ Case Rep. 2018;2018:bcr2017222031.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eckhardt BL, Cao Y, Redfern AD, Chi LH, Burrows AD, Roslan S, Sloan EK, Parker BS, Loi S, Ueno NT, Lau PKH, Latham B, Anderson RL. Activation of canonical BMP4-SMAD7 signaling suppresses breast most cancers metastasis. Most cancers Res. 2020;80:1304–15.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen X, Wang W, Jiang Y, Qian X. A dual-transformation with contrastive studying framework for lymph node metastasis prediction in pancreatic most cancers. Med Picture Anal. 2023;5: 102753.

    Article 

    Google Scholar
     

  • Ho AS, Kim S, Tighiouart M, Gudino C, Mita A, Scher KS, Laury A, Prasad R, Shiao SL, Ali N, Patio C, Mallen-St Clair J, Van Eyk JE, Zumsteg ZS. Affiliation of quantitative metastatic lymph node burden with survival in hypopharyngeal and laryngeal most cancers. JAMA Oncol. 2018;4:985–9.

    Article 
    PubMed 

    Google Scholar
     

  • Ye B, Fan D, Xiong W, Li M, Yuan J, Jiang Q, Zhao Y, Lin J, Liu J, Lv Y, Wang X, Li Z, Su J, Qiao Y. Oncogenic enhancers drive esophageal squamous cell carcinogenesis and metastasis. Nat Commun. 2021;12:4457.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li F, Nie W, Zhang F, Lu G, Lv C, Lv Y, Bao W, Zhang L, Wang S, Gao X, Wei W, Xie HY. Engineering magnetosomes for high-performance most cancers vaccination. ACS Cent Sci. 2019;5:796–807.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maeda H. Towards a full understanding of the EPR impact in main and metastatic tumors in addition to points associated to its heterogeneity. Adv Drug Deliv Rev. 2015;91:3–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Scott EA, Karabin NB, Augsornworawat P. Overcoming immune dysregulation with immunoengineered nanobiomaterials. Annu Rev Biomed Eng. 2017;19:57–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zahin N, Anwar R, Tewari D, Kabir MT, Sajid A, Mathew B, Uddin MS, Aleya L, Abdel-Daim MM. Nanoparticles and its biomedical functions in well being and ailments: particular deal with drug supply. Environ Sci Pollut Res Int. 2020;27:19151–68.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hoshyar N, Grey S, Han H, Bao G. The impact of nanoparticle dimension on in vivo pharmacokinetics and mobile interplay. Nanomedicine. 2016;11:673–92.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zwicke GL, Mansoori GA, Jeffery CJ. Using the folate receptor for lively concentrating on of most cancers nanotherapeutics. Nano Rev. 2012. https://doi.org/10.3402/nano.v3i0.18496.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin N, Qiu J, Music J, Yu C, Fang Y, Wu W, Yang W, Wang Y. Software of nano-carbon and titanium clip mixed labeling in robot-assisted laparoscopic transverse colon most cancers surgical procedure. BMC Surg. 2021;21:257.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Altundag Ok, Dede DS, Purnak T. Albumin-bound paclitaxel (ABI-007; Abraxane) within the administration of basal-like breast carcinoma. J Clin Pathol. 2007;60:958.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang B, An J, Zhang H, Zhang S, Zhang H, Wang L, Zhang H, Zhang Z. Personalised most cancers immunotherapy by way of transporting endogenous tumor antigens to lymph nodes mediated by nano Fe3 O4. Small. 2018;14: e1801372.

    Article 
    PubMed 

    Google Scholar
     

  • Ryan GM, Kaminskas LM, Porter CJ. Nano-chemotherapeutics: maximising lymphatic drug publicity to enhance the remedy of lymph-metastatic cancers. J Management Launch. 2014;193:241–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Reddy ST, Rehor A, Schmoekel HG, Hubbell JA, Swartz MA. In vivo concentrating on of dendritic cells in lymph nodes with poly (propylene sulfide) nanoparticles. J Management Launch. 2006;112:26–34.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schudel A, Francis DM, Thomas SN. Materials design for lymph node drug supply. Nat Rev Mater. 2019;4:415–28.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baluk P, Fuxe J, Hashizume H, Romano T, Lashnits E, Butz S, Vestweber D, Corada M, Molendini C, Dejana E, McDonald DM. Functionally specialised junctions between endothelial cells of lymphatic vessels. J Exp Med. 2007;204:2349–62.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oh HJ, Yang D, Oh HW, Jeon JG, Kim C, Ahn JY, Han SW, Kim CY. Chronologic traits of cancer-related lymph node analysis in PubMed: informetrics evaluation. Ann Surg Deal with Res. 2020;99:305–13.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scallan JP, Zawieja SD, Castorena-Gonzalez JA, Davis MJ. Lymphatic pumping: mechanics, mechanisms and malfunction. J Physiol. 2016;594:5749–68.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gashev AA. Fundamental mechanisms controlling lymph transport within the mesenteric lymphatic web. Ann N Y Acad Sci. 2010;1207:E16-20.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schudel A, Francis DM, Thomas SN. Materials design for lymph node drug supply. Nat Rev Mater. 2019;4:415–428.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Clement CC, Wang W, Dzieciatkowska M, Cortese M, Hansen KC, Becerra A, Thangaswamy S, Nizamutdinova I, Moon JY, Stern LJ, Gashev AA, Zawieja D, Santambrogio L. Quantitative profiling of the lymph node clearance capability. Sci Rep. 2018;8:11253.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gerner MY, Torabi-Parizi P, Germain RN. Strategically localized dendritic cells promote fast T cell responses to lymph-borne particulate antigens. Immunity. 2015;42:172–85.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu Y, Liu Y, Xu D, Zang J, Zheng X, Zhao Y, Li Y, He R, Ruan S, Dong H, Gu J, Yang Y, Cheng Q, Li Y. Focusing on the unfavourable suggestions of adenosine-A2AR metabolic pathway by a tailor-made nanoinhibitor for photothermal immunotherapy. Adv Sci. 2022;9: e2104182.

    Article 

    Google Scholar
     

  • Jalkanen S, Salmi M. Lymphatic endothelial cells of the lymph node. Nat Rev Immunol. 2020;20:566–78.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Roozendaal R, Mebius RE, Kraal G. The conduit system of the lymph node. Int Immunol. 2008;20:1483–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Palframan RT, Jung S, Cheng G, Weninger W, Luo Y, Dorf M, Littman DR, Rollins BJ, Zweerink H, Rot A, von Andrian UH. Inflammatory chemokine transport and presentation in HEV: a distant management mechanism for monocyte recruitment to lymph nodes in infected tissues. J Exp Med. 2001;194:1361–73.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schudel A, Chapman AP, Yau MK, Higginson CJ, Francis DM, Manspeaker MP, Avecilla ARC, Rohner NA, Finn MG, Thomas SN. Programmable multistage drug supply to lymph nodes. Nat Nanotechnol. 2020;15:491–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dukhin SS, Labib ME. Convective diffusion of nanoparticles from the epithelial barrier towards regional lymph nodes. Adv Colloid Interface Sci. 2013;199–200:23–43.

    Article 
    PubMed 

    Google Scholar
     

  • Ke X, Howard GP, Tang H, Cheng B, Saung MT, Santos JL, Mao HQ. Bodily and chemical profiles of nanoparticles for lymphatic concentrating on. Adv Drug Deliv Rev. 2019;151–152:72–93.

    Article 
    PubMed 

    Google Scholar
     

  • Patravale VB, Prabhu RH, Bora CR. Lymphatic supply: idea, challenges and functions. Indian Medicine. 2017;54:5–22.

    Article 

    Google Scholar
     

  • Hawley AE, Davis SS, Illum L. Focusing on of colloids to lymph nodes: affect of lymphatic physiology and colloidal traits. Adv Drug Deliv Rev. 1995;17:129–48.

    Article 
    CAS 

    Google Scholar
     

  • Geng Y, Dalhaimer P, Cai S, Tsai R, Tewari M, Minko T, Discher DE. Form results of filaments versus spherical particles in stream and drug supply. Nat Nanotechnol. 2007;2:249–55.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ja C, Mitragotri S. Position of goal geometry in phagocytosis. Proc Natl Acad Sci USA. 2006;103:4930–4.

    Article 

    Google Scholar
     

  • Montes-Casado M, Sanvicente A, Casarrubios L, Feito MJ, Rojo JM, Vallet-Regí M, Arcos D, Portolés P, Portolés MT. An immunological method to the biocompatibility of mesoporous SiO2-CaO nanospheres. Int J Mol Sci. 2020;21:8291.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Patel HM, Boodle KM, Vaughan-Jones R. Evaluation of the potential makes use of of liposomes for lymphoscintigraphy and lymphatic drug supply. Failure of 99m-technetium marker to symbolize intact liposomes in lymph nodes. Biochim Biophys Acta. 1984;801:76–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Punjabi MS, Naha A, Shetty D, Nayak UY. Lymphatic drug transport and related drug supply applied sciences: a complete evaluation. Curr Pharm Des. 2021;27(17):1992–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ding Y, Li Z, Jaklenec A, Hu Q. Vaccine supply methods towards lymph nodes. Adv Drug Deliv Rev. 2021;179: 113914.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen Y, De Koker S, De Geest BG. Engineering methods for lymph node focused immune activation. Acc Chem Res. 2020;53(10):2055–67.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gracia G, Cao E, Feeney OM, Johnston APR, Porter CJH, Trevaskis NL. Excessive-density lipoprotein composition influences lymphatic transport after subcutaneous administration. Mol Pharm. 2020;17(8):2938–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He X, Wang J, Tang Y, Chiang ST, Han T, Chen Q, Qian C, Shen X, Li R, Ai X. Latest advances of rising spleen-targeting nanovaccines for immunotherapy. Adv Healthc Mater. 2023;8: e2300351.

    Article 

    Google Scholar
     

  • Menon I, Bagwe P, Gomes KB, Bajaj L, Gala R, Uddin MN, D’Souza MJ, Zughaier SM. Microneedles: a brand new era vaccine supply system. Micromachines. 2021;12(4):435.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Trac N, Chung EJ. Overcoming physiological obstacles by nanoparticles for intravenous drug supply to the lymph nodes. Exp Biol Med (Maywood). 2021;246(22):2358–71.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Furubayashi T, Inoue D, Kimura S, Tanaka A, Sakane T. Analysis of the pharmacokinetics of intranasal drug supply for concentrating on cervical lymph nodes in rats. Pharmaceutics. 2021;13(9):1363.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schudel A, Francis DM, Thomas SN. Materials design for lymph node drug supply. Nat Rev Mater. 2019;4(6):415–28.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yoshida T, Kojima H, Sako Ok, Kondo H. Drug supply to the intestinal lymph by oral formulations. Pharm Dev Technol. 2022;27(2):175–89.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Refaat H, Naguib YW, Elsayed MMA, Sarhan HAA, Alaaeldin E. Modified spraying approach and response floor methodology for the preparation and optimization of propolis liposomes of enhanced anti-proliferative exercise in opposition to human melanoma cell Line A375. Pharmaceutics. 2019;11:558.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bangham AD, Horne RW. Adverse staining of phospholipids and their structural modification by surface-active brokers as noticed within the electron microscope. J Mol Biol. 1964;8:660–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Solar S, Solar S, Solar Y, Wang P, Zhang J, Du W, Wang S, Liang X. Bubble-manipulated native drug launch from a wise thermosensitive cerasome for dual-mode imaging guided tumor chemo-photothermal remedy. Theranostics. 2019;9:8138–54.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reichmuth AM, Oberli MA, Jaklenec A, Langer R, Blankschtein D. mRNA vaccine supply utilizing lipid nanoparticles. Ther Deliv. 2016;7:319–34.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jung HS, Neuman KC. Floor Modification of fluorescent nanodiamonds for organic functions. Nanomaterials. 2021;11:153.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maeki M, Kimura N, Sato Y, Harashima H, Tokeshi M. Advances in microfluidics for lipid nanoparticles and extracellular vesicles and functions in drug supply methods. Adv Drug Deliv Rev. 2018;128:84–100.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Milicic A, Kaur R, Reyes-Sandoval A, Tang CK, Honeycutt J, Perrie Y, Hill AV. Small cationic DDA:TDB liposomes as protein vaccine adjuvants obviate the necessity for TLR agonists in inducing mobile and humoral responses. PLoS ONE. 2012;7: e34255.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chu Y, Qian L, Ke Y, Feng X, Chen X, Liu F, Yu L, Zhang L, Tao Y, Xu R, Wei J, Liu B, Liu Q. Lymph node-targeted neoantigen nanovaccines potentiate anti-tumor immune responses of post-surgical melanoma. J Nanobiotechnol. 2022;20:190.

    Article 
    CAS 

    Google Scholar
     

  • Warashina S, Nakamura T, Sato Y, Fujiwara Y, Hyodo M, Hatakeyama H, Harashima H. A lipid nanoparticle for the environment friendly supply of siRNA to dendritic cells. J Management Launch. 2016;225:183–91.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hanson MC, Crespo MP, Abraham W, Moynihan KD, Szeto GL, Chen SH, Melo MB, Mueller S, Irvine DJ. Nanoparticulate STING agonists are potent lymph node-targeted vaccine adjuvants. J Clin Make investments. 2015;125:2532–46.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen J, Ye Z, Huang C, Qiu M, Music D, Li Y, Xu Q. Lipid nanoparticle-mediated lymph node-targeting supply of mRNA most cancers vaccine elicits sturdy CD8+ T cell response. Proc Natl Acad Sci USA. 2022;119: e2207841119.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Phosphatidylserine lipid nanoparticles promote systemic RNA supply to secondary lymphoid organs. Nano Lett. 2022; 22 (20): 8304–8311.

  • Trimaille T, Verrier B. Micelle-based adjuvants for subunit vaccine supply. Vaccines. 2015;3:803–13.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li C, Iqbal M, Jiang B, Wang Z, Kim J, Nanjundan AK, Whitten AE, Wooden Ok, Yamauchi Y. Pore-tuning to spice up the electrocatalytic exercise of polymeric micelle-templated mesoporous Pd nanoparticles. Chem Sci. 2019;10:4054–61.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cui M, Jin M, Han M, Zang Y, Li C, Zhang D, Huang W, Gao Z, Yin X. Improved antitumor outcomes for colon most cancers utilizing nanomicelles loaded with the novel antitumor agent LA67. Int J Nanomed. 2020;15:3563–76.

    Article 
    CAS 

    Google Scholar
     

  • Li X, Dong Q, Yan Z, Lu W, Feng L, Xie C, Xie Z, Su B, Liu M. MPEG-DSPE polymeric micelle for translymphatic chemotherapy of lymph node metastasis. Int J Pharm. 2015;487:8–16.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thol Ok, Pawlik P, McGranahan N. Remedy sculpts the advanced interaction between most cancers and the immune system throughout tumour evolution. Genome Med. 2022;14:137.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ehser S, Chuang JJ, Kleist C, Sandra-Petrescu F, Iancu M, Wang D, Opelz G, Terness P. Suppressive dendritic cells as a device for controlling allograft rejection in organ transplantation: guarantees and difficulties. Hum Immunol. 2008;69:165–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jewell CM, López SC, Irvine DJ. In situ engineering of the lymph node microenvironment by way of intranodal injection of adjuvant-releasing polymer particles. Proc Natl Acad Sci USA. 2011;108:15745–50.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chida T, Miura Y, Cabral H, Nomoto T, Kataoka Ok, Nishiyama N. Epirubicin-loaded polymeric micelles successfully deal with axillary lymph nodes metastasis of breast most cancers via selective accumulation and pH-triggered drug launch. J Management Launch. 2018;292:130–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cabral H, Makino J, Matsumoto Y, Mi P, Wu H, Nomoto T, Toh Ok, Yamada N, Higuchi Y, Konishi S, Kano MR, Nishihara H, Miura Y, Nishiyama N, Kataoka Ok. Systemic concentrating on of lymph node metastasis via the blood vascular system by utilizing size-controlled nanocarriers. ACS Nano. 2015;9:4957–67.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Feng HY, Yuan Y, Zhang Y, Liu HJ, Dong X, Yang SC, Liu XL, Lai X, Zhu MH, Wang J, Lu Q, Lin Q, Chen HZ, Lovell JF, Solar P, Fang C. Focused micellar phthalocyanine for lymph node metastasis homing and photothermal remedy in an orthotopic colorectal tumor mannequin. Nanomicro Lett. 2021;13:145.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kumar A, Tan A, Wong J, Spagnoli JC, Lam J, Blevins BD, Thorne GNL, Ashkan Ok, Xie J, Liu H. Nanotechnology for neuroscience: Promising approaches for diagnostics, therapeutics and mind exercise mapping. Adv Funct Mater. 2017;27:1700489.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anraku Y, Kuwahara H, Fukusato Y, Mizoguchi A, Ishii T, Nitta Ok, Matsumoto Y, Toh Ok, Miyata Ok, Uchida S, Nishina Ok, Osada Ok, Itaka Ok, Nishiyama N, Mizusawa H, Yamasoba T, Yokota T, Kataoka Ok. Glycaemic management boosts glucosylated nanocarrier crossing the BBB into the mind. Nat Commun. 2017;8:1001.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu C, Feng Q, Yang H, Wang G, Huang L, Bai Q, Zhang C, Wang Y, Chen Y, Cheng Q, Chen M, Han Y, Yu Z, Lesniak MS, Cheng Y. A Mild-triggered mesenchymal stem cell supply system for photoacoustic imaging and chemo-photothermal remedy of triple unfavourable breast most cancers. Adv Sci. 2018;5:1800382.

    Article 

    Google Scholar
     

  • Liu Y, Wang Z, Yu F, Li M, Zhu H, Wang Ok, Meng M, Zhao W. The adjuvant of α-galactosylceramide introduced by gold nanoparticles enhances antitumor immune responses of MUC1 antigen-based tumor vaccines. Int J Nanomedicine. 2021;16:403–20.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mottas I, Bekdemir A, Cereghetti A, Spagnuolo L, Yang YS, Müller M, Irvine DJ, Stellacci F, Bourquin C. Amphiphilic nanoparticle supply enhances the anticancer efficacy of a TLR7 ligand by way of native immune activation. Biomaterials. 2019;190–191:111–20.

    Article 
    PubMed 

    Google Scholar
     

  • Oladipo AO, Oluwafemi OS, Songca SP, Sukhbaatar A, Mori S, Okajima J, Komiya A, Maruyama S, Kodama T. A novel remedy for metastatic lymph nodes utilizing lymphatic supply and photothermal remedy. Sci Rep. 2017;7:45459.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dadfar SM, Roemhild Ok, Drude NI, von Stillfried S, Knüchel R, Kiessling F, Lammers T. Iron oxide nanoparticles: diagnostic, therapeutic and theranostic functions. Adv Drug Deliv Rev. 2019;138:302–25.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pourmadadi M, Rahmani E, Shamsabadipour A, Mahtabian S, Ahmadi M, Rahdar A, Díez-Pascual AM. Position of iron oxide (Fe2O3) nanocomposites in superior biomedical functions: a state-of-the-art evaluation. Nanomaterials. 2022;12:3873.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kjellman P, in ‘t Zandt R, Fredriksson S, Strand SE. 2014. Optimizing retention of multimodal imaging nanostructures in sentinel lymph nodes by nanoscale dimension tailoring. Nanomedicine. 2014;10: 1089–95.

  • Zaloga J, Janko C, Nowak J, Matuszak J, Knaup S, Eberbeck D, Tietze R, Unterweger H, Friedrich RP, Duerr S, Heimke-Brinck R, Baum E, Cicha I, Dörje F, Odenbach S, Lyer S, Lee G, Alexiou C. Growth of a lauric acid/albumin hybrid iron oxide nanoparticle system with improved biocompatibility. Int J Nanomedicine. 2014;9:4847–66.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zou Y, Liu P, Liu CH, Zhi XT. Doxorubicin-loaded mesoporous magnetic nanoparticles to induce apoptosis in breast most cancers cells. Biomed Pharmacother. 2015;69:355–60.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Quinto CA, Mohindra P, Tong S, Bao G. Multifunctional superparamagnetic iron oxide nanoparticles for mixed chemotherapy and hyperthermia most cancers remedy. Nanoscale. 2015;7:12728–36.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li AW, Sobral MC, Badrinath S, Choi Y, Graveline A, Stafford AG, Weaver JC, Dellacherie MO, Shih TY, Ali OA, Kim J, Wucherpfennig KW, Mooney DJ. A facile method to boost antigen response for customized most cancers vaccination. Nat Mater. 2018;17:528–34.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu Y, Yang Y, Gu Z, Zhang J, Music H, Xiang G, Yu C. Glutathione-depletion mesoporous organosilica nanoparticles as a self-adjuvant and Co-delivery platform for enhanced most cancers immunotherapy. Biomaterials. 2018;175:82–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Khakpour E, Salehi S, Naghib SM, Ghorbanzadeh S, Zhang W. Graphene-based nanomaterials for stimuli-sensitive managed supply of therapeutic molecules. Entrance Bioeng Biotechnol. 2023;11:1129768.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang F, Jin C, Yang D, Jiang Y, Li J, Di Y, Hu J, Wang C, Ni Q, Fu D. Magnetic functionalised carbon nanotubes as drug autos for most cancers lymph node metastasis remedy. Eur J Most cancers. 2011;47:1873–82.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang J, Lu T, Yang M, Solar D, Xia Y, Wang T. Hydrogel 3D printing with the capacitor edge impact. Sci Adv. 2019;5:eaau8769.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen W, Chen H, Zheng D, Zhang H, Deng L, Cui W, Zhang Y, Santos HA, Shen H. Gene-hydrogel microenvironment regulates extracellular matrix metabolism stability in nucleus pulposus. Adv Sci. 2019;7:1902099.

    Article 

    Google Scholar
     

  • Deng W, Yan Y, Zhuang P, Liu X, Tian Ok, Huang W, Li C. Synthesis of nanocapsules blended polymeric hydrogel loaded with bupivacaine drug supply system for native anesthetics and ache administration. Drug Deliv. 2022;29:399–412.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhuang X, Wu T, Zhao Y, Hu X, Bao Y, Guo Y, Music Q, Li G, Tan S, Zhang Z. Lipid-enveloped zinc phosphate hybrid nanoparticles for codelivery of H-2K(b) and H-2D(b)-restricted antigenic peptides and monophosphoryl lipid A to induce antitumor immunity in opposition to melanoma. J Management Launch. 2016;228:26–37.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nuhn L, Vanparijs N, De Beuckelaer A, Lybaert L, Verstraete G, Deswarte Ok, Lienenklaus S, Shukla NM, Salyer AC, Lambrecht BN, Grooten J, David SA, De Koker S, De Geest BG. pH-degradable imidazoquinoline-ligated nanogels for lymph node-focused immune activation. Proc Natl Acad Sci USA. 2016;113:8098–103.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • De Koker S, Cui J, Vanparijs N, Albertazzi L, Grooten J, Caruso F, De Geest BG. Engineering polymer hydrogel nanoparticles for lymph node-targeted supply. Angew Chem Int Ed Engl. 2016;55:1334–9.

    Article 
    PubMed 

    Google Scholar
     

  • Urimi D, Hellsing M, Mahmoudi N, Söderberg C, Widenbring R, Gedda L, Edwards Ok, Loftsson T, Schipper N. Structural characterization examine of a lipid nanocapsule formulation meant for drug supply functions utilizing small-angle scattering strategies. Mol Pharm. 2022;19:1068–77.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shafiq M, Anjum S, Hano C, Anjum I, Abbasi BH. An summary of the functions of nanomaterials and nanodevices within the meals business. Meals. 2020;9:148.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vicente S, Goins BA, Sanchez A, Alonso MJ, Phillips WT. Biodistribution and lymph node retention of polysaccharide-based immunostimulating nanocapsules. Vaccine. 2014;32:1685–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li AV, Moon JJ, Abraham W, Suh H, Elkhader J, Seidman MA, Yen M, Im EJ, Foley MH, Barouch DH, Irvine DJ. Technology of effector reminiscence T cell-based mucosal and systemic immunity with pulmonary nanoparticle vaccination. Sci Transl Med. 2013;5:204ra130.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nawaz M, Yusuf N, Habib S, Shakoor RA, Ubaid F, Ahmad Z, Kahraman R, Mansour S, Gao W. Growth and properties of polymeric nanocomposite coatings. Polymers. 2019;11:852.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sato Y, Hashiba Ok, Sasaki Ok, Maeki M, Tokeshi M, Harashima H. Understanding structure-activity relationships of pH-sensitive cationic lipids facilitates the rational identification of promising lipid nanoparticles for delivering siRNAs in vivo. J Management Launch. 2019;295:140–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao W, Fang RH, Thamphiwatana S, Luk BT, Li J, Angsantikul P, Zhang Q, Hu CM, Zhang L. Modulating antibacterial immunity by way of bacterial membrane-coated nanoparticles. Nano Lett. 2015;15:1403–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu CM, Fang RH, Wang KC, Luk BT, Thamphiwatana S, Dehaini D, Nguyen P, Angsantikul P, Wen CH, Kroll AV, Carpenter C, Ramesh M, Qu V, Patel SH, Zhu J, Shi W, Hofman FM, Chen TC, Gao W, Zhang Ok, Chien S, Zhang L. Nanoparticle biointerfacing by platelet membrane cloaking. Nature. 2015;526:118–21.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu C, Liu X, Xiang X, Pang X, Chen S, Zhang Y, Ren E, Zhang L, Liu X, Lv P, Wang X, Luo W, Xia N, Chen X, Liu G. A nanovaccine for antigen self-presentation and immunosuppression reversal as a personalised most cancers immunotherapy technique. Nat Nanotechnol. 2022;17:531–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang S, Li F, Ye T, Wang J, Lyu C, Qing S, Ding Z, Gao X, Jia R, Yu D, Ren J, Wei W, Ma G. Macrophage-tumor chimeric exosomes accumulate in lymph node and tumor to activate the immune response and the tumor microenvironment. Sci Transl Med. 2021;13:eabb6981.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hong D, Zhang L, Xu Ok, Wan X, Guo Y. Prognostic worth of pre-treatment CT radiomics and scientific components for the general survival of superior (IIIB-IV) lung adenocarcinoma sufferers. Entrance Oncol. 2021;11:628982.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chiechio RM, Ducarre S, Marets C, Dupont A, Even-Hernandez P, Pinson X, Dutertre S, Artzner F, Musumeci P, Ravel C, Faro MJL, Marchi V. Encapsulation of luminescent gold nanoclusters into artificial vesicles. Nanomaterials. 2022;12:3875.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yoon HY, Chang IH, Goo YT, Kim CH, Kang TH, Kim SY, Lee SJ, Music SH, Whang YM, Choi YW. Intravesical supply of rapamycin by way of folate-modified liposomes dispersed in thermo-reversible hydrogel. Int J Nanomedicine. 2019;14:6249–68.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Osborne MP, Richardson VJ, Jeyasingh Ok, Ryman BE. Radionuclide-labelled liposomes–a brand new lymph node imaging agent. Int J Nucl Med Biol. 1979;6:75–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Phillips WT, Klipper R, Goins B. Novel methodology of enormously enhanced supply of liposomes to lymph nodes. J Pharmacol Exp Ther. 2000;295:309–13.

    CAS 
    PubMed 

    Google Scholar
     

  • Phillips WWT, Klipper R, Goins B. Use of (99m)Tc-labeled liposomes encapsulating blue dye for identification of the sentinel lymph node. J Nucl Med. 2001;42:446–51.

    CAS 
    PubMed 

    Google Scholar
     

  • Yuan B, Zhao S, Hu P, Cui J, Niu QJ. Uneven polyamide nanofilms with extremely ordered nanovoids for water purification. Nat Commun. 2020;11(1):6102.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Esfand R, Tomalia DA. Poly(amidoamine) (PAMAM) dendrimers: from biomimicry to drug supply and biomedical functions. Drug Discov Right now. 2001;6:427–36.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Talanov VS, Regino CA, Kobayashi H, Bernardo M, Choyke PL, Brechbiel MW. Dendrimer-based nanoprobe for twin modality magnetic resonance and fluorescence imaging. Nano Lett. 2006;6:1459–63.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kobayashi H, Kawamoto S, Sakai Y, Choyke PL, Star RA, Brechbiel MW, Sato N, Tagaya Y, Morris JC, Waldmann TA. Lymphatic drainage imaging of breast most cancers in mice by micro-magnetic resonance lymphangiography utilizing a nano-size paramagnetic distinction agent. J Natl Most cancers Inst. 2004;96:703–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Niki Y, Ogawa M, Makiura R, Magata Y, Kojima C. Optimization of dendrimer construction for sentinel lymph node imaging: Results of era and terminal group. Nanomedicine. 2015;11(8):2119–27.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yakunin S, Chaaban J, Benin BM, Cherniukh I, Bernasconi C, Landuyt A, Shynkarenko Y, Bolat S, Hofer C, Romanyuk YE, Cattaneo S, Pokutnyi SI, Schaller RD, Bodnarchuk MI, Poulikakos D, Kovalenko MV. Radiative lifetime-encoded unicolour safety tags utilizing perovskite nanocrystals. Nat Commun. 2021;12:981.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han SJ, Rathinaraj P, Park SY, Kim YK, Lee JH, Kang IK, Moon JS, Winiarz JG. Particular intracellular uptake of herceptin-conjugated CdSe/ZnS quantum dots into breast most cancers cells. Biomed Res Int. 2014;2014: 954307.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim S, Lim YT, Soltesz EG, De Grand AM, Lee J, Nakayama A, Parker JA, Mihaljevic T, Laurence RG, Dor DM, Cohn LH, Bawendi MG, Frangioni JV. Close to-infrared fluorescent kind II quantum dots for sentinel lymph node mapping. Nat Biotechnol. 2004;22:93–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim SW, Zimmer JP, Ohnishi S, Tracy JB, Frangioni JV, Bawendi MG. Engineering InAs(x)P(1–x)/InP/ZnSe III-V alloyed core/shell quantum dots for the near-infrared. J Am Chem Soc. 2005;127:10526–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dai T, Zhou S, Yin C, Li S, Cao W, Liu W, Solar Ok, Dou H, Cao Y, Zhou G. Dextran-based fluorescent nanoprobes for sentinel lymph node mapping. Biomaterials. 2014;35:8227–35.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hultborn KA, Larsson LG, Raghult I. The lymph drainage from the breast to the axillary and parasternal lymph nodes, studied with the help of colloidal Au198. Acta radiol. 1955;43:52–64.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou Y, Chakraborty S, Liu S. Radiolabeled cyclic RGD peptides as radiotracers for imaging tumors and thrombosis by SPECT. Theranostics. 2011;1:58–82.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wilhelm AJ, Mijnhout GS, Franssen EJ. Radiopharmaceuticals in sentinel lymph-node detection—an outline. Eur J Nucl Med. 1999;26:S36-42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xie F, Zhang D, Cheng L, Yu L, Yang L, Tong F, Liu H, Wang S, Wang S. Intradermal microbubbles and contrast-enhanced ultrasound (CEUS) is a possible method for sentinel lymph node identification in early-stage breast most cancers. World J Surg Oncol. 2015;13:319.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Montoya Mira J, Wu L, Sabuncu S, Sapre A, Civitci F, Ibsen S, Esener S, Yildirim A. Gasoline-stabilizing sub-100 nm mesoporous silica nanoparticles for ultrasound theranostics. ACS Omega. 2020;5:24762–72.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nie Z, Luo N, Liu J, Zeng X, Zhang Y, Su D. Multi-mode biodegradable tumour-microenvironment delicate nanoparticles for focused breast most cancers imaging. Nanoscale Res Lett. 2020;15:81.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stride E, Saffari N. The potential for thermal injury posed by microbubble ultrasound distinction brokers. Ultrasonics. 2004;42:907–13.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma JJ, Zhang DB, Zhang WF, Wang X. Software of nanocarbon in breast method endoscopic thyroidectomy thyroid most cancers surgical procedure. J Laparoendosc Adv Surg Tech A. 2020;30:547–52.

    Article 
    PubMed 

    Google Scholar
     

  • Wang R, Mo S, Liu Q, Zhang W, Zhang Z, He Y, Cai G, Li X. The protection and effectiveness of carbon nanoparticles suspension in monitoring lymph node metastases of colorectal most cancers: a potential randomized managed trial. Jpn J Clin Oncol. 2020;50:535–42.

    Article 
    PubMed 

    Google Scholar
     

  • Schilham MGM, Zamecnik P, Privé BM, Israël B, Rijpkema M, Scheenen T, Barentsz JO, Nagarajah J, Gotthardt M. Head-to-head comparability of 68Ga-prostate-specific membrane antigen PET/CT and ferumoxtran-10-enhanced MRI for the prognosis of lymph node metastases in prostate most cancers sufferers. J Nucl Med. 2021;62:1258–63.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wallace AM, Hoh CK, Ellner SJ, Darrah DD, Schulteis G, Vera DR. Lymphoseek: a molecular imaging agent for melanoma sentinel lymph node mapping. Ann Surg Oncol. 2007;14:913–21.

    Article 
    PubMed 

    Google Scholar
     

  • Bradbury MS, Pauliah M, Zanzonico P, Wiesner U, Patel S. Intraoperative mapping of sentinel lymph node metastases utilizing a clinically translated ultrasmall silica nanoparticle. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2016;8:535–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He P, Ren E, Chen B, Chen H, Cheng H, Gao X, Liang X, Liu H, Li J, Li B, Chen A, Chu C, Chen X, Mao J, Zhang Y, Liu G. A brilliant-stable homogeneous lipiodol-hydrophilic chemodrug formulation for remedy of hepatocellular carcinoma. Theranostics. 2022;12:1769–82.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • He P, Xiong Y, Ye J, Chen B, Cheng H, Liu H, Zheng Y, Chu C, Mao J, Chen A, Zhang Y, Li J, Tian J, Liu G. A scientific trial of super-stable homogeneous lipiodol-nanoICG formulation-guided exact fluorescent laparoscopic hepatocellular carcinoma resection. J Nanobiotechnology. 2022;20:250.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Y, Cheng H, Chen H, Xu P, Ren E, Jiang Y, Li D, Gao X, Zheng Y, He P, Lin H, Chen B, Lin G, Chen A, Chu C, Mao J, Liu G. A pure nanoICG-based homogeneous lipiodol formulation: towards exact surgical navigation of main liver most cancers after long-term transcatheter arterial embolization. Eur J Nucl Med Mol Imaging. 2022;49:2605–17.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Naz S, Shamoon M, Wang R, Zhang L, Zhou J, Chen J. Advances in therapeutic implications of inorganic drug supply nano-platforms for most cancers. Int J Mol Sci. 2019;20:965.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eid HM, Ali AA, Ali AMA, Eissa EM, Hassan RM, Abo El-Ela FI, Hassan AH. Potential use of tailor-made citicoline chitosan-coated liposomes for efficient wound therapeutic in diabetic rat mannequin. Int J Nanomedicine. 2022;17:555–75.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee J, Kang S, Park H, Solar JG, Kim EC, Shim G. Nanoparticles for lymph node-directed supply. Pharmaceutics. 2023;15:565.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheng H, Yang X, Liu G. Superstable homogeneous iodinated formulation know-how: revolutionizing transcatheter arterial chemoembolization. Sci Bull. 2020;65:1685–7.

    Article 
    CAS 

    Google Scholar
     

  • Peng X, Wang J, Zhou F, Liu Q, Zhang Z. Nanoparticle-based approaches to focus on the lymphatic system for antitumor remedy. Cell Mol Life Sci. 2021;78:5139–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     



  • Supply hyperlink

    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    - Advertisment -
    Google search engine

    Most Popular

    Recent Comments