Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).
Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).
Lu, X. et al. Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene. Nature 574, 653–657 (2019).
Li, G. et al. Commentary of Van Hove singularities in twisted graphene layers. Nat. Phys. 6, 109–113 (2010).
Yankowitz, M. et al. Tuning superconductivity in twisted bilayer graphene. Science 363, 1059–1064 (2019).
Das, I. et al. Symmetry-broken Chern insulators and Rashba-like Landau-level crossings in magic-angle bilayer graphene. Nat. Phys. 17, 710–714 (2021).
Jiang, Y. et al. Cost order and damaged rotational symmetry in magic-angle twisted bilayer graphene. Nature 573, 91–95 (2019).
Nuckolls, Ok. P. et al. Strongly correlated Chern insulators in magic-angle twisted bilayer graphene. Nature 588, 610–615 (2020).
Choi, Y. et al. Correlation-driven topological phases in magic-angle twisted bilayer graphene. Nature 589, 536–541 (2021).
de Vries, F. Ok. et al. Gate-defined Josephson junctions in magic-angle twisted bilayer graphene. Nat. Nanotechnol. 16, 760–763 (2021).
Rodan-Legrain, D. et al. Extremely tunable junctions and non-local Josephson impact in magic-angle graphene tunnelling gadgets. Nat. Nanotechnol. 16, 769–775 (2021).
Diez-Merida, J. et al. Magnetic Josephson junctions and superconducting diodes in magic angle twisted bilayer graphene. Preprint at https://arxiv.org/abs/2110.01067 (2021).
Tinkham, M. Introduction to Superconductivity (Dover, 2004).
Palacios-Laloy, A. et al. Tunable resonators for quantum circuits. J. Low Temp. Phys. 151, 1034–1042 (2008).
Koch, J. et al. Cost-insensitive qubit design derived from the cooper pair field. Phys. Rev. A 76, 042319 (2007).
Orlando, T. P. et al. Superconducting persistent-current qubit. Phys. Rev. B 60, 15398–15413 (1999).
Mooij, J. E. & Nazarov, Y. V. Superconducting nanowires as quantum phase-slip junctions. Nat. Phys. 2, 169–172 (2006).
Day, P. Ok., LeDuc, H. G., Mazin, B. A., Vayonakis, A. & Zmuidzinas, J. A broadband superconducting detector appropriate to be used in giant arrays. Nature 425, 817–821 (2003).
Clarke, J. & Braginski, A. I. The SQUID Handbook Vol. 2: Purposes of SQUIDs and SQUID Methods (Wiley-VCH, 2006).
Little, W. A. et al. Commentary of quantum periodicity within the transition temperature of a superconducting cylinder. Phys. Rev. Lett. 9, 9–12 (1962).
Kemppinen, A. et al. Suppression of the essential present of a balanced superconducting quantum interference system. Appl. Phys. Lett. 92, 052110 (2008).
Larsen, T. W. et al. Semiconductor-nanowire-based superconducting qubit. Phys. Rev. Lett. 115, 127001 (2015).
Wang, J. I.-J. et al. Coherent management of a hybrid superconducting circuit made with graphene-based van der Waals heterostructures. Nat. Nanotechnol. 14, 120–125 (2019).
Courtois, H., Meschke, M., Peltonen, J. T. & Pekola, J. P. Origin of hysteresis in a proximity josephson junction. Phys. Rev. Lett. 101, 067002 (2008).
Cardwell, D. & Ginley, D. Handbook of Superconducting Supplies 1st edn (CRC Press, 2002).
Goswami, S. et al. Quantum interference in an interfacial superconductor. Nat. Nanotechnol. 11, 861–865 (2016).
Nichele, F. et al. Relating Andreev certain states and supercurrents in hybrid Josephson junctions. Phys. Rev. Lett. 124, 226801 (2020).
Tesche, C. D. & Clarke, J. dc SQUID: noise and optimization. J. Low Temp. Phys. 29, 301–331 (1977).
Beenakker, C. W. J. in Transport Phenomena in Mesoscopic Methods (Fukuyama, H. & Ando, T., eds) 235–253 (Springer, 1992).
Della Rocca, M. L. et al. Measurement of the current-phase relation of superconducting atomic contacts. Phys. Rev. Lett. 99, 127005 (2007).
Oh, M. et al. Proof for unconventional superconductivity in twisted bilayer graphene. Nature 600, 240–245 (2021).
Kim, Ok. et al. Van der Waals heterostructures with excessive accuracy rotational alignment. Nano Lett. 16, 1989–1995 (2016).
Uri, A. et al. Mapping the twist-angle dysfunction and Landau ranges in magic-angle graphene. Nature 581, 47–52 (2020).
Grover, F. W. Inductance Calculations: Working Formulation and Tables (Dover, 1962).