Thursday, October 19, 2023
HomeNanotechnologyA room-temperature polarization-sensitive CMOS terahertz digital camera primarily based on quantum-dot-enhanced terahertz-to-visible...

A room-temperature polarization-sensitive CMOS terahertz digital camera primarily based on quantum-dot-enhanced terahertz-to-visible photon upconversion


  • Ferguson, B. & Zhang, X.-C. Supplies for terahertz science and know-how. Nat. Mater. 1, 26–33 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Rutz, F. et al. Terahertz high quality management of polymeric merchandise. Int. J. Infrared Milli. Waves 27, 547–556 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Duling, I. & Zimdars, D. Revealing hidden defects. Nat. Photon. 3, 630–632 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Ding, S.-H., Li, Q., Yao, R. & Wang, Q. Excessive-resolution terahertz reflective imaging and picture restoration. Appl. Choose. 49, 6834–6839 (2010).

    Article 

    Google Scholar
     

  • Liu, J., Dai, J., Chin, S. L. & Zhang, X.-C. Broadband terahertz wave distant sensing utilizing coherent manipulation of fluorescence from asymmetrically ionized gases. Nat. Photon. 4, 627–631 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Liu, H.-B., Chen, Y., Bastiaans, G. J. & Zhang, X.-C. Detection and identification of explosive RDX by THz diffuse reflection spectroscopy. Choose. Specific 14, 415–423 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Ma, J. et al. Safety and eavesdropping in terahertz wi-fi hyperlinks. Nature 563, 89–93 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Wei, J. et al. Ultrasensitive hot-electron nanobolometers for terahertz astrophysics. Nat. Nanotechnol. 3, 496–500 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Kulesa, C. Terahertz spectroscopy for astronomy: from comets to cosmology. IEEE Trans. THz Sci. Technol. 1, 232–240 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Sizov, F. & Rogalski, A. THz detectors. Prog. Quantum. Electron. 34, 278 – 347 (2010).

    Article 

    Google Scholar
     

  • Lewis, R. A. A overview of terahertz detectors. J. Phys. D: Appl. Phys. 52, 433001 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Wu, Q. & Zhang, X.-C. Design and characterization of traveling-wave electrooptic terahertz sensors. IEEE J. Sel. Subjects Quantum Electron. 2, 693–700 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Vicarelli, L. et al. Graphene field-effect transistors as room-temperature terahertz detectors. Nat. Mater. 11, 865–871 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Auton, G. et al. Terahertz detection and imaging utilizing graphene ballistic rectifiers. Nano Lett. 17, 7015–7020 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Castilla, S. et al. Quick and delicate terahertz detection utilizing an antenna-integrated graphene pn junction. Nano Lett. 19, 2765–2773 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Chen, W. et al. Steady-wave frequency upconversion with a molecular optomechanical nanocavity. Science 374, 1264–1267 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Xomalis, A. et al. Detecting mid-infrared gentle by molecular frequency upconversion in dual-wavelength nanoantennas. Science 374, 1268–1271 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Peng, Ok. et al. Three-dimensional cross-nanowire networks recuperate full terahertz state. Science 368, 510–513 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Tyo, J. S., Goldstein, D. L., Chenault, D. B. & Shaw, J. A. Evaluation of passive imaging polarimetry for distant sensing functions. Appl. Choose. 45, 5453–5469 (2006).

    Article 

    Google Scholar
     

  • Costley, A. E., Hursey, Ok. H., Neill, G. F. & Ward, J. M. Free-standing fine-wire grids: their manufacture, efficiency, and use at millimeter and submillimeter wavelengths. J. Choose. Soc. Am. 67, 979–981 (1977).

    Article 
    CAS 

    Google Scholar
     

  • Ren, L. et al. Carbon nanotube terahertz polarizer. Nano Lett. 9, 2610–2613 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Mosley, C. D. W., Failla, M., Prabhakaran, D. & Lloyd-Hughes, J. Terahertz spectroscopy of anisotropic supplies utilizing beams with rotatable polarization. Sci. Rep. 7, 12337 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Choi, W. J. et al. Terahertz round dichroism spectroscopy of biomaterials enabled by kirigami polarization modulators. Nat. Mater. 18, 820–826 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Yasumatsu, N. & Watanabe, S. T-ray topography by time-domain polarimetry. Choose. Lett. 37, 2706–2708 (2012).

    Article 

    Google Scholar
     

  • Wooden, V. et al. Electroluminescence from nanoscale supplies through field-driven ionization. Nano Lett. 11, 2927–2932 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Pein, B. C. et al. Terahertz-driven luminescence and colossal Stark impact in CdSe–CdS colloidal quantum dots. Nano Lett. 17, 5375–5380 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Chen, X. et al. Atomic layer lithography of wafer-scale nanogap arrays for excessive confinement of electromagnetic waves. Nat. Commun. 4, 2361 (2013).

    Article 

    Google Scholar
     

  • Protesescu, L. et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic supplies displaying vivid emission with huge shade gamut. Nano Lett. 15, 3692–3696 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Utzat, H. et al. Coherent single-photon emission from colloidal lead halide perovskite quantum dots. Science 363, 1068–1072 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Kabra, D., Music, M. H., Wenger, B., Buddy, R. H. & Snaith, H. J. Excessive effectivity composite steel oxide-polymer electroluminescent units: a morphological and materials primarily based investigation. Adv. Mater. 20, 3447–3452 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Liberal, I. & Engheta, N. The rise of near-zero-index applied sciences. Science 358, 1540–1541 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Yoo, D. et al. Ultrastrong plasmon–phonon coupling through epsilon-near-zero nanocavities. Nat. Photon. 15, 125–130 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Gao, W. et al. Excessive-contrast terahertz wave modulation by gated graphene enhanced by extraordinary transmission by ring apertures. Nano Lett. 14, 1242–1248 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Yoo, D. et al. Excessive-throughput fabrication of resonant metamaterials with ultrasmall coaxial apertures through atomic layer lithography. Nano Lett. 16, 2040–2046 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Antonucci, R. R. J. & Miller, J. S. Spectropolarimetry and the character of NGC 1068. Astrophys. J. 297, 621–632 (1985).

    Article 
    CAS 

    Google Scholar
     

  • Nguyen, N., Peraire, J. & Cockburn, B. Hybridizable discontinuous Galerkin strategies for the time-harmonic Maxwell’s equations. J. Comput. Phys. 230, 7151–7175 (2011).

    Article 

    Google Scholar
     

  • Vidal-Codina, F., Nguyen, N. & Peraire, J. Computing parametrized options for plasmonic nanogap constructions. J. Comput. Phys. 366, 89–106 (2018).

    Article 

    Google Scholar
     

  • Vidal-Codina, F., Nguyen, N., Oh, S.-H. & Peraire, J. A hybridizable discontinuous Galerkin methodology for computing nonlocal electromagnetic results in three-dimensional metallic nanostructures. J. Comput. Phys. 355, 548–565 (2018).

    Article 

    Google Scholar
     

  • Vidal-Codina, F., Nguyen, N.-C., Ciraci, C., Oh, S.-H. & Peraire, J. A nested hybridizable discontinuous Galerkin methodology for computing second-harmonic technology in three-dimensional metallic nanostructures. J. Comput. Phys. 366, 89–106 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Vidal-Codina, F. et al. Terahertz and infrared nonlocality and discipline saturation in extreme-scale nanoslits. Choose. Specific 28, 8701–8715 (2020).

    Article 

    Google Scholar
     

  • Berenger, J.-P. A superbly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114, 185–200 (1994).

    Article 

    Google Scholar
     

  • Sanjuan, F. & Tocho, J. O. Optical properties of silicon, sapphire, silica and glass within the terahertz vary. In Latin America Optics and Photonics Convention LT4C.1 (Optical Society of America, 2012).

  • Ordal, M. A. et al. Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W within the infrared and much infrared. Appl. Choose. 22, 1099–1119 (1983).

    Article 
    CAS 

    Google Scholar
     

  • Carbone, L. et al. Synthesis and micrometer-scale meeting of colloidal CdSe/CdS nanorods ready by a seeded progress strategy. Nano Lett. 7, 2942–2950 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Chen, O. et al. Compact high-quality CdSe–CdS core–shell nanocrystals with slim emission linewidths and suppressed blinking. Nat. Mater. 12, 445–451 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Hebling, J., Yeh, Ok.-L., Hoffmann, M. C., Bartal, B. & Nelson, Ok. A. Technology of high-power terahertz pulses by tilted-pulse-front excitation and their utility prospects. J. Choose. Soc. Am. B 25, B6–B19 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Wu, Q. & Zhang, X. Free-space electro-optic sampling of terahertz beams. Appl. Phys. Lett. 67, 3523–3525 (1995).

    Article 
    CAS 

    Google Scholar
     



  • Supply hyperlink

    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    - Advertisment -
    Google search engine

    Most Popular

    Recent Comments