Ferguson, B. & Zhang, X.-C. Supplies for terahertz science and know-how. Nat. Mater. 1, 26–33 (2002).
Rutz, F. et al. Terahertz high quality management of polymeric merchandise. Int. J. Infrared Milli. Waves 27, 547–556 (2006).
Duling, I. & Zimdars, D. Revealing hidden defects. Nat. Photon. 3, 630–632 (2009).
Ding, S.-H., Li, Q., Yao, R. & Wang, Q. Excessive-resolution terahertz reflective imaging and picture restoration. Appl. Choose. 49, 6834–6839 (2010).
Liu, J., Dai, J., Chin, S. L. & Zhang, X.-C. Broadband terahertz wave distant sensing utilizing coherent manipulation of fluorescence from asymmetrically ionized gases. Nat. Photon. 4, 627–631 (2010).
Liu, H.-B., Chen, Y., Bastiaans, G. J. & Zhang, X.-C. Detection and identification of explosive RDX by THz diffuse reflection spectroscopy. Choose. Specific 14, 415–423 (2006).
Ma, J. et al. Safety and eavesdropping in terahertz wi-fi hyperlinks. Nature 563, 89–93 (2018).
Wei, J. et al. Ultrasensitive hot-electron nanobolometers for terahertz astrophysics. Nat. Nanotechnol. 3, 496–500 (2008).
Kulesa, C. Terahertz spectroscopy for astronomy: from comets to cosmology. IEEE Trans. THz Sci. Technol. 1, 232–240 (2011).
Sizov, F. & Rogalski, A. THz detectors. Prog. Quantum. Electron. 34, 278 – 347 (2010).
Lewis, R. A. A overview of terahertz detectors. J. Phys. D: Appl. Phys. 52, 433001 (2019).
Wu, Q. & Zhang, X.-C. Design and characterization of traveling-wave electrooptic terahertz sensors. IEEE J. Sel. Subjects Quantum Electron. 2, 693–700 (1996).
Vicarelli, L. et al. Graphene field-effect transistors as room-temperature terahertz detectors. Nat. Mater. 11, 865–871 (2012).
Auton, G. et al. Terahertz detection and imaging utilizing graphene ballistic rectifiers. Nano Lett. 17, 7015–7020 (2017).
Castilla, S. et al. Quick and delicate terahertz detection utilizing an antenna-integrated graphene pn junction. Nano Lett. 19, 2765–2773 (2019).
Chen, W. et al. Steady-wave frequency upconversion with a molecular optomechanical nanocavity. Science 374, 1264–1267 (2021).
Xomalis, A. et al. Detecting mid-infrared gentle by molecular frequency upconversion in dual-wavelength nanoantennas. Science 374, 1268–1271 (2021).
Peng, Ok. et al. Three-dimensional cross-nanowire networks recuperate full terahertz state. Science 368, 510–513 (2020).
Tyo, J. S., Goldstein, D. L., Chenault, D. B. & Shaw, J. A. Evaluation of passive imaging polarimetry for distant sensing functions. Appl. Choose. 45, 5453–5469 (2006).
Costley, A. E., Hursey, Ok. H., Neill, G. F. & Ward, J. M. Free-standing fine-wire grids: their manufacture, efficiency, and use at millimeter and submillimeter wavelengths. J. Choose. Soc. Am. 67, 979–981 (1977).
Ren, L. et al. Carbon nanotube terahertz polarizer. Nano Lett. 9, 2610–2613 (2009).
Mosley, C. D. W., Failla, M., Prabhakaran, D. & Lloyd-Hughes, J. Terahertz spectroscopy of anisotropic supplies utilizing beams with rotatable polarization. Sci. Rep. 7, 12337 (2017).
Choi, W. J. et al. Terahertz round dichroism spectroscopy of biomaterials enabled by kirigami polarization modulators. Nat. Mater. 18, 820–826 (2019).
Yasumatsu, N. & Watanabe, S. T-ray topography by time-domain polarimetry. Choose. Lett. 37, 2706–2708 (2012).
Wooden, V. et al. Electroluminescence from nanoscale supplies through field-driven ionization. Nano Lett. 11, 2927–2932 (2011).
Pein, B. C. et al. Terahertz-driven luminescence and colossal Stark impact in CdSe–CdS colloidal quantum dots. Nano Lett. 17, 5375–5380 (2017).
Chen, X. et al. Atomic layer lithography of wafer-scale nanogap arrays for excessive confinement of electromagnetic waves. Nat. Commun. 4, 2361 (2013).
Protesescu, L. et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic supplies displaying vivid emission with huge shade gamut. Nano Lett. 15, 3692–3696 (2015).
Utzat, H. et al. Coherent single-photon emission from colloidal lead halide perovskite quantum dots. Science 363, 1068–1072 (2019).
Kabra, D., Music, M. H., Wenger, B., Buddy, R. H. & Snaith, H. J. Excessive effectivity composite steel oxide-polymer electroluminescent units: a morphological and materials primarily based investigation. Adv. Mater. 20, 3447–3452 (2008).
Liberal, I. & Engheta, N. The rise of near-zero-index applied sciences. Science 358, 1540–1541 (2017).
Yoo, D. et al. Ultrastrong plasmon–phonon coupling through epsilon-near-zero nanocavities. Nat. Photon. 15, 125–130 (2021).
Gao, W. et al. Excessive-contrast terahertz wave modulation by gated graphene enhanced by extraordinary transmission by ring apertures. Nano Lett. 14, 1242–1248 (2014).
Yoo, D. et al. Excessive-throughput fabrication of resonant metamaterials with ultrasmall coaxial apertures through atomic layer lithography. Nano Lett. 16, 2040–2046 (2016).
Antonucci, R. R. J. & Miller, J. S. Spectropolarimetry and the character of NGC 1068. Astrophys. J. 297, 621–632 (1985).
Nguyen, N., Peraire, J. & Cockburn, B. Hybridizable discontinuous Galerkin strategies for the time-harmonic Maxwell’s equations. J. Comput. Phys. 230, 7151–7175 (2011).
Vidal-Codina, F., Nguyen, N. & Peraire, J. Computing parametrized options for plasmonic nanogap constructions. J. Comput. Phys. 366, 89–106 (2018).
Vidal-Codina, F., Nguyen, N., Oh, S.-H. & Peraire, J. A hybridizable discontinuous Galerkin methodology for computing nonlocal electromagnetic results in three-dimensional metallic nanostructures. J. Comput. Phys. 355, 548–565 (2018).
Vidal-Codina, F., Nguyen, N.-C., Ciraci, C., Oh, S.-H. & Peraire, J. A nested hybridizable discontinuous Galerkin methodology for computing second-harmonic technology in three-dimensional metallic nanostructures. J. Comput. Phys. 366, 89–106 (2018).
Vidal-Codina, F. et al. Terahertz and infrared nonlocality and discipline saturation in extreme-scale nanoslits. Choose. Specific 28, 8701–8715 (2020).
Berenger, J.-P. A superbly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114, 185–200 (1994).
Sanjuan, F. & Tocho, J. O. Optical properties of silicon, sapphire, silica and glass within the terahertz vary. In Latin America Optics and Photonics Convention LT4C.1 (Optical Society of America, 2012).
Ordal, M. A. et al. Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W within the infrared and much infrared. Appl. Choose. 22, 1099–1119 (1983).
Carbone, L. et al. Synthesis and micrometer-scale meeting of colloidal CdSe/CdS nanorods ready by a seeded progress strategy. Nano Lett. 7, 2942–2950 (2007).
Chen, O. et al. Compact high-quality CdSe–CdS core–shell nanocrystals with slim emission linewidths and suppressed blinking. Nat. Mater. 12, 445–451 (2013).
Hebling, J., Yeh, Ok.-L., Hoffmann, M. C., Bartal, B. & Nelson, Ok. A. Technology of high-power terahertz pulses by tilted-pulse-front excitation and their utility prospects. J. Choose. Soc. Am. B 25, B6–B19 (2008).
Wu, Q. & Zhang, X. Free-space electro-optic sampling of terahertz beams. Appl. Phys. Lett. 67, 3523–3525 (1995).