Fang, R. H., Kroll, A. V., Gao, W. & Zhang, L. Cell membrane coating nanotechnology. Adv. Mater. 30, 1706759 (2018).
Fang, R. H., Gao, W. & Zhang, L. Focusing on medicine to tumours utilizing cell membrane-coated nanoparticles. Nat. Rev. Clin. Oncol. 20, 33–48 (2023).
Narain, A., Asawa, S., Chhabria, V. & Patil-Sen, Y. Cell membrane coated nanoparticles: next-generation therapeutics. Nanomedicine 12, 2677–2692 (2017).
Hu, C. M. et al. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic supply platform. Proc. Natl Acad. Sci. USA 108, 10980–10985 (2011).
Fang, R. H. et al. Lipid-insertion allows focusing on functionalization of erythrocyte membrane-cloaked nanoparticles. Nanoscale 5, 8884–8888 (2013).
Liu, G. et al. Engineering biomimetic platesomes for pH-responsive drug supply and enhanced antitumor exercise. Adv. Mater. 31, 1900795 (2019).
Hu, Q. et al. Anticancer platelet-mimicking nanovehicles. Adv. Mater. 27, 7043–7050 (2015).
Chen, H. et al. Lipid insertion allows focused functionalization of paclitaxel-loaded erythrocyte membrane nanosystem by tumor-penetrating bispecific recombinant protein. Int. J. Nanomed. 13, 5347–5359 (2018).
Li, P. Y., Fan, Z. & Cheng, H. Cell membrane bioconjugation and membrane-derived nanomaterials for immunotherapy. Bioconjug. Chem. 29, 624–634 (2018).
Fu, Q. et al. Programmed co-delivery of paclitaxel and doxorubicin boosted by camouflaging with erythrocyte membrane. Nanoscale 7, 4020–4030 (2015).
Zhu, D. M. et al. Erythrocyte membrane-coated gold nanocages for focused photothermal and chemical most cancers remedy. Nanotechnology 29, 084002 (2018).
Zhang, Q. et al. Biomimetic magnetosomes as versatile synthetic antigen-presenting cells to potentiate T-cell-based anticancer remedy. ACS Nano 11, 10724–10732 (2017).
Han, Y. et al. T cell membrane mimicking nanoparticles with bioorthogonal focusing on and immune recognition for enhanced photothermal remedy. Adv. Sci. 6, 1900251 (2019).
Ma, W. et al. Coating biomimetic nanoparticles with chimeric antigen receptor T cell-membrane gives excessive specificity for hepatocellular carcinoma photothermal remedy therapy. Theranostics 10, 1281–1295 (2020).
Rao, L. et al. Activating macrophage-mediated most cancers immunotherapy by genetically edited nanoparticles. Adv. Mater. 32, 2004853 (2020).
Zhang, X. et al. PD-1 blockade mobile vesicles for most cancers immunotherapy. Adv. Mater. 30, 1707112 (2018).
Jiang, Y. et al. Engineered cell-membrane-coated nanoparticles straight current tumor antigens to advertise anticancer immunity. Adv. Mater. 32, 2001808 (2020).
Bose, R. J. et al. Bioengineered stem cell membrane functionalized nanocarriers for therapeutic focusing on of extreme hindlimb ischemia. Biomaterials 185, 360–370 (2018).
Park, J. H. et al. Virus-mimicking cell membrane-coated nanoparticles for cytosolic supply of mRNA. Angew. Chem. Int. Ed. 61, e202113671 (2022).
Saeui, C. T., Mathew, M. P., Liu, L., Urias, E. & Yarema, Okay. J. Cell floor and membrane engineering: rising applied sciences and purposes. J. Funct. Biomater. 6, 454–485 (2015).
Yu, Okay., Liu, C., Kim, B. G. & Lee, D. Y. Artificial fusion protein design and purposes. Biotechnol. Adv. 33, 155–164 (2015).
Cho, J. H., Collins, J. J. & Wong, W. W. Common chimeric antigen receptors for multiplexed and logical management of T cell responses. Cell 173, 1426–1438.e11 (2018).
van der Meer, S. B. et al. Avidin-conjugated calcium phosphate nanoparticles as a modular focusing on system for the attachment of biotinylated molecules in vitro and in vivo. Acta Biomater. 57, 414–425 (2017).
Peuler, Okay., Dimmitt, N. & Lin, C. C. Clickable modular polysaccharide nanoparticles for selective cell-targeting. Carbohydr. Polym. 234, 115901 (2020).
Vragniau, C. et al. Artificial self-assembling ADDomer platform for extremely environment friendly vaccination by genetically encoded multiepitope show. Sci. Adv. 5, eaaw2853 (2019).
Brouwer, P. J. M. et al. Two-component spike nanoparticle vaccine protects macaques from SARS-CoV-2 an infection. Cell 184, 1188–1200.e19 (2021).
Li, X. et al. Orthogonal modular biosynthesis of nanoscale conjugate vaccines for vaccination towards an infection. Nano Res. 15, 1645–1653 (2022).
Bruun, T. U. J., Andersson, A. C., Draper, S. J. & Howarth, M. Engineering a rugged nanoscaffold to reinforce plug-and-display vaccination. ACS Nano 12, 8855–8866 (2018).
Singh, S. Okay. et al. Enhancing the malaria transmission-blocking exercise of a Plasmodium falciparum 48/45 primarily based vaccine antigen by SpyTag/SpyCatcher mediated virus-like show. Vaccine 35, 3726–3732 (2017).
Wang, W. et al. Ferritin nanoparticle-based SpyTag/SpyCatcher-enabled click on vaccine for tumor immunotherapy. Nanomedicine 16, 69–78 (2019).
Keeble, A. H. et al. Approaching infinite affinity by way of engineering of peptide–protein interplay. Proc. Natl Acad. Sci. USA 116, 26523–26533 (2019).
Pruszynski, M., D’Huyvetter, M., Bruchertseifer, F., Morgenstern, A. & Lahoutte, T. Analysis of an anti-HER2 nanobody labeled with 225Ac for focused α-particle remedy of most cancers. Mol. Pharm. 15, 1457–1466 (2018).
Subik, Okay. et al. The expression patterns of ER, PR, HER2, CK5/6, EGFR, Ki-67 and AR by immunohistochemical evaluation in breast most cancers cell strains. Breast Most cancers Primary Clin. Res. 4, 35–41 (2010).
Wang, Okay., Li, D. & Solar, L. Excessive ranges of EGFR expression in tumor stroma are related to aggressive scientific options in epithelial ovarian most cancers. OncoTargets Ther. 9, 377–386 (2016).
Luk, B. T. et al. Interfacial interactions between pure RBC membranes and artificial polymeric nanoparticles. Nanoscale 6, 2730–2737 (2014).
Hu, C. M. et al. Nanoparticle biointerfacing by platelet membrane cloaking. Nature 526, 118–121 (2015).
Hu, C. M. et al. ‘Marker-of-self’ functionalization of nanoscale particles by way of a top-down mobile membrane coating method. Nanoscale 5, 2664–2668 (2013).
Park, J. H. et al. Genetically engineered cell membrane-coated nanoparticles for focused supply of dexamethasone to infected lungs. Sci. Adv. 7, eabf7820 (2021).
Veggiani, G. et al. Programmable polyproteams constructed utilizing twin peptide superglues. Proc. Natl Acad. Sci. USA 113, 1202–1207 (2016).
Chabloz, A. et al. Salmonella-based platform for environment friendly supply of purposeful binding proteins to the cytosol. Commun. Biol. 3, 342 (2020).
Wang, Y. et al. Fluorogen activating protein-affibody probes: modular, no-wash measurement of epidermal progress issue receptors. Bioconjug. Chem. 26, 137–144 (2015).
Kroll, A. V. et al. Nanoparticulate supply of most cancers cell membrane elicits multiantigenic antitumor immunity. Adv. Mater. 29, 1703969 (2017).