Wednesday, June 7, 2023
HomeNanotechnologyA liposomal carbohydrate vaccine, adjuvanted with an NKT cell agonist, induces speedy...

A liposomal carbohydrate vaccine, adjuvanted with an NKT cell agonist, induces speedy and enhanced immune responses and antibody class switching | Journal of Nanobiotechnology


  • Verheijen J, Tahata S, Kozicz T, Witters P, Morava E. Therapeutic approaches in congenital Problems of Glycosylation (CDG) involving N-linked glycosylation: an replace. Genet Med. 2020;22:268–79.

    Article 
    PubMed 

    Google Scholar
     

  • Francisco R, Marques-da-Silva D, Brasil S, Pascoal C, Dos Reis Ferreira V, Morava E, Jaeken J. The problem of CDG prognosis. Mol Genet Metab. 2019;126:1–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cherepanova N, Shrimal S, Gilmore R. N-linked glycosylation and homeostasis of the endoplasmic reticulum. Curr Opin Cell Biol. 2016;41:57–65.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roth J, Zuber C, Park S, Jang I, Lee Y, Kysela KG, Le Fourn V, Santimaria R, Guhl B, Cho JW. Protein N-glycosylation, protein folding, and protein high quality management. Mol Cells. 2010;30:497–506.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vilas A, Yuste-Checa P, Gallego D, Desviat LR, Ugarte M, Perez-Cerda C, Gamez A, Perez B. Proteostasis regulators as potential rescuers of PMM2 exercise. Biochim Biophys Acta Mol Foundation Dis. 2020;1866:165777.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao XD, Nishikawa A, Dean N. Bodily interactions between the Alg1, Alg2, and Alg11 mannosyltransferases of the endoplasmic reticulum. Glycobiology. 2004;14:559–70.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Albright CF, Robbins RW. The sequence and transcript heterogeneity of the yeast gene ALG1, a necessary mannosyltransferase concerned in N-glycosylation. J Biol Chem. 1990;265:7042–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Matthijs G, Schollen E, Pardon E, Veiga-Da-Cunha M, Jaeken J, Cassiman JJ, Van Schaftingen E. Mutations in PMM2, a phosphomannomutase gene on chromosome 16p13, in carbohydrate-deficient glycoprotein kind I syndrome (Jaeken syndrome). Nat Genet. 1997;16:88–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang W, James PM, Ng BG, Li X, Xia B, Rong J, Asif G, Raymond Ok, Jones MA, Hegde M, et al. A novel N-Tetrasaccharide in sufferers with congenital Problems of Glycosylation, together with asparagine-linked glycosylation protein 1, phosphomannomutase 2, and mannose phosphate isomerase deficiencies. Clin Chem. 2016;62:208–17.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Quelhas D, Quental R, Vilarinho L, Amorim A, Azevedo L. Congenital dysfunction of glycosylation kind Ia: looking for the origin of frequent mutations in PMM2. Ann Hum Genet. 2007;71:348–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moravej H, Altassan R, Jaeken J, Enns GM, Ellaway C, Balasubramaniam S, De Lonlay P, Coman D, Mercimek-Andrews S, Witters P, Morava E. Hypoglycemia in CDG sufferers as a consequence of PMM2 mutations: comply with up on hyperinsulinemic sufferers. JIMD Rep. 2020;51:76–81.

    Article 
    PubMed 

    Google Scholar
     

  • Ng BG, Shiryaev SA, Rymen D, Eklund EA, Raymond Ok, Kircher M, Abdenur JE, Alehan F, Midro AT, Bamshad MJ, et al. ALG1-CDG: medical and molecular characterization of 39 unreported sufferers. Hum Mutat. 2016;37:653–60.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peanne R, de Lonlay P, Foulquier F, Kornak U, Lefeber DJ, Morava E, Perez B, Seta N, Thiel C, Van Schaftingen E, et al. Congenital problems of glycosylation (CDG): Quo vadis? Eur J Med Genet. 2018;61:643–63.

    Article 
    PubMed 

    Google Scholar
     

  • Al Teneiji A, Bruun TU, Sidky S, Cordeiro D, Cohn RD, Mendoza-Londono R, Moharir M, Raiman J, Siriwardena Ok, Kyriakopoulou L, Mercimek-Mahmutoglu S. Phenotypic and genotypic spectrum of congenital problems of glycosylation kind I and sort II. Mol Genet Metab. 2017;120:235–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mousa J, Veres L, Mohamed A, De Graef D, Morava E. Acetazolamide therapy in late onset CDG kind 1 as a consequence of biallelic pathogenic DHDDS variants. Mol Genet Metab Rep. 2022;32:100901.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bruneel A, Cholet S, Drouin-Garraud V, Jacquemont ML, Cano A, Megarbane A, Ruel C, Cheillan D, Dupre T, Vuillaumier-Barrot S, et al. Complementarity of electrophoretic, mass spectrometric, and gene sequencing strategies for the prognosis and characterization of congenital problems of glycosylation. Electrophoresis. 2018;39:3123–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hipgrave Ederveen AL, de Haan N, Baerenfaenger M, Lefeber DJ, Wuhrer M. Dissecting whole plasma and protein-specific glycosylation profiles in congenital Problems of Glycosylation. Int J Mol Sci. 2020;21:7635.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abu Bakar N, Lefeber DJ, van Scherpenzeel M. Scientific glycomics for the prognosis of congenital problems of glycosylation. J Inherit Metab Dis. 2018;41:499–513.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Witters P, Edmondson AC, Lam C, Johnsen C, Patterson MC, Raymond KM, He M, Freeze HH, Morava E. Spontaneous enchancment of carbohydrate-deficient transferrin in PMM2-CDG with out mannose noticed in CDG pure historical past examine. Orphanet J Uncommon Dis. 2021;16:102.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bengtson P, Ng BG, Jaeken J, Matthijs G, Freeze HH, Eklund EA. Serum transferrin carrying the xeno-tetrasaccharide NeuAc-Gal-GlcNAc2 is a biomarker of ALG1-CDG. J Inherit Metab Dis. 2016;39:107–14.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jia JX, Kalisa NY, Lu TT, Zhou Z, Gao XD, Wang N. Chemo-enzymatic synthesis of the ALG1-CDG biomarker and analysis of its immunogenicity. Bioorg Med Chem Lett. 2020;30:127614.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • de Morais FAP, Goncalves RS, Vilsinski BH, de Oliveira EL, Rocha NL, Hioka N, Caetano W. Hypericin photodynamic exercise in DPPC liposome. PART I: biomimetism of loading, location, interactions and thermodynamic properties. J Photochem Photobiol B. 2019;190:118–27.

    Article 
    PubMed 

    Google Scholar
     

  • Khatun F, Toth I, Stephenson RJ. Immunology of carbohydrate-based vaccines. Adv Drug Deliv Rev. 2020;165–166:117 – 26.

  • Yang F, Zheng XJ, Huo CX, Wang Y, Zhang Y, Ye XS. Enhancement of the immunogenicity of artificial carbohydrate vaccines by chemical modifications of STn antigen. ACS Chem Biol. 2011;6:252–59.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yao L, Wu L, Wang R, Liu Y, Luo F, Zhang Y, Chen G. Liposome-Primarily based Carbohydrate Vaccine for concurrently eliciting Humoral and Mobile Antitumor Immunity. ACS Macro Lett. 2022;11:975–81.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rao M, Peachman KK, Alving CR. Liposome Formulations as Adjuvants for vaccines. Curr Prime Microbiol Immunol. 2021;433:1–28.

    CAS 
    PubMed 

    Google Scholar
     

  • Pifferi C, Berthet N, Renaudet O. Cyclopeptide scaffolds in carbohydrate-based artificial vaccines. Biomater Sci. 2017;5:953–65.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Peri F. Clustered carbohydrates in artificial vaccines. Chem Soc Rev. 2013;42:4543–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bai L, Deng S, Reboulet R, Mathew R, Teyton L, Savage PB, Bendelac A. Pure killer T (NKT)-B-cell interactions promote extended antibody responses and long-term reminiscence to pneumococcal capsular polysaccharides. Proc Natl Acad Sci U S A. 2013;110:16097–102.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saez de Guinoa J, Jimeno R, Gaya M, Kipling D, Garzon MJ, Dunn-Walters D, Ubeda C, Barral P. CD1d-mediated lipid presentation by CD11c(+) cells regulates intestinal homeostasis. EMBO J. 2018;37:e97537.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Venkataswamy MM, Porcelli SA. Lipid and glycolipid antigens of CD1d-restricted pure killer T cells. Semin Immunol. 2010;22:68–78.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Griewank KG, Lorenz B, Fischer MR, Boon L, Lopez Kostka S, von Stebut E. Immune modulating results of NKT cells in a physiologically low dose Leishmania main an infection mannequin after alphaGalCer analog PBS57 stimulation. PLoS Negl Trop Dis. 2014;8:e2917.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maia ML, Pereira CS, Melo G, Pinheiro I, Exley MA, Porto G, Macedo MF. Invariant pure killer T cells are lowered in Hereditary Hemochromatosis Sufferers. J Clin Immunol. 2015;35:68–74.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Szoka F Jr, Papahadjopoulos D. Comparative properties and strategies of preparation of lipid vesicles (liposomes). Annu Rev Biophys Bioeng. 1980;9:467–508.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Deng S, Bai L, Reboulet R, Matthew R, Engler DA, Teyton L, Bendelac A, Savage PB. A peptide-free, liposome-based oligosaccharide vaccine, adjuvanted with a pure killer T cell antigen, generates sturdy antibody responses in vivo. Chem Sci. 2014;5:1437–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yeh HW, Lin TS, Wang HW, Cheng HW, Liu DZ, Liang PH. S-Linked sialyloligosaccharides bearing liposomes and micelles as influenza virus inhibitors. Org Biomol Chem. 2015;13:11518–28.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liao G, Zhou Z, Suryawanshi S, Mondal MA, Guo Z. Totally artificial self-adjuvanting alpha-2,9-Oligosialic acid primarily based Conjugate vaccines towards Group C Meningitis. ACS Cent Sci. 2016;2:210–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bachmann MF, Jennings GT. Vaccine supply: a matter of measurement, geometry, kinetics and molecular patterns. Nat Rev Immunol. 2010;10:787–96.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Danaei M, Dehghankhold M, Ataei S, Hasanzadeh Davarani F, Javanmard R, Dokhani A, Khorasani S, Mozafari MR. Influence of particle measurement and Polydispersity Index on the medical purposes of Lipidic Nanocarrier Techniques. Pharmaceutics. 2018;10:57.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gopi S, Balakrishnan P. Analysis and medical comparability research on liposomal and non-liposomal ascorbic acid (vitamin C) and their enhanced bioavailability. J Liposome Res. 2021;31:356–64.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Singh AK, Gaur P, Das SN. Pure killer T cell anergy, co-stimulatory molecules and immunotherapeutic interventions. Hum Immunol. 2014;75:250–60.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Parekh VV, Wilson MT, Olivares-Villagomez D, Singh AK, Wu L, Wang CR, Joyce S, Van Kaer L. Glycolipid antigen induces long-term pure killer T cell anergy in mice. J Clin Make investments. 2005;115:2572–83.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yin XG, Lu J, Wang J, Zhang RY, Wang XF, Liao CM, Liu XP, Liu Z, Guo J. Synthesis and analysis of liposomal Anti-GM3 Most cancers vaccine candidates covalently and noncovalently adjuvanted by alphaGalCer. J Med Chem. 2021;64:1951–65.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Iyoda T, Ushida M, Kimura Y, Minamino Ok, Hayuka A, Yokohata S, Ehara H, Inaba Ok. Invariant NKT cell anergy is induced by a robust TCR-mediated sign plus co-stimulation. Int Immunol. 2010;22:905–13.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lam JH, Smith FL, Baumgarth N. B cell activation and response regulation throughout viral infections. Viral Immunol. 2020;33:294–306.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schmid H, Schneidawind C, Jahnke S, Kettemann F, Secker KA, Duerr-Stoerzer S, Keppeler H, Kanz L, Savage PB, Schneidawind D. Tradition-expanded human invariant pure killer T cells suppress T-Cell alloreactivity and eradicate leukemia. Entrance Immunol. 2018;9:1817.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leadbetter EA, Brigl M, Illarionov P, Cohen N, Luteran MC, Pillai S, Besra GS, Brenner MB. NK T cells present lipid antigen-specific cognate assist for B cells. Proc Natl Acad Sci U S A. 2008;105:8339–44.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mai Y, Guo J, Zhao Y, Ma S, Hou Y, Yang J. Intranasal supply of cationic liposome-protamine advanced mRNA vaccine elicits efficient anti-tumor immunity. Cell Immunol. 2020;354:104143.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang N, Chen M, Wang T. Liposomes used as a vaccine adjuvant-delivery system: from fundamentals to medical immunization. J Management Launch. 2019;303:130–50.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Swartz MA. The physiology of the lymphatic system. Adv Drug Deliv Rev. 2001;50:3–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cubas R, Zhang S, Kwon S, Sevick-Muraca EM, Li M, Chen C, Yao Q. Virus-like particle (VLP) lymphatic trafficking and immune response technology after immunization by totally different routes. J Immunother. 2009;32:118–28.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao L, Seth A, Wibowo N, Zhao CX, Mitter N, Yu C, Middelberg AP. Nanoparticle vaccines. Vaccine. 2014;32:327–37.

    Article 
    PubMed 

    Google Scholar
     

  • Kim H, Uto T, Akagi T, Baba M, Akashi M. Amphiphilic poly(amino acid) nanoparticles induce size-dependent dendritic cell maturation. Adv Funct Mater. 2010;20:3925–31.

    Article 
    CAS 

    Google Scholar
     

  • Okuda T, Fukui A. Era of anti-oligosaccharide antibodies that acknowledge mammalian glycoproteins by immunization with a novel synthetic glycosphingolipid. Biochem Biophys Res Commun. 2018;497:983–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vidarsson G, Dekkers G, Rispens T. IgG subclasses and allotypes: from construction to effector capabilities. Entrance Immunol. 2014;5:520.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heer AK, Shamshiev A, Donda A, Uematsu S, Akira S, Kopf M, Marsland BJ. TLR signaling fine-tunes anti-influenza B cell responses with out regulating effector T cell responses. J Immunol. 2007;178:2182–91.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Martin RM, Brady JL, Lew AM. The necessity for IgG2c particular antiserum when isotyping antibodies from C57BL/6 and NOD mice. J Immunol Strategies. 1998;212:187–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nimmerjahn F, Ravetch JV. Divergent immunoglobulin g subclass exercise by selective fc receptor binding. Science. 2005;310:1510–2.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou Z, Liao G, Mandal SS, Suryawanshi S, Guo Z. A completely artificial self-adjuvanting Globo H-Primarily based vaccine elicited robust T cell-mediated Antitumor Immunity. Chem Sci. 2015;6:7112–21.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ramirez AS, Boilevin J, Lin CW, Ha Gan B, Janser D, Aebi M, Darbre T, Reymond JL, Locher KP. Chemo-enzymatic synthesis of lipid-linked GlcNAc2Man5 oligosaccharides utilizing recombinant Alg1, Alg2 and Alg11 proteins. Glycobiology. 2017;27:726–33.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Supply hyperlink

    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    - Advertisment -
    Google search engine

    Most Popular

    Recent Comments