Ramsey, A. V., Bischoff, A. J. & Francis, M. B. Enzyme activated gold nanoparticles for versatile site-selective bioconjugation. J. Am. Chem. Soc. 143, 7342–7350 (2021).
Chen, J. et al. Tocilizumab–conjugated polymer nanoparticles for NIR-II photoacoustic-imaging-guided remedy of rheumatoid arthritis. Adv. Mater. 32, 2003399 (2020).
Wang, X.-D., Rabe, Ok. S., Ahmed, I. & Niemeyer, C. M. Multifunctional silica nanoparticles for covalent immobilization of extremely delicate proteins. Adv. Mater. 27, 7945–7950 (2015).
Nel, A. E. et al. Understanding biophysicochemical interactions on the nano–bio interface. Nat. Mater. 8, 543–557 (2009).
Walkey, C. D. & Chan, W. C. W. Understanding and controlling the interplay of nanomaterials with proteins in a physiological atmosphere. Chem. Soc. Rev. 41, 2780–2799 (2012).
Rabe, M., Verdes, D. & Seeger, S. Understanding protein adsorption phenomena at strong surfaces. Adv. Colloid Interface Sci. 162, 87–106 (2011).
Cao, Z.-T. et al. Protein binding affinity of polymeric nanoparticles as a direct indicator of their pharmacokinetics. ACS Nano 14, 3563–3575 (2020).
Estephan, Z. G., Jaber, J. A. & Schlenoff, J. B. Zwitterion-stabilized silica nanoparticles: towards nonstick nano. Langmuir 26, 16884–16889 (2010).
Debayle, M. et al. Zwitterionic polymer ligands: a perfect floor coating to completely suppress protein-nanoparticle corona formation? Biomaterials 219, 119357 (2019).
Vincent, M. P., Navidzadeh, J. O., Bobbala, S. & Scott, E. A. Leveraging self-assembled nanobiomaterials for improved most cancers immunotherapy. Most cancers Cell 40, 255–276 (2022).
Vincent, M. P., Bobbala, S., Karabin, N. B., Frey, M., Liu, Y., Navidzadeh, J. O., Stack, T. & Scott, E. A. Floor chemistry-mediated modulation of adsorbed albumin folding state specifies nanocarrier clearance by distinct macrophage subsets. Nat. Commun. 12, 648 (2021).
Vincent, M. P., Karabin, N. B., Allen, S. D., Bobbala, S., Frey, M. A., Yi, S., Yang, Y. & Scott, E. A. The mixture of morphology and floor chemistry defines the immunological identification of nanocarriers in human blood. Adv. Ther. 4, 2100062 (2021).
Duan, S. et al. CD33 recruitment inhibits IgE-mediated anaphylaxis and desensitizes mast cells to allergen. J. Clin. Make investments. 129, e125456 (2021).
Duan, S. et al. Nanoparticles displaying allergen and Siglec-8 ligands suppress IgE-FcεRI–mediated anaphylaxis and desensitize mast cells to subsequent antigen problem. J. Immunol. 206, 2290–2300 (2021).
Albert, C. et al. Monobody adapter for useful antibody show on nanoparticles for adaptable focused supply purposes. Nat. Commun. 13, 5998 (2022).
Tonigold, M. et al. Pre-adsorption of antibodies allows focusing on of nanocarriers regardless of a biomolecular corona. Nat. Nanotechnol. 13, 862–869 (2018).
Schöttler, S. et al. Protein adsorption is required for stealth impact of poly(ethylene glycol)- and poly(phosphoester)-coated nanocarriers. Nat. Nanotechnol. 11, 372–377 (2016).
Kocbek, P., Obermajer, N., Cegnar, M., Kos, J. & Kristl, J. Focusing on most cancers cells utilizing PLGA nanoparticles floor modified with monoclonal antibody. J. Managed Launch 120, 18–26 (2007).
Du, F. et al. Homopolymer self-assembly of poly(propylene sulfone) hydrogels by way of dynamic noncovalent sulfone–sulfone bonding. Nat. Commun. 11, 4896 (2020).
Solar, H. et al. Origin of proteolytic stability of peptide-brush polymers as globular proteomimetics. ACS Cent. Sci. 7, 2063–2072 (2021).
Panganiban, B. et al. Random heteropolymers protect protein perform in international environments. Science 359, 1239–1243 (2018).
Qiao, B., Jiménez-Ángeles, F., Nguyen, T. D. & Olvera de la Cruz, M. Water follows polar and nonpolar protein floor domains. Proc. Natl Acad. Sci. USA 116, 19274–19281 (2019).
Kolkhir, P., Elieh-Ali-Komi, D., Metz, M., Siebenhaar, F. & Maurer, M. Understanding human mast cells: lesson from therapies for allergic and non-allergic illnesses. Nat. Rev. Immunol. 22, 294–308 (2022).
Valent, P. et al. Drug-induced mast cell eradication: a novel method to deal with mast cell activation problems? J. Allergy Clin. Immunol. 149, 1866–1874 (2022).
Balbino, B. et al. The anti-IgE mAb omalizumab induces hostile reactions by participating Fcγ receptors. J. Clin. Make investments. 130, 1330–1335 (2020).
Galli, S. J., Gaudenzio, N. & Tsai, M. Mast cells in irritation and illness: latest progress and ongoing considerations. Annu. Rev. Immunol. 38, 49–77 (2020).
Gotlib, J. et al. Proceedings from the inaugural American Initiative in Mast cell illnesses (AIM) investigator convention. J. Allergy Clin. Immunol. 147, 2043–2052 (2021).
Robida, P. A. et al. Useful and phenotypic characterization of Siglec-6 on human mast cells. Cells 11, 1138 (2022).
Dispenza, M. C. et al. Bruton’s tyrosine kinase inhibition successfully protects in opposition to human IgE-mediated anaphylaxis. J. Clin. Investig. 130, 4759–4770 (2020).
Crocker, P. R., Paulson, J. C. & Varki, A. Siglecs and their roles within the immune system. Nat. Rev. Immunol. 7, 255–266 (2007).
Duan, S. et al. CD33 recruitment inhibits IgE-mediated anaphylaxis and desensitizes mast cells to allergen. J. Clin. Make investments. 129, 1387–1401 (2019).
Macauley, M. S., Crocker, P. R. & Paulson, J. C. Siglec-mediated regulation of immune cell perform in illness. Nat. Rev. Immunol. 14, 653–666 (2014).
Avril, T., Floyd, H., Lopez, F., Vivier, E. & Crocker, P. R. The membrane-proximal immunoreceptor tyrosine-based inhibitory motif is important for the inhibitory signaling mediated by Siglecs-7 and -9, CD33-related siglecs expressed on human monocytes and NK cells1. J. Immunol. 173, 6841–6849 (2004).
Neuberger, M. S. et al. A hapten-specific chimaeric IgE antibody with human physiological effector perform. Nature 314, 268–270 (1985).
Abraham, M. J. et al. GROMACS: excessive efficiency molecular simulations via multi-level parallelism from laptops to supercomputers. SoftwareX 1–2, 19–25 (2015).
Huang, J. et al. CHARMM36m: an improved drive subject for folded and intrinsically disordered proteins. Nat. Strategies 14, 71–73 (2017).
Miyamoto, S. & Kollman, P. A. Settle: an analytical model of the SHAKE and RATTLE algorithm for inflexible water fashions. J. Comput. Chem. 13, 952–962 (1992).
Humphrey, W., Dalke, A. & Schulten, Ok. VMD: visible molecular dynamics. J. Mol. Graph. 14, 33–38 (1996).
Caslin, H. L. et al. The usage of human and mouse mast cell and basophil cultures to evaluate kind 2 irritation. Strategies Mol. Biol. 1799, 81–92 (2018).
Bryce, P. J. et al. Humanized mouse mannequin of mast cell-mediated passive cutaneous anaphylaxis and passive systemic anaphylaxis. J. Allergy Clin. Immunol. 138, 769–779 (2016).
Bao, C. et al. A mast cell-thermoregulatory neuron circuit axis regulates hypothermia in anaphylaxis. Sci. Immunol. 8, eadc9417 (2023).
Schanin, J. et al. Discovery of an agonistic Siglec-6 antibody that inhibits and reduces human mast cells. Commun. Biol. 5, 1226 (2022).