Tuesday, January 16, 2024
HomeNanotechnologyThird-order distinctive line in a nitrogen-vacancy spin system

Third-order distinctive line in a nitrogen-vacancy spin system


  • Bergholtz, E. J., Budich, J. C. & Kunst, F. Ok. Distinctive topology of non-Hermitian programs. Rev. Mod. Phys. 93, 015005 (2021).

    Article 

    Google Scholar
     

  • Yao, S. & Wang, Z. Edge states and topological invariants of non-Hermitian programs. Phys. Rev. Lett. 121, 086803 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Kawabata, Ok., Shiozaki, Ok., Ueda, M. & Sato, M. Symmetry and topology in non-Hermitian physics. Phys. Rev. X 9, 041015 (2019).

    CAS 

    Google Scholar
     

  • Gong, Z. et al. Topological phases of non-Hermitian programs. Phys. Rev. X 8, 031079 (2018).

    CAS 

    Google Scholar
     

  • Lee, T. E. Anomalous edge state in a non-Hermitian lattice. Phys. Rev. Lett. 116, 133903 (2016).

    Article 

    Google Scholar
     

  • Zhou, H. et al. Commentary of bulk Fermi arc and polarization half cost from paired distinctive factors. Science 359, 1009–1012 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Carlström, J. & Bergholtz, E. J. Distinctive hyperlinks and twisted Fermi ribbons in non-Hermitian programs. Phys. Rev. A 98, 042114 (2018).

    Article 

    Google Scholar
     

  • Xiao, L. et al. Commentary of topological edge states in parity-time-symmetric quantum walks. Nat. Phys. 13, 1117–1123 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Xiao, L. et al. Non-Hermitian bulk-boundary correspondence in quantum dynamics. Nat. Phys. 16, 761–766 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Minganti, F., Miranowicz, A., Chhajlany, R. W. & Nori, F. Quantum distinctive factors of non-Hermitian Hamiltonians and Liouvillians: the results of quantum jumps. Phys. Rev. A 100, 062131 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Minganti, F., Miranowicz, A., Chhajlany, R. W., Arkhipov, I. I. & Nori, F. Hybrid-Liouvillian formalism connecting distinctive factors of non-Hermitian Hamiltonians and Liouvillians through postselection of quantum trajectories. Phys. Rev. A 101, 062112 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Lee, T. E., Reiter, F. & Moiseyev, N. Entanglement and spin squeezing in non-Hermitian part transitions. Phys. Rev. Lett. 113, 250401 (2014).

    Article 

    Google Scholar
     

  • Hassan, A. U., Zhen, B., Soljačić, M., Khajavikhan, M. & Christodoulides, D. N. Dynamically encircling distinctive factors: precise evolution and polarization state conversion. Phys. Rev. Lett. 118, 093002 (2017).

    Article 

    Google Scholar
     

  • Stalhammar, M. & Bergholtz, E. J. Classification of remarkable nodal topologies protected by PT symmetry. Phys. Rev. B 104, L201104 (2021).

    Article 

    Google Scholar
     

  • Chang, L. et al. Parity–time symmetry and variable optical isolation in active-passive-coupled microresonators. Nat. Photon. 8, 524 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Peng, B. et al. Parity-time symmetric whispering-gallery microcavities. Nat. Phys. 10, 394 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Lin, Z. et al. Unidirectional invisibility induced by PT-symmetric periodic constructions. Phys. Rev. Lett. 106, 213901 (2011).

    Article 

    Google Scholar
     

  • Feng, L., Wong, Z. J., Ma, R.-M., Wang, Y. & Zhang, X. Single mode laser by parity–time symmetry breaking. Science 346, 972 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Hodaei, H., Miri, M.-A., Heinrich, M., Christodoulides, D. N. & Khajavikhan, M. Parity–time-symmetric microring lasers. Science 346, 975 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Chen, W., Özdemir, S. Ok., Zhao, G., Wiersig, J. & Yang, L. Distinctive factors improve sensing in an optical microcavity. Nature 548, 192 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Hokmabadi, M. P., Schumer, A., Christodoulides, D. N. & Khajavikhan, M. Non-Hermitian ring laser gyroscopes with enhanced Sagnac sensitivity. Nature 576, 70 (2019).

    Article 

    Google Scholar
     

  • Fernández-Alcázar, L. J., Kononchuk, R. & Kottos, T. Enhanced power harvesting close to distinctive factors in programs with (pseudo-) PT-symmetry. Commun. Phys. 4, 79 (2021).

    Article 

    Google Scholar
     

  • Hu, H. & Zhao, E. Knots and non-Hermitian Bloch bands. Phys. Rev. Lett. 126, 010401 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, W. et al. Commentary of non-Hermitian topology with nonunitary dynamics of solid-state spins. Phys. Rev. Lett. 127, 090501 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Abbasi, M., Chen, W., Naghiloo, M., Joglekar, Y. N. & Murch, Ok. W. Topological quantum state management by way of exceptional-point proximity. Phys. Rev. Lett. 128, 160401 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Liu, W., Wu, Y., Duan, C.-Ok., Rong, X. & Du, J. Dynamically encircling an distinctive level in an actual quantum system. Phys. Rev. Lett. 126, 170506 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Wu, Y. et al. Commentary of parity-time symmetry breaking in a single-spin system. Science 346, 878–880 (2019).

    Article 

    Google Scholar
     

  • Ding, L. et al. Experimental dedication of PT-symmetric distinctive factors in a single trapped ion. Phys. Rev. Lett. 126, 083604 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Ding, Ok., Ma, G., Xiao, M., Zhang, Z. Q. & Chan, C. T. Emergence, coalescence, and topological properties of a number of distinctive factors and their experimental realization. Phys. Rev. X 6, 021007 (2016).


    Google Scholar
     

  • Delplace, P., Yoshida, T. & Hatsugai, Y. Symmetry-protected higher-order distinctive factors and their topological characterization. Phys. Rev. Lett. 127, 186602 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Mandal, I. & Bergholtz, E. J. Symmetry and higher-order distinctive factors. Phys. Rev. Lett. 127, 186601 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Hodaei, H. et al. Enhanced sensitivity at higher-order distinctive factors. Nature 548, 187 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Zeng, C. et al. Extremely-sensitive passive wi-fi sensor exploiting high-order distinctive level for weakly coupling detection. New J. Phys. 23, 063008 (2021).

    Article 

    Google Scholar
     

  • Wang, X. G., Guo, G. H. & Berakdar, J. Enhanced sensitivity at magnetic high-order distinctive factors and topological power switch in magnonic planar waveguides. Phys. Rev. Appl. 15, 034050 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zeng, C. et al. Enhanced sensitivity at high-order distinctive factors in a passive wi-fi sensing system. Choose. Specific 27, 27562 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Patil, Y. S. S. et al. Measuring the knot of non-Hermitian degeneracies and non-commuting braids. Nature 607, 271–275 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Tang, W. et al. Distinctive nexus with a hybrid topological invariant. Science 370, 1077 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Ding, Ok., Fang, C. & Ma, G. Non-Hermitian topology and exceptional-point geometries. Nat. Rev. Phys. 4, 745–760 (2022).

    Article 

    Google Scholar
     

  • Yang, Z., Schnyder, A. P., Hu, J. & Chiu, C.-Ok. Fermion doubling theorems in two-dimensional non-Hermitian programs for Fermi factors and distinctive factors. Phys. Rev. Lett. 126, 086401 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Yu, Y. et al. Experimental unsupervised studying of non-Hermitian knotted phases with solid-state spins. NPJ Quantum Inf. 8, 116 (2022).

    Article 

    Google Scholar
     

  • Zhong, Q. et al. Sensing with distinctive surfaces with a purpose to mix sensitivity with robustness. Phys. Rev. Lett. 122, 153902 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Qin, G.-Q. et al. Experimental realization of sensitivity enhancement and suppression with distinctive surfaces. Laser Photonics Rev. 15, 2000569 (2021).

    Article 

    Google Scholar
     

  • Soleymani, S. et al. Chiral and degenerate excellent absorption on distinctive surfaces. Nat. Commun. 13, 599 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Tang, W., Ding, Ok. & Ma, G. Direct measurement of topological properties of an distinctive parabola. Phys. Rev. Lett. 127, 034301 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Ding, Ok., Ma, G., Zhang, Z. Q. & Chan, C. T. Experimental demonstration of an anisotropic distinctive level. Phys. Rev. Lett. 121, 085702 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Lau, H.-Ok. & Clerk, A. A. Elementary limits and non-reciprocal approaches in non-Hermitian quantum sensing. Nat. Commun. 9, 4320 (2018).

    Article 

    Google Scholar
     

  • Wiersig, J. Evaluate of remarkable point-based sensors. Photon. Res. 8, 1457–1467 (2020).

    Article 

    Google Scholar
     

  • Yu, S. et al. Experimental investigation of quantum PT-enhanced sensor. Phys. Rev. Lett. 125, 240506 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Yao, S., Yan, Z. & Wang, Z. Topological invariants of Floquet programs: common formulation, particular properties, and Floquet topological defects. Phys. Rev. B 96, 195303 (2017).

    Article 

    Google Scholar
     

  • Teo, J. C. Y. & Kane, C. L. Topological defects and gapless modes in insulators and superconductors. Phys. Rev. B 82, 115120 (2010).

    Article 

    Google Scholar
     

  • Tang, W., Ding, Ok. & Ma, G. Realization and topological properties of third-order distinctive strains embedded in distinctive surfaces. Nat. Commun. 14, 6660 (2023).

    Article 
    CAS 

    Google Scholar
     



  • Supply hyperlink

    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    - Advertisment -
    Google search engine

    Most Popular

    Recent Comments