Alberro, A., Iparraguirre, L., Fernandes, A. & Otaegui, D. Extracellular vesicles in blood: sources, results, and functions. Int. J. Mol. Sci. 22, 8163 (2021).
Witwer, Okay. W. & Wolfram, J. Extracellular vesicles versus artificial nanoparticles for drug supply. Nat. Rev. Mater. 6, 103–106 (2021).
Busatto, S., Pham, A., Suh, A., Shapiro, S. & Wolfram, J. Organotropic drug supply: artificial nanoparticles and extracellular vesicles. Biomed. Microdevices 21, 46 (2019).
Beetler, D. J. et al. Extracellular vesicles as personalised medication. Mol. Elements Med. 91, 101155 (2022).
Walker, S. et al. Extracellular vesicle-based drug supply techniques for most cancers therapy. Theranostics 9, 8001–8017 (2019).
Hu, T., Wolfram, J. & Srivastava, S. Extracellular vesicles in most cancers detection: hopes and hypes. Developments Most cancers 7, 122–133 (2020).
Iannotta, D., Yang, M., Celia, C., Di Marzio, L. & Wolfram, J. Extracellular vesicle therapeutics from plasma and adipose tissue. Nano As we speak 39, 101159 (2021).
Ghodasara, A., Raza, A., Wolfram, J., Salomon, C. & Popat, A. Medical translation of extracellular vesicles. Adv. Healthc. Mater. https://doi.org/10.1002/adhm.202301010 (2023).
Dumas, S. J. et al. Phenotypic variety and metabolic specialization of renal endothelial cells. Nat. Rev. Nephrol. 17, 441–464 (2021).
Jourde-Chiche, N. et al. Endothelium construction and performance in kidney well being and illness. Nat. Rev. Nephrol. 15, 87–108 (2019).
Wolfram, J. & Ferrari, M. Medical most cancers nanomedicine. Nano As we speak 25, 85–89 (2019).
Prabhakar, U. et al. Challenges and key concerns of the improved permeability and retention impact for nanomedicine drug supply in oncology. Most cancers Res. 73, 2412–2417 (2013).
Sindhwani, S. et al. The entry of nanoparticles into stable tumours. Nat. Mater. 19, 566–575 (2020).
Lessey-Morillon, E. C. et al. The RhoA guanine nucleotide alternate issue, LARG, mediates ICAM-1-dependent mechanotransduction in endothelial cells to stimulate transendothelial migration. J. Immunol. 192, 3390–3398 (2014).
Zeng, Z. et al. Most cancers-derived exosomal miR-25-3p promotes pre-metastatic area of interest formation by inducing vascular permeability and angiogenesis. Nat. Commun. 9, 5395 (2018).
Treps, L., Perret, R., Edmond, S., Ricard, D. & Gavard, J. Glioblastoma stem-like cells secrete the pro-angiogenic VEGF-A consider extracellular vesicles. J. Extracell. Vesicles 6, 1359479 (2017).
Tominaga, N. et al. Mind metastatic most cancers cells launch microRNA-181c-containing extracellular vesicles able to destructing blood–mind barrier. Nat. Commun. 6, 6716 (2015).
De La Cruz, E. M. How cofilin severs an actin filament. Biophys. Rev. 1, 51–59 (2009).
Chatterjee, V. et al. Endothelial microvesicles carrying Src-rich cargo impair adherens junction integrity and cytoskeleton homeostasis. Cardiovasc. Res. 116, 1525–1538 (2020).
Sperandio, M., Gleissner, C. A. & Ley, Okay. Glycosylation in immune cell trafficking. Immunol. Rev. 230, 97–113 (2009).
Goncalves, J. P., Deliwala, V. J., Kolarich, D., Souza-Fonseca-Guimaraes, F. & Wolfram, J. The most cancers cell-derived extracellular vesicle glycocode in immunoevasion. Developments Immunol. 43, 864–867 (2022).
Yang, M. et al. Extracellular vesicle glucose transporter-1 and glycan options in monocyte-endothelial inflammatory interactions. Nanomedicine 42, 102515 (2022).
Walker, S. A. et al. Glycan node evaluation of plasma-derived extracellular vesicles. Cells 9, 1946 (2020).
Williams, C. et al. Glycosylation of extracellular vesicles: present information, instruments and scientific views. J. Extracell. Vesicles 7, 1442985 (2018).
Pendiuk Goncalves, J. et al. Glycan node evaluation detects various glycosaminoglycan ranges in melanoma-derived extracellular vesicles. Int. J. Mol. Sci. 9, 1946 (2023).
Li, Y. et al. EV-origin: enumerating the tissue-cellular origin of circulating extracellular vesicles utilizing exLR profile. Comput Struct. Biotechnol. J. 18, 2851–2859 (2020).
Baluk, P. et al. Functionally specialised junctions between endothelial cells of lymphatic vessels. J. Exp. Med. 204, 2349–2362 (2007).
Trzewik, J., Mallipattu, S. Okay., Artmann, G. M., Delano, F. A. & Schmid-Schönbein, G. W. Proof for a second valve system in lymphatics: endothelial microvalves. FASEB J. 15, 1711–1717 (2001).
Breslin, J. W. et al. Lymphatic vessel community construction and physiology. Compr. Physiol. 9, 207–299 (2018).
Liu, D. et al. CD97 promotion of gastric carcinoma lymphatic metastasis is exosome dependent. Gastric Most cancers 19, 754–766 (2016).
Shimizu, A. et al. Exosomal CD47 performs a necessary position in immune evasion in ovarian most cancers. Mol. Most cancers Res. 19, 1583–1595 (2021).
Tessandier, N. et al. Platelets disseminate extracellular vesicles in lymph in rheumatoid arthritis. Arterioscler. Thromb. Vasc. Biol. 40, 929–942 (2020).
Welsh, J. D., Kahn, M. L. & Candy, D. T. Lymphovenous hemostasis and the position of platelets in regulating lymphatic circulation and lymphatic vessel maturation. Blood 128, 1169–1173 (2016).
Mehta, D. & Malik, A. B. Signaling mechanisms regulating endothelial permeability. Physiol. Rev. 86, 279–367 (2006).
Fernández-Hernando, C. et al. Genetic proof supporting a important position of endothelial caveolin-1 through the development of atherosclerosis. Cell Metab. 10, 48–54 (2009).
Morad, G. et al. Tumor-derived extracellular vesicles breach the intact blood–mind barrier by way of transcytosis. ACS Nano 13, 13853–13865 (2019).
Chen, C. C. et al. Elucidation of exosome migration throughout the blood–mind barrier mannequin in vitro. Cell. Mol. Bioeng. 9, 509–529 (2016).
Gonda, A., Kabagwira, J., Senthil, G. N. & Wall, N. R. Internalization of exosomes by means of receptor-mediated endocytosis. Mol. Most cancers Res. 17, 337–347 (2019).
Mulcahy, L. A., Pink, R. C. & Carter, D. R. F. Routes and mechanisms of extracellular vesicle uptake. J. Extracell. Vesicles 3, 24641 (2014).
Feng, Y. et al. The blocking of integrin-mediated interactions with maternal endothelial cells reversed the endothelial cell dysfunction induced by EVs, derived from preeclamptic placentae. Int. J. Mol. Sci. 23, 13115 (2022).
Fomina, A. F., Deerinck, T. J., Ellisman, M. H. & Cahalan, M. D. Regulation of membrane trafficking and subcellular group of endocytic compartments revealed with FM1-43 in resting and activated human T cells. Exp. Cell. Res. 291, 150–166 (2003).
Morelli, A. E. et al. Endocytosis, intracellular sorting, and processing of exosomes by dendritic cells. Blood 104, 3257–3266 (2004).
Wei, X. et al. Floor phosphatidylserine is accountable for the internalization on microvesicles derived from hypoxia-induced human bone marrow mesenchymal stem cells into human endothelial cells. PLoS ONE 11, e0147360 (2016).
He, C., Hu, Y., Yin, L., Tang, C. & Yin, C. Results of particle dimension and floor cost on mobile uptake and biodistribution of polymeric nanoparticles. Biomaterials 31, 3657–3666 (2010).
Lu, F., Wu, S. H., Hung, Y. & Mou, C. Y. Dimension impact on cell uptake in effectively‐suspended, uniform mesoporous silica nanoparticles. Small 5, 1408–1413 (2009).
Théry, C. et al. Minimal info for research of extracellular vesicles 2018 (MISEV2018): a place assertion of the Worldwide Society for Extracellular Vesicles and replace of the MISEV2014 pointers. J. Extracell. Vesicles 7, 1535750 (2018).
Gould, S. J. & Raposo, G. As we wait: dealing with an imperfect nomenclature for extracellular vesicles. J. Extracell. Vesicles 2, 20389 (2013).
Sousa de Almeida, M. et al. Understanding nanoparticle endocytosis to enhance concentrating on methods in nanomedicine. Chem. Soc. Rev. 50, 5397–5434 (2021).
Nazarenko, I. et al. Cell floor tetraspanin Tspan8 contributes to molecular pathways of exosome-induced endothelial cell activation. Most cancers Res. 70, 1668–1678 (2010).
Yuan, D. et al. Macrophage exosomes as pure nanocarriers for protein supply to infected mind. Biomaterials 142, 1–12 (2017).
Joshi, B. S. & Zuhorn, I. S. Heparan sulfate proteoglycan-mediated dynamin-dependent transport of neural stem cell exosomes in an in vitro blood–mind barrier mannequin. Eur. J. Neurosci. 53, 706–719 (2021).
Ihrcke, N. S., Wrenshall, L. E., Lindman, B. J. & Platt, J. L. Function of heparan sulfate in immune system-blood vessel interactions. Immunol. As we speak 14, 500–505 (1993).
Chanda, D. et al. Fibronectin on the floor of extracellular vesicles mediates fibroblast invasion. Am. J. Respir. Cell Mol. Biol. 60, 279–288 (2019).
Purushothaman, A. et al. Fibronectin on the floor of myeloma cell-derived exosomes mediates exosome-cell interactions. J. Biol. Chem. 291, 1652–1663 (2016).
Deng, Z. et al. Tumor cell cross discuss with tumor-associated leukocytes results in induction of tumor exosomal fibronectin and promotes tumor development. Am. J. Pathol. 180, 390–398 (2012).
Mertens, G., Cassiman, J. J., Van den Berghe, H., Vermylen, J. & David, G. Cell floor heparan sulfate proteoglycans from human vascular endothelial cells. Core protein characterization and antithrombin III binding properties. J. Biol. Chem. 267, 20435–20443 (1992).
Matsumoto, J. et al. Transmission of α-synuclein-containing erythrocyte-derived extracellular vesicles throughout the blood–mind barrier by way of adsorptive mediated transcytosis: one other mechanism for initiation and development of Parkinson’s illness? Acta Neuropathol. Commun. 5, 71 (2017).
Banks, W. A. et al. Transport of extracellular vesicles throughout the blood–mind barrier: mind pharmacokinetics and results of irritation. Int. J. Mol. Sci. 21, 4407 (2020).
Hervé, F., Ghinea, N. & Scherrmann, J.-M. CNS supply by way of adsorptive transcytosis. AAPS J. 10, 455–472 (2008).
Banks, W. A., Kastin, A. J., Brennan, J. M. & Vallance, Okay. L. Adsorptive endocytosis of HIV-1gp120 by blood–mind barrier is enhanced by lipopolysaccharide. Exp. Neurol. 156, 165–171 (1999).
Wurdinger, T. et al. Extracellular vesicles and their convergence with viral pathways. Adv. Virol. 2012, 767694 (2012).
Banks, W. A. et al. Transport of human immunodeficiency virus sort 1 pseudoviruses throughout the blood–mind barrier: position of envelope proteins and adsorptive endocytosis. J. Virol. 75, 4681–4691 (2001).
Ben-Zvi, A. et al. Mfsd2a is important for the formation and performance of the blood–mind barrier. Nature 509, 507–511 (2014).
Andreone, B. J. et al. Blood–mind barrier permeability is regulated by lipid transport-dependent suppression of caveolae-mediated transcytosis. Neuron 94, 581–594.e5 (2017).
Nguyen, L. N. et al. Mfsd2a is a transporter for the important omega-3 fatty acid docosahexaenoic acid. Nature 509, 503–506 (2014).
Busatto, S. et al. Lipoprotein-based drug supply. Adv. Drug Deliv. Rev. 159, 377–390 (2020).
Simonsen, J. B. What are we ? Extracellular vesicles, lipoproteins, or each. Circ. Res. 121, 920–922 (2017).
Toth, E. A. et al. Formation of a protein corona on the floor of extracellular vesicles in blood plasma. J. Extracell. Vesicles 10, e12140 (2021).
Sodar, B. W. et al. Low-density lipoprotein mimics blood plasma-derived exosomes and microvesicles throughout isolation and detection. Sci. Rep. 6, 24316 (2016).
Busatto, S. et al. Mind metastases-derived extracellular vesicles induce binding and aggregation of low-density lipoprotein. J. Nanobiotechnol. 18, 162 (2020).
Busatto, S. et al. Concerns for extracellular vesicle and lipoprotein interactions in cell tradition assays. J. Extracell. Vesicles 11, e12202 (2022).
Lozano-Andrés, E. et al. Bodily affiliation of low density lipoprotein particles and extracellular vesicles unveiled by single particle evaluation. Preprint at https://doi.org/10.1101/2022.08.31.506022 (2022).
Pham, M.-T. et al. Endosomal egress and intercellular transmission of hepatic ApoE-containing lipoproteins and its exploitation by the hepatitis C virus. PLoS Pathog. 19, e1011052 (2023).
Broad, Okay. et al. Unraveling multilayered extracellular vesicles: hypothesis on trigger. J. Extracell. Vesicles 12, e12309 (2023).
Phinney, D. G. et al. Mesenchymal stem cells use extracellular vesicles to outsource mitophagy and shuttle microRNAs. Nat. Commun. 6, 8472 (2015).
Dixson, A. C., Dawson, T. R., Di Vizio, D. & Weaver, A. M. Context-specific regulation of extracellular vesicle biogenesis and cargo choice. Nat. Rev. Mol. Cell Biol. 4, 454–476 (2023).
Dallas, S. L., Prideaux, M. & Bonewald, L. F. The osteocyte: an endocrine cell … and extra. Endocr. Rev. 34, 658–690 (2013).
Abbott, N. J., Ronnback, L. & Hansson, E. Astrocyte–endothelial interactions on the blood–mind barrier. Nat. Rev. Neurosci. 7, 41–53 (2006).
Xie, Y., Bagby, T. R., Cohen, M. S. & Forrest, M. L. Drug supply to the lymphatic system: significance in future most cancers prognosis and therapies. Knowledgeable Opin. Drug Deliv. 6, 785–792 (2009).
Parker, R. J., Hartman, Okay. D. & Sieber, S. M. Lymphatic absorption and tissue disposition of liposome-entrapped [14C]adriamycin following intraperitoneal administration to rats. Most cancers Res. 41, 1311–1317 (1981).
Fujimoto, Y., Okuhata, Y., Tyngi, S., Namba, Y. & Oku, N. Magnetic resonance lymphography of profundus lymph nodes with liposomal gadolinium-diethylenetriamine pentaacetic acid. Biol. Pharm. Bull. 23, 97–100 (2000).
Kang, M., Jordan, V., Blenkiron, C. & Chamley, L. W. Biodistribution of extracellular vesicles following administration into animals: a scientific overview. J. Extracell. Vesicles 10, e12085 (2021).
Amruta, A., Iannotta, D., Cheetham, S. W., Lammers, T. & Wolfram, J. Vasculature organotropism in drug supply. Adv. Drug Deliv. Rev. 201, 115054 (2023).
Li, C. et al. The position of exosomal miRNAs in most cancers. J. Transl. Med. 20, 6 (2022).
Crowl, J. T., Grey, E. E., Pestal, Okay., Volkman, H. E. & Stetson, D. B. Intracellular nucleic acid detection in autoimmunity. Annu. Rev. Immunol. 35, 313–336 (2017).
Snaebjornsson, M. T., Janaki-Raman, S. & Schulze, A. Greasing the wheels of the most cancers machine: the position of lipid metabolism in most cancers. Cell Metab. 31, 62–76 (2020).
Lei, Okay. et al. Most cancers-cell stiffening by way of ldl cholesterol depletion enhances adoptive T-cell immunotherapy. Nat. Biomed. Eng. 5, 1411–1425 (2021).