Tuesday, December 12, 2023
HomeNanotechnologyPD-L1 blockade TAM-dependently potentiates delicate photothermal remedy towards triple-negative breast most cancers...

PD-L1 blockade TAM-dependently potentiates delicate photothermal remedy towards triple-negative breast most cancers | Journal of Nanobiotechnology


  • Alsaab HO, Sau S, Alzhrani R, Tatiparti Ok, Bhise Ok, Kashaw SK, Iyer AK. PD-1 and PD-L1 checkpoint signaling inhibition for most cancers immunotherapy: mechanism, mixtures, and medical consequence. Entrance Pharmacol. 2017;8:561.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sui H, Ma N, Wang Y, Li H, Liu X, Su Y, Yang J. Anti-PD-1/PD-L1 remedy for non-small-cell lung most cancers: towards customized drugs and mixture methods. J Immunol Res. 2018;2018:6984948.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hamanishi J, Mandai M, Matsumura N, Abiko Ok, Baba T, Konishi I. PD-1/PD-L1 blockade in most cancers remedy: views and points. Int J Clin Oncol. 2016;21(3):462–73.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Cha JH, Chan LC, Li CW, Hsu JL, Hung MC. Mechanisms controlling PD-L1 expression in most cancers. Mol Cell. 2019;76(3):359–70.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Bonaventura P, Shekarian T, Alcazer V, Valladeau-Guilemond J, Valsesia-Wittmann S, Amigorena S, Caux C, Depil S. Chilly tumors: a therapeutic problem for immunotherapy. Entrance Immunol. 2019;10:168.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Duan Q, Zhang H, Zheng J, Zhang L. Turning chilly into sizzling: firing up the tumor microenvironment. Traits Most cancers. 2020;6(7):605–18.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ochoa de Olza M, Navarro Rodrigo B, Zimmermann S, Coukos G. Turning up the warmth on non-immunoreactive tumours: alternatives for medical growth. Lancet Oncol. 2020;21(9):e419–30. https://doi.org/10.1016/S1470-2045(20)30234-5.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Gordon SR, Maute RL, Dulken BW, Hutter G, George BM, McCracken MN, Gupta R, Tsai JM, Sinha R, Corey D, Ring AM, Connolly AJ, Weissman IL. PD-1 expression by tumor-associated macrophages inhibits phagocytosis and tumor immunity. Nature. 2017;545(7655):495–9.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Chen L, Cao MF, Xiao JF, Ma QH, Zhang H, Cai RL, Miao JY, Wang WY, Zhang H, Luo M, Ping YF, Yao XH, Cui YH, Zhang X, Bian XW. Stromal PD-1+ tumor-associated macrophages predict poor prognosis in lung adenocarcinoma. Hum Pathol. 2020;97:68–79.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Sarode P, Schaefer MB, Grimminger F, Seeger W, Savai R. Macrophage and tumor cell cross-talk is key for lung tumor development: we have to discuss. Entrance Oncol. 2020;10:324.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou W, Ke SQ, Huang Z, Flavahan W, Fang X, Paul J, Wu L, Sloan AE, McLendon RE, Li X, Wealthy JN, Bao S. Periostin secreted by glioblastoma stem cells recruits M2 tumor-associated macrophages and promotes malignant development. Nat Cell Biol. 2015;17(2):170–82.

    Article 
    CAS 

    Google Scholar
     

  • Chanmee T, Ontong P, Konno Ok, Itano N. Tumor-associated macrophages as main gamers within the tumor microenvironment. Cancers (Basel). 2014;6(3):1670–90.

    Article 
    PubMed 

    Google Scholar
     

  • Larionova I, Tuguzbaeva G, Ponomaryova A, Stakheyeva M, Cherdyntseva N, Pavlov V, Choinzonov E, Kzhyshkowska J. Tumor-associated macrophages in human breast, colorectal, lung ovarian and prostate cancers. Entrance Oncol. 2020;10: 566511.

    Article 
    PubMed 

    Google Scholar
     

  • Ruan J, Ouyang M, Zhang W, Luo Y, Zhou D. The impact of PD-1 expression on tumor-associated macrophage in T cell lymphoma. Clin Transl Oncol. 2021;23:1134–41.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Kono Y, Saito H, Miyauchi W, Shimizu S, Fujiwara Y. Elevated PD-1-positive macrophages within the tissue of gastric most cancers are intently related to poor prognosis in gastric most cancers sufferers. BMC Most cancers. 2020;20:175.

    Article 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Dhupkar P, Gordon N, Stewart J, Kleinerman ES. Anti-PD-1 remedy redirects macrophages from an M2 to an M1 phenotype inducing regression of OS lung metastases. Most cancers Med. 2018;7(6):2654–64.

    Article 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Rao G, Latha Ok, Ott M, Sabbagh A, Marisetty A, Ling X, Zamler D, Doucette TA, Yang Y, Kong LY, Wei J, Fuller GN, Benavides F, Sonabend AM, Lengthy J, Li S, Curran M, Heimberger AB. Anti-PD-1 induces M1 polarization within the glioma microenvironment and exerts therapeutic efficacy within the absence of CD8 cytotoxic T cells. Clin Most cancers Res. 2020;26(17):4699–712.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Lu D, Ni Z, Liu X, Feng S, Dong X, Shi X, Zhai J, Mai S, Jiang J, Wang Z, Wu H, Cai Ok. Past T cells: understanding the position of PD-1/PD-L1 in tumor-associated macrophages. J Immunol Res. 2019;2019:1919082.

    Article 
    PubMed Central 

    Google Scholar
     

  • Liu Y, Zugazagoitia J, Ahmed FS, Henick BS, Gettinger SN, Herbst RS, Schalper KA, Rimm DL. Immune Cell PD-L1 colocalizes with macrophages and is related to consequence in PD-1 pathway blockade remedy. Clin Most cancers Res. 2020;26(4):970–7.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhang W, Liu Y, Yan Z, Yang H, Solar W, Yao Y, Chen Y, Jiang R. IL-6 promotes PD-L1 expression in monocytes and macrophages by lowering protein tyrosine phosphatase receptor sort O expression in human hepatocellular carcinoma. J Immunother Most cancers. 2020;8(1): e000285.

    Article 
    PubMed 

    Google Scholar
     

  • Fang W, Zhou T, Shi H, Yao M, Zhang D, Qian H, Zeng Q, Wang Y, Jin F, Chai C, Chen T. Progranulin induces immune escape in breast most cancers through up-regulating PD-L1 expression on tumor-associated macrophages (TAMs) and selling CD8+ T cell exclusion. J Exp Clin Most cancers Res. 2021;40(1):4.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Loeuillard E, Yang J, Buckarma E, Wang J, Liu Y, Conboy C, Pavelko KD, Li Y, O’Brien D, Wang C, Graham RP, Smoot RL, Dong H, Ilyas S. Concentrating on tumor-associated macrophages and granulocytic myeloid-derived suppressor cells augments PD-1 blockade in cholangiocarcinoma. J Clin Make investments. 2020;130(10):5380–96.

    Article 
    CAS 

    Google Scholar
     

  • McCord R, Bolen CR, Koeppen H, Kadel EE third, Oestergaard MZ, Nielsen T, Sehn LH, Venstrom JM. PD-L1 and tumor-associated macrophages in de novo DLBCL. Blood Adv. 2019;3(4):531–40.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Prima V, Kaliberova LN, Kaliberov S, Curiel DT, Kusmartsev S. COX2/mPGES1/PGE2 pathway regulates PD-L1 expression in tumor-associated macrophages and myeloid-derived suppressor cells. Proc Natl Acad Sci U S A. 2017;114(5):1117–22.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Hartley GP, Chow L, Ammons DT, Wheat WH, Dow SW. Programmed cell demise ligand 1 (PD-L1) signaling regulates macrophage proliferation and activation. Most cancers Immunol Res. 2018;6(10):1260–73.

    Article 
    CAS 

    Google Scholar
     

  • Zhu Z, Zhang H, Chen B, Liu X, Zhang S, Zong Z, Gao M. PD-L1-mediated immunosuppression in glioblastoma is related to the infiltration and M2-polarization of tumor-associated macrophages. Entrance Immunol. 2020;11: 588552.

    Article 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Du SS, Chen GW, Yang P, Chen YX, Hu Y, Zhao QQ, Zhang Y, Liu R, Zheng DX, Zhou J, Fan J, Zeng ZC. Radiation remedy promotes hepatocellular carcinoma immune cloaking through PD-L1 upregulation induced by cGAS-STING activation. Int J Radiat Oncol Biol Phys. 2022;112(5):1243–55.

    Article 
    PubMed 

    Google Scholar
     

  • Wu M, Huang Q, Xie Y, Wu X, Ma H, Zhang Y, Xia Y. Enchancment of the anticancer efficacy of PD-1/PD-L1 blockade through mixture remedy and PD-L1 regulation. J Hematol Oncol. 2022;15(1):24.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Mantovani A, Marchesi F, Malesci A, Laghi L, Allavena P. Tumour-associated macrophages as remedy targets in oncology. Nat Rev Clin Oncol. 2017;14(7):399–416.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhao R, Wan Q, Wang Y, Wu Y, Xiao S, Li Q, Shen X, Zhuang W, Zhou Y, Xia L, Music Y, Chen Y, Yang H, Wu X. M1-like TAMs are required for the efficacy of PD-L1/PD-1 blockades in gastric most cancers. Oncoimmunology. 2020;10(1):1862520.

    Article 

    Google Scholar
     

  • Solar NY, Chen YL, Wu WY, Lin HW, Chiang YC, Chang CF, Tai YJ, Hsu HC, Chen CA, Solar WZ, Cheng WF. Blockade of PD-L1 enhances most cancers immunotherapy by regulating dendritic cell maturation and macrophage polarization. Cancers. 2019;11(9):1400. https://doi.org/10.3390/cancers11091400.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Huang L, Li Y, Du Y, Zhang Y, Wang X, Ding Y, Yang X, Meng F, Tu J, Luo L, Solar C. Delicate photothermal remedy potentiates anti-PD-L1 remedy for immunologically chilly tumors through an all-in-one and all-in-control technique. Nat Commun. 2019;10(1):4871.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Peng J, Xiao Y, Li W, Yang Q, Tan L, Jia Y, Qu Y, Qian Z. Photosensitizer micelles along with IDO inhibitor improve most cancers photothermal remedy and immunotherapy. Adv Sci. 2018;5:1700891.

    Article 

    Google Scholar
     

  • Zhang X, Du J, Guo Z, Yu J, Gao Q, Yin W, Zhu S, Gu Z, Zhao Y. Environment friendly close to infrared mild triggered nitric oxide launch nanocomposites for sensitizing delicate photothermal remedy. Adv Sci. 2019;6:1801122.

    Article 

    Google Scholar
     

  • Yang Y, Zhu W, Dong Z, Chao Y, Xu L, Chen M, Liu Z. 1D coordination polymer nanofibers for low-temperature photothermal remedy. Adv Mater. 2017. https://doi.org/10.1002/adma.201703588.

    Article 
    PubMed Central 

    Google Scholar
     

  • Li Z, Deng J, Solar J, Ma Y. Hyperthermia concentrating on the tumor microenvironment facilitates immune checkpoint inhibitors. Entrance Immunol. 2020;11: 595207.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Chu KF, Dupuy DE. Thermal ablation of tumours: organic mechanisms and advances in remedy. Nat Rev Most cancers. 2014;14(3):199–208.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Li Y, He L, Dong H, Liu Y, Wang Ok, Li A, Ren T, Shi D, Li Y. Fever-inspired immunotherapy primarily based on photothermal CpG nanotherapeutics: the essential position of delicate warmth in regulating tumor microenvironment. Adv Sci (Weinh). 2018;5(6):1700805.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yi X, Duan QY, Wu FG. Low-temperature photothermal remedy: methods and purposes. Analysis (Wash D C). 2021;2021:9816594.

    PubMed 
    CAS 

    Google Scholar
     

  • Jiang Z, Li T, Cheng H, Zhang F, Yang X, Wang S, Zhou J, Ding Y. Nanomedicine potentiates delicate photothermal remedy for tumor ablation. Asian J Pharm Sci. 2021;16(6):738–61.

    Article 
    PubMed 

    Google Scholar
     

  • Sagiv-Barfi I, Kohrt HE, Czerwinski DK, Ng PP, Chang BY, Levy R. Therapeutic antitumor immunity by checkpoint blockade is enhanced by ibrutinib, an inhibitor of each BTK and ITK. Proc Natl Acad Sci USA. 2015;112(9):E966–72.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Li DC, Zhang YC, Xu J, Yoshino F, Xu HZ, Chen X, Zhao L. Floor-engineered carbon nanohorns as a theranostic nanodevice for photoacoustic imaging and efficient radiochemotherapy of most cancers. Carbon. 2021;180:185–96.

    Article 
    CAS 

    Google Scholar
     

  • Iijima S, Yudasaka M, Yamada R, Bandow S, Suenaga Ok, Kokai F, Takahashi Ok. Nano-aggregates of single-walled graphitic carbon nano-horns. Chem Phys Lett. 1999;309: 165e170.

    Article 

    Google Scholar
     

  • Li TF, Li Ok, Wang C, Liu X, Wen Y, Xu YH, Zhang Q, Zhao QY, Shao M, Li YZ, Han M, Komatsu N, Zhao L, Chen X. Harnessing the cross-talk between tumor cells and tumor-associated macrophages with a nano-drug for modulation of glioblastoma immune microenvironment. J Management Launch. 2017;268:128–46.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Lyons AB, Blake SJ, Doherty KV. Stream cytometric evaluation of cell division by dilution of CFSE and associated dyes. Curr Protoc Cytom. 2013;9:unit911–1911.


    Google Scholar
     

  • Li TF, Li Ok, Zhang Q, Wang C, Yue Y, Chen Z, Yuan SJ, Liu X, Wen Y, Han M, Komatsu N, Xu YH, Zhao L, Chen X. Dendritic cell-mediated supply of doxorubicin-polyglycerol-nanodiamond composites elicits enhanced anti-cancer immune response in glioblastoma. Biomaterials. 2018;181:35–52.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Clark CA, Gupta HB, Sareddy G, Pandeswara S, Lao S, Yuan B, Drerup JM, Padron A, Conejo-Garcia J, Murthy Ok, Liu Y, Turk MJ, Thedieck Ok, Hurez V, Li R, Vadlamudi R, Curiel TJ. Tumor-intrinsic PD-L1 alerts regulate cell development, pathogenesis, and autophagy in ovarian most cancers and melanoma. Most cancers Res. 2016;76(23):6964–74.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Chen C, Li S, Xue J, Qi M, Liu X, Huang Y, Hu J, Dong H, Ling Ok. PD-L1 tumor-intrinsic signaling and its therapeutic implication in triple-negative breast most cancers. JCI Perception. 2021;6(8): e131458.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Karousis N, Suarez-Martinez I, Ewels CP, Tagmatarchis N. Construction, properties, functionalization, and purposes of carbon nanohorns. Chem Rev. 2016;116(8):4850–83.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Pagona G, Tagmatarchis N, Fan J, Yudasaka M, Iijima S. Cone-end functionalization of carbon nanohorns. Chem Mater. 2006;18:3918–20.

    Article 
    CAS 

    Google Scholar
     

  • Jiang BP, Hu LF, Shen XC, Ji SC, Shi ZJ, Liu CJ, Zhang L, Liang H. One-step preparation of a water-soluble carbon nanohorn/phthalocyanine hybrid for dual-modality photothermal and photodynamic remedy. ACS Appl Mater Interfaces. 2014;6:18008–17.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhang M, Murakami T, Ajima Ok, Tsuchida Ok, Sandanayaka ASD, Ito O, Iijima S, Yudasaka M. Fabrication of ZnPc/protein nanohorns for double photodynamic and hyperthermic most cancers phototherapy. P Natl Acad Sci USA. 2008;105:14773–8.

    Article 
    CAS 

    Google Scholar
     

  • Chen D, Wang C, Nie X, Li S, Li R, Guan M, Liu Z, Chen C, Wang C, Shu C, Wan L. Photoacoustic imaging guided near-infrared photothermal remedy utilizing extremely water-dispersible single-walled carbon nanohorns as theranostic brokers. Adv Funct Mater. 2014;24:6621–8.

    Article 
    CAS 

    Google Scholar
     

  • Chechetka SA, Yuba E, Kono Ok, Yudasaka M, Bianco A, Miyako E. Magnetically and near-infrared light-powered supramolecular nanotransporters for the distant management of enzymatic reactions. Angew Chem Int Ed. 2016;55:6476–81.

    Article 
    CAS 

    Google Scholar
     

  • Lin ZX, Jiang BP, Liang JZ, Wen CC, Shen XC. Phycocyanin functionalized single-walled carbon nanohorns hybrid for near-infrared light-mediated most cancers phototheranostics. Carbon. 2019;143:814–27.

    Article 
    CAS 

    Google Scholar
     

  • Yu Y, Yang X, Reghu S, Kaul SC, Wadhwa R, Miyako E. Photothermogenetic inhibition of most cancers stemness by near-infrared-light-activatable nanocomplexes. Nat Commun. 2020;11:4117.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Cisneros BT, Legislation JJ, Matson ML, Azhdarinia A, Sevick-Muraca EM, Wilson LJ. Secure confinement of positron emission tomography and magnetic resonance brokers inside carbon nanotubes for bimodal imaging. Nanomedicine. 2014;9:2499–509.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Iijima S, Yudasaka M, Yamada R, Bandow S, Suenaga Ok, Kokai F, Takahashi Ok. Nano-aggregates of single-walled graphitic carbon nano-horns. Chem Phys Lett. 1999;309:165–70.

    Article 
    CAS 

    Google Scholar
     

  • Moreno-Lanceta A, Medrano-Bosch M, Melgar-Lesmes P. Single-walled carbon nanohorns as promising nanotube-derived supply programs to deal with most cancers. Pharmaceutics. 2020;12:850.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zak KM, Grudnik P, Guzik Ok, Zieba BJ, Musielak B, Dömling A, Dubin G, Holak TA. Structural foundation for small molecule concentrating on of the programmed demise ligand 1 (PD-L1). Oncotarget. 2016;7(21):30323–35.

    Article 
    PubMed 

    Google Scholar
     

  • Ashizawa T, Iizuka A, Tanaka E, Kondou R, Miyata H, Maeda C, Sugino T, Yamaguchi Ok, Ando T, Ishikawa Y, Ito M, Akiyama Y. Antitumor exercise of the PD-1/PD-L1 binding inhibitor BMS-202 within the humanized MHC-double knockout NOG mouse. Biomed Res. 2019;40(6):243–50.

    Article 
    CAS 

    Google Scholar
     

  • Guzik Ok, Zak KM, Grudnik P, Magiera Ok, Musielak B, Törner R, Skalniak L, Dömling A, Dubin G, Holak TA. Small-molecule inhibitors of the programmed cell death-1/programmed death-ligand 1 (PD-1/PD-L1) interplay through transiently induced protein states and dimerization of PD-L1. J Med Chem. 2017;60(13):5857–67.

    Article 
    CAS 

    Google Scholar
     



  • Supply hyperlink

    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    - Advertisment -
    Google search engine

    Most Popular

    Recent Comments