Kimble, H. J. The quantum web. Nature 453, 1023–1030 (2008).
Simon, C. In the direction of a world quantum community. Nat. Photon. 11, 678–680 (2017).
Fröhlich, B. et al. A quantum entry community. Nature 501, 69–72 (2013).
Riedmatten, Hde et al. Lengthy distance quantum teleportation in a quantum relay configuration. Phys. Rev. Lett. 92, 047904 (2004).
Briegel, H. J., Dür, W., Cirac, J. I. & Zoller, P. Quantum repeaters: the position of imperfect native operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998).
Azuma, Ok. et al. Quantum repeaters: from quantum networks to the quantum web. Rev. Mod. Phys. (within the press); preprint at https://arxiv.org/abs/2212.10820 (2022).
Chen, Y. A. et al. Reminiscence-built-in quantum teleportation with photonic and atomic qubits. Nat. Phys. 4, 103–107 (2008).
Żukowski, M., Zeilinger, A., Horne, M. A. & Ekert, A. Ok. ‘Occasion-ready-detectors’ Bell experiment through entanglement swapping. Phys. Rev. Lett. 71, 4287–4290 (1993).
Lvovsky, A. I., Sanders, B. C. & Tittel, W. Optical quantum reminiscence. Nat. Photon. 3, 706–714 (2009).
Wei, S. H. et al. In the direction of real-world quantum networks: a evaluation. Laser Photon. Rev. 16, 2100219 (2022).
Davidson, O., Yogev, O., Poem, E. & Firstenberg, O. Quick, noise-free atomic optical reminiscence with 35% end-to-end effectivity. Commun. Phys. 6, 131 (2023).
van Loock, P. et al. Extending quantum hyperlinks: modules for fiber- and memory-based quantum repeaters. Adv. Quantum Technol. 3, 1900141 (2020).
Azuma, Ok., Tamaki, Ok. & Lo, H.-Ok. All-photonic quantum repeaters. Nat. Commun. 6, 6787 (2015).
Ghatak, A. & Thyagarajan, Ok. An Introduction to Fiber Optics (Cambridge Univ. Press, 1998).
Liao, S. Ok. et al. Lengthy-distance free-space quantum key distribution in daylight in the direction of inter-satellite communication. Nat. Photon. 11, 509–513 (2017).
Matsui, Y. et al. Low-chirp isolator-free 65-GHz-bandwidth straight modulated lasers. Nat. Photon. 15, 59–63 (2021).
He, M. et al. Excessive-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and past. Nat. Photon. 13, 359–364 (2019).
Zhang, J., Itzler, M. A., Zbinden, H. & Pan, J. W. Advances in InGaAs/InP single-photon detector programs for quantum communication. Gentle. Sci. Appl. 4, e286 (2015).
Reddy, D. V., Nerem, R. R., Nam, S. W., Mirin, R. P. & Verma, V. B. Superconducting nanowire single-photon detectors with 98% system detection effectivity at 1550 nm. Optica 7, 1649–1653 (2020).
Tomm, N. et al. A vivid and quick supply of coherent single photons. Nat. Nanotechnol. 16, 399–403 (2021).
Vajner, D. A., Rickert, L., Gao, T., Kaymazlar, Ok. & Heindel, T. Quantum communication utilizing semiconductor quantum dots. Adv. Quantum Technol. 5, 2100116 (2022).
Bozzio, M. et al. Enhancing quantum cryptography with quantum dot single-photon sources. npj Quantum Inf. 8, 104 (2022).
Anderson, M. et al. Gigahertz-clocked teleportation of time-bin qubits with a quantum dot within the telecommunication C band. Phys. Rev. Appl. 13, 054052 (2020).
Liu, J. et al. A solid-state supply of strongly entangled photon pairs with excessive brightness and indistinguishability. Nat. Nanotechnol. 14, 586–593 (2019).
Gao, W. B., Fallahi, P., Togan, E., Miguel-Sanchez, J. & Imamoglu, A. Statement of entanglement between a quantum dot spin and a single photon. Nature 491, 426–430 (2012).
Delteil, A. et al. Technology of heralded entanglement between distant gap spins. Nat. Phys. 12, 218–223 (2016).
Cogan, D., Su, Z. E., Kenneth, O. & Gershoni, D. Deterministic technology of indistinguishable photons in a cluster state. Nat. Photon. 17, 324–329 (2023).
Kettler, J. et al. Single-photon and photon pair emission from MOVPE-grown In(Ga)As quantum dots: shifting the emission wavelength from 1.0 to 1.3 μm. Appl. Phys. B 122, 48 (2016).
Srocka, N. et al. Deterministically fabricated quantum dot single-photon supply emitting indistinguishable photons within the telecom O-band. Appl. Phys. Lett. 116, 231104 (2020).
Orchard, J. R. et al. Silicon-based single quantum dot emission within the telecoms C-band. ACS Photon. 4, 1740–1746 (2017).
Portalupi, S. L., Jetter, M. & Michler, P. InAs quantum dots grown on metamorphic buffers as non-classical gentle sources at telecom C-band: a evaluation. Semiconductor Sci. Technol. 34, 053001 (2019).
Nawrath, C. et al. Coherence and indistinguishability of extremely pure single photons from non-resonantly and resonantly excited telecom C-band quantum dots. Appl. Phys. Lett. 115, 023103 (2019).
Zeuner, Ok. D. et al. On-demand technology of entangled photon pairs within the telecom C-band with InAs quantum dots. ACS Photon. 8, 2337–2344 (2021).
Chen, Z.-S. et al. Brilliant single-photon supply at 1.3 μm primarily based on InAs bilayer quantum dot in micropillar. Nanoscale Res. Lett. 12, 378 (2017).
Takemoto, Ok., Sakuma, Y., Hirose, S., Usuki, T. & Yokoyama, N. Statement of exciton transition in 1.3–1.55 μm band from single InAs/InP quantum dots in mesa construction. Jpn J. Appl. Phys. 43, L349 (2004).
Sobiesierski, Z. et al. As/P alternate on InP (001) studied by reflectance anisotropy spectroscopy. Appl. Phys. Lett. 70, 1423–1425 (1997).
Anantathanasarn, S., Nötzel, R., van Veldhoven, P. J., Eijkemans, T. J. & Wolter, J. H. Wavelength-tunable (1.55‐μm area) InAs quantum dots in InGaAsP∕InP (100) grown by metal-organic vapor-phase epitaxy. J. Appl. Phys. 98, 013503 (2005).
Leavitt, R. P. & Richardson, C. J. Ok. Pathway to attaining round InAs quantum dots straight on (100) InP and to tuning their emission wavelengths towards 1.55 μm. J. Vac. Sci. Technol. B 33, 051202 (2015).
Gurioli, M., Wang, Z., Rastelli, A., Kuroda, T. & Sanguinetti, S. Droplet epitaxy of semiconductor nanostructures for quantum photonic gadgets. Nat. Mater. 18, 799–810 (2019).
Ha, N. et al. Single photon emission from droplet epitaxial quantum dots in the usual telecom window round a wavelength of 1.55 µm. Appl. Phys. Specific 13, 025002 (2020).
Skiba-Szymanska, J. et al. Common development scheme for quantum dots with low fine-structure splitting at varied emission wavelengths. Phys. Rev. Appl. 8, 014013 (2017).
Liu, X. et al. Vanishing fine-structure splittings in telecommunication-wavelength quantum dots grown on (111)A surfaces by droplet epitaxy. Phys. Rev. B 90, 081301 (2014).
Müller, T. et al. A quantum light-emitting diode for the usual telecom window round 1,550 nm. Nat. Commun. 9, 862 (2018).
Zhai, L. et al. Low-noise GaAs quantum dots for quantum photonics. Nat. Commun. 11, 8 (2020).
Chellu, A., Hilska, J., Penttinen, J.-P. & Hakkarainen, T. Extremely uniform GaSb quantum dots with oblique–direct bandgap crossover at telecom vary. APL Mater. 9, 051116 (2021).
Cao, X. et al. Native droplet etching on InAlAs/InP surfaces with InAl droplets. AIP Adv. 12, 055302 (2022).
Singh, R. & Bester, G. Nanowire quantum dots as an excellent supply of entangled photon pairs. Phys. Rev. Lett. 103, 063601 (2009).
Haffouz, S. et al. Brilliant single InAsP quantum dots at telecom wavelengths in position-controlled InP nanowires: the position of the photonic waveguide. Nano Lett. 18, 3047–3052 (2018).
Zhang, J. et al. Planarized spatially-regular arrays of spectrally uniform single quantum dots as on-chip single photon sources for quantum optical circuits. APL Photon. 5, 116106 (2020).
Strittmatter, A. et al. Lateral positioning of InGaAs quantum dots utilizing a buried stressor. Appl. Phys. Lett. 100, 093111 (2012).
Große, J., Helversen, M. V., Koulas-Simos, A., Hermann, M. & Reitzenstein, S. Growth of site-controlled quantum dot arrays performing as scalable sources of indistinguishable photons. APL Photon. 5, 096107 (2020).
Kim, J.-H., Cai, T., Richardson, C. J. Ok., Leavitt, R. P. & Waks, E. Two-photon interference from a vivid single-photon supply at telecom wavelengths. Optica 3, 577–584 (2016).
Kolatschek, S. et al. Brilliant Purcell enhanced single-photon supply within the telecom O-band primarily based on a quantum dot in a round Bragg grating. Nano Lett. 21, 7740–7745 (2021).
Holewa, P. et al. Scalable quantum photonic gadgets emitting indistinguishable photons within the telecom C-band. Preprint at https://arxiv.org/abs/2304.02515 (2023).
Nawrath, C. et al. Brilliant supply of Purcell-enhanced, triggered, single photons within the telecom C-band. Adv. Quantum Technol. 2023, 2300111 (2023).
Lee, C.-M. et al. Brilliant telecom-wavelength single photons primarily based on a tapered nanobeam. Nano Lett. 21, 323–329 (2021).
Takemoto, Ok. et al. An optical horn construction for single-photon supply utilizing quantum dots at telecommunication wavelength. J. Appl. Phys. 101, 081720 (2007).
Yang, J. Z. et al. Quantum dot-based broadband optical antenna for environment friendly extraction of single photons within the telecom O-band. Decide. Specific 28, 19457–19468 (2020).
Sartison, M. et al. Deterministic integration and optical characterization of telecom O-band quantum dots embedded into wet-chemically etched Gaussian-shaped microlenses. Appl. Phys. Lett. 113, 032103 (2018).
Musiał, A. et al. InP-based single-photon sources working at telecom C-band with elevated extraction effectivity. Appl. Phys. Lett. 118, 221101 (2021).
Schlehahn, A. et al. A stand-alone fiber-coupled single-photon supply. Sci. Rep. 8, 1340 (2018).
Musiał, A. et al. Plug&Play fiber-coupled 73 kHz single-photon supply working within the telecom O-band. Adv. Quantum Technol. 3, 2000018 (2020).
Yariv, A. & Yeh, P. Photonics: Optical Electronics in Trendy Communications (Oxford Univ. Press, 2007).
Lee, C.-M. et al. A fiber-integrated nanobeam single photon supply emitting at telecom wavelengths. Appl. Phys. Lett. 114, 171101 (2019).
Northeast, D. B. et al. Optical fibre-based single photon supply utilizing InAsP quantum dot nanowires and gradient-index lens assortment. Sci. Rep. 11, 22878 (2021).
Ates, S. et al. Enhancing the efficiency of vivid quantum dot single photon sources utilizing temporal filtering through amplitude modulation. Sci. Rep. 3, 1397 (2013).
Gröblacher, S., Hill, J. T., Safavi-Naeini, A. H., Chan, J. & Painter, O. Extremely environment friendly coupling from an optical fiber to a nanoscale silicon optomechanical cavity. Appl. Phys. Lett. 103, 181104 (2013).
Gyger, S. et al. Metropolitan single-photon distribution at 1550 nm for random quantity technology. Appl. Phys. Lett. 121, 194003 (2022).
Xiang, Z.-H. et al. A tuneable telecom wavelength entangled gentle emitting diode deployed in an put in fibre community. Commun. Phys. 3, 121 (2020).
Anderson, M. et al. Quantum teleportation utilizing extremely coherent emission from telecom C-band quantum dots. npj Quantum Inf. 6, 14 (2020).
Takemoto, Ok. et al. Quantum key distribution over 120 km utilizing ultrahigh purity single-photon supply and superconducting single-photon detectors. Sci. Rep. 5, 14383 (2015).
Dusanowski, Ł. et al. Optical cost injection and coherent management of a quantum-dot spin-qubit emitting at telecom wavelengths. Nat. Commun. 13, 748 (2022).
Rickert, L., Kupko, T., Rodt, S., Reitzenstein, S. & Heindel, T. Optimized designs for telecom-wavelength quantum gentle sources primarily based on hybrid round Bragg gratings. Decide. Specific 27, 36824–36837 (2019).
Bremer, L. et al. Numerical optimization of single-mode fiber-coupled single-photon sources primarily based on semiconductor quantum dots. Decide. Specific 30, 15913–15928 (2022).
Barbiero, A. et al. Design examine for an environment friendly semiconductor quantum gentle supply working within the telecom C-band primarily based on an electrically-driven round Bragg grating. Decide. Specific 30, 10919–10928 (2022).
Wells, L. et al. Coherent gentle scattering from a telecom C-band quantum dot. Preprint at https://arxiv.org/abs/2205.07997 (2022).
Wang, H. et al. Close to-transform-limited single photons from an environment friendly solid-state quantum emitter. Phys. Rev. Lett. 116, 213601 (2016).
Lettner, T. et al. Pressure-controlled quantum dot effective construction for entangled photon technology at 1550 nm. Nano Lett. 21, 10501–10506 (2021).
Farrera, P., Heinze, G. & de Riedmatten, H. Entanglement between a photonic time-bin qubit and a collective atomic spin excitation. Phys. Rev. Lett. 120, 100501 (2018).
You, X. et al. Quantum interference between impartial solid-state single-photon sources separated by 300 km fiber. Adv. Photon. 4, 066003 (2022).
Arenskötter, E. et al. Telecom quantum photonic interface for a 40Ca+ single-ion quantum reminiscence. npj Quantum Inf. 9, 34 (2023).
Fejer, M. M. Nonlinear optical frequency conversion. Phys. Right now 47, 25–32 (1994).
Da Lio, B. et al. A pure and indistinguishable single-photon supply at telecommunication wavelength. Adv. Quantum Technol. 5, 2200006 (2022).
De Greve, Ok. et al. Quantum-dot spin–photon entanglement through frequency downconversion to telecom wavelength. Nature 491, 421–425 (2012).
Weber, J. H. et al. Two-photon interference within the telecom C-band after frequency conversion of photons from distant quantum emitters. Nat. Nanotechnol. 14, 23–26 (2019).
Ikuta, R. et al. Polarization insensitive frequency conversion for an atom-photon entanglement distribution through a telecom community. Nat. Commun. 9, 1997 (2018).
Agha, I., Davanço, M., Thurston, B. & Srinivasan, Ok. Low-noise chip-based frequency conversion by four-wave-mixing Bragg scattering in SiNx waveguides. Decide. Lett. 37, 2997–2999 (2012).
Li, Q., Davanço, M. & Srinivasan, Ok. Environment friendly and low-noise single-photon-level frequency conversion interfaces utilizing silicon nanophotonics. Nat. Photon. 10, 406–414 (2016).
Moody, G. et al. 2022 roadmap on built-in quantum photonics. J. Phys. Photon. 4, 012501 (2022).
McGuinness, H. J., Raymer, M. G., McKinstrie, C. J. & Radic, S. Quantum frequency translation of single-photon states in a photonic crystal fiber. Phys. Rev. Lett. 105, 093604 (2010).
Singh, A. et al. Quantum frequency conversion of a quantum dot single-photon supply on a nanophotonic chip. Optica 6, 563–569 (2019).
Chen, J.-Y. et al. Photon conversion and interplay in a quasi-phase-matched microresonator. Phys. Rev. Appl. 16, 064004 (2021).
Ulsig, E. Z. et al. Environment friendly low threshold frequency conversion in AlGaAs-on-insulator waveguides. Entrance. Photon. 3, 904651 (2022).
Kim, J.-H., Aghaeimeibodi, S., Carolan, J., Englund, D. & Waks, E. Hybrid integration strategies for on-chip quantum photonics. Optica 7, 291–308 (2020).
Elshaari, A. W., Pernice, W., Srinivasan, Ok., Benson, O. & Zwiller, V. Hybrid built-in quantum photonic circuits. Nat. Photon. 14, 285–298 (2020).
Kim, J.-H. et al. Hybrid integration of solid-state quantum emitters on a silicon photonic chip. Nano Lett. 17, 7394–7400 (2017).
Katsumi, R. et al. CMOS-compatible integration of telecom band InAs/InP quantum-dot single-photon sources on a Si chip utilizing switch printing. Appl. Phys. Specific 16, 012004 (2023).
Aghaeimeibodi, S. et al. Integration of quantum dots with lithium niobate photonics. Appl. Phys. Lett. 113, 221102 (2018).
Davanco, M. et al. Heterogeneous integration for on-chip quantum photonic circuits with single quantum dot gadgets. Nat. Commun. 8, 889 (2017).
Xu, S.-W. et al. Brilliant single-photon sources within the telecom band by deterministically coupling single quantum dots to a hybrid round Bragg resonator. Photon. Res. 10, B1–B6 (2022).
Billah, M. R. et al. Hybrid integration of silicon photonics circuits and InP lasers by photonic wire bonding. Optica 5, 876–883 (2018).
Gehring, H. et al. Low-loss fiber-to-chip couplers with ultrawide optical bandwidth. APL Photon. 4, 010801 (2019).
Liu, S. et al. Twin-resonance enhanced quantum light-matter interactions in deterministically coupled quantum-dot-micropillars. Gentle. Sci. Appl. 10, 158 (2021).
Liu, S., Srinivasan, Ok. & Liu, J. Nanoscale positioning approaches for integrating single solid-state quantum emitters with photonic nanostructures. Laser Photon. Rev. 15, 2100223 (2021).
Liu, J. et al. Single self-assembled InAs/GaAs quantum dots in photonic nanostructures: the position of nanofabrication. Phys. Rev. Appl. 9, 064019 (2018).
Li, X. S. et al. Brilliant semiconductor single-photon sources pumped by heterogeneously built-in micropillar lasers with electrical injections. Gentle. Sci. Appl. 12, 65 (2023).
Zhou, X. et al. Epitaxial quantum dots: a semiconductor launchpad for photonic quantum applied sciences. Photon. Insights 1, R07 (2022).
Wang, J. et al. Brilliant room temperature single photon supply at telecom vary in cubic silicon carbide. Nat. Commun. 9, 4106 (2018).
Meunier, M. et al. Telecom single-photon emitters in GaN working at room temperature: embedment into bullseye antennas. Nanophotonics 12, 1405–1419 (2023).
Ourari, S. et al. Indistinguishable telecom band photons from a single Er ion within the strong state. Nature 620, 977–981 (2023).
Wei, Y. et al. Tailoring solid-state single-photon sources with stimulated emissions. Nat. Nanotechnol. 17, 470–476 (2022).
Schwartz, I. et al. Deterministic writing and management of the darkish exciton spin utilizing single quick optical pulses. Phys. Rev. X 5, 011009 (2015).
Gerardot, B. D. et al. Optical pumping of a single gap spin in a quantum dot. Nature 451, 441–444 (2008).
Berezovsky, J., Mikkelsen, M. H., Stoltz, N. G., Coldren, L. A. & Awschalom, D. D. Picosecond coherent optical manipulation of a single electron spin in a quantum dot. Science 320, 349–352 (2008).
Tiurev, Ok. et al. Excessive-fidelity multiphoton-entangled cluster state with solid-state quantum emitters in photonic nanostructures. Phys. Rev. A 105, L030601 (2022).
Schwartz, I. et al. Deterministic technology of a cluster state of entangled photons. Science 354, 434–437 (2016).
Coste, N. et al. Excessive-rate entanglement between a semiconductor spin and indistinguishable photons. Nat. Photon. 17, 582–587 (2023).
Schall, J. et al. Brilliant electrically controllable quantum-dot-molecule gadgets fabricated by in situ electron-beam lithography. Adv. Quantum Technol. 4, 2100002 (2021).
Boyer de la Giroday, A. et al. Exciton-spin reminiscence with a semiconductor quantum dot molecule. Phys. Rev. Lett. 106, 216802 (2011).
Economou, S. E., Lindner, N. & Rudolph, T. Optically generated 2-dimensional photonic cluster state from coupled quantum dots. Phys. Rev. Lett. 105, 093601 (2010).
Gangloff, D. A. et al. Quantum interface of an electron and a nuclear ensemble. Science 364, 62–66 (2019).
Tang, J.-S. et al. Storage of a number of single-photon pulses emitted from a quantum dot in a solid-state quantum reminiscence. Nat. Commun. 6, 8652 (2015).