Sunday, December 10, 2023
HomeNanotechnologyTelecom-band quantum dot applied sciences for long-distance quantum networks

Telecom-band quantum dot applied sciences for long-distance quantum networks


  • Kimble, H. J. The quantum web. Nature 453, 1023–1030 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Simon, C. In the direction of a world quantum community. Nat. Photon. 11, 678–680 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Fröhlich, B. et al. A quantum entry community. Nature 501, 69–72 (2013).

    Article 

    Google Scholar
     

  • Riedmatten, Hde et al. Lengthy distance quantum teleportation in a quantum relay configuration. Phys. Rev. Lett. 92, 047904 (2004).

    Article 

    Google Scholar
     

  • Briegel, H. J., Dür, W., Cirac, J. I. & Zoller, P. Quantum repeaters: the position of imperfect native operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Azuma, Ok. et al. Quantum repeaters: from quantum networks to the quantum web. Rev. Mod. Phys. (within the press); preprint at https://arxiv.org/abs/2212.10820 (2022).

  • Chen, Y. A. et al. Reminiscence-built-in quantum teleportation with photonic and atomic qubits. Nat. Phys. 4, 103–107 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Żukowski, M., Zeilinger, A., Horne, M. A. & Ekert, A. Ok. ‘Occasion-ready-detectors’ Bell experiment through entanglement swapping. Phys. Rev. Lett. 71, 4287–4290 (1993).

    Article 

    Google Scholar
     

  • Lvovsky, A. I., Sanders, B. C. & Tittel, W. Optical quantum reminiscence. Nat. Photon. 3, 706–714 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Wei, S. H. et al. In the direction of real-world quantum networks: a evaluation. Laser Photon. Rev. 16, 2100219 (2022).

    Article 

    Google Scholar
     

  • Davidson, O., Yogev, O., Poem, E. & Firstenberg, O. Quick, noise-free atomic optical reminiscence with 35% end-to-end effectivity. Commun. Phys. 6, 131 (2023).

    Article 

    Google Scholar
     

  • van Loock, P. et al. Extending quantum hyperlinks: modules for fiber- and memory-based quantum repeaters. Adv. Quantum Technol. 3, 1900141 (2020).

    Article 

    Google Scholar
     

  • Azuma, Ok., Tamaki, Ok. & Lo, H.-Ok. All-photonic quantum repeaters. Nat. Commun. 6, 6787 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Ghatak, A. & Thyagarajan, Ok. An Introduction to Fiber Optics (Cambridge Univ. Press, 1998).

  • Liao, S. Ok. et al. Lengthy-distance free-space quantum key distribution in daylight in the direction of inter-satellite communication. Nat. Photon. 11, 509–513 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Matsui, Y. et al. Low-chirp isolator-free 65-GHz-bandwidth straight modulated lasers. Nat. Photon. 15, 59–63 (2021).

    Article 
    CAS 

    Google Scholar
     

  • He, M. et al. Excessive-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and past. Nat. Photon. 13, 359–364 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, J., Itzler, M. A., Zbinden, H. & Pan, J. W. Advances in InGaAs/InP single-photon detector programs for quantum communication. Gentle. Sci. Appl. 4, e286 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Reddy, D. V., Nerem, R. R., Nam, S. W., Mirin, R. P. & Verma, V. B. Superconducting nanowire single-photon detectors with 98% system detection effectivity at 1550 nm. Optica 7, 1649–1653 (2020).

    Article 

    Google Scholar
     

  • Tomm, N. et al. A vivid and quick supply of coherent single photons. Nat. Nanotechnol. 16, 399–403 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Vajner, D. A., Rickert, L., Gao, T., Kaymazlar, Ok. & Heindel, T. Quantum communication utilizing semiconductor quantum dots. Adv. Quantum Technol. 5, 2100116 (2022).

    Article 

    Google Scholar
     

  • Bozzio, M. et al. Enhancing quantum cryptography with quantum dot single-photon sources. npj Quantum Inf. 8, 104 (2022).

    Article 

    Google Scholar
     

  • Anderson, M. et al. Gigahertz-clocked teleportation of time-bin qubits with a quantum dot within the telecommunication C band. Phys. Rev. Appl. 13, 054052 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Liu, J. et al. A solid-state supply of strongly entangled photon pairs with excessive brightness and indistinguishability. Nat. Nanotechnol. 14, 586–593 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Gao, W. B., Fallahi, P., Togan, E., Miguel-Sanchez, J. & Imamoglu, A. Statement of entanglement between a quantum dot spin and a single photon. Nature 491, 426–430 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Delteil, A. et al. Technology of heralded entanglement between distant gap spins. Nat. Phys. 12, 218–223 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Cogan, D., Su, Z. E., Kenneth, O. & Gershoni, D. Deterministic technology of indistinguishable photons in a cluster state. Nat. Photon. 17, 324–329 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Kettler, J. et al. Single-photon and photon pair emission from MOVPE-grown In(Ga)As quantum dots: shifting the emission wavelength from 1.0 to 1.3 μm. Appl. Phys. B 122, 48 (2016).

    Article 

    Google Scholar
     

  • Srocka, N. et al. Deterministically fabricated quantum dot single-photon supply emitting indistinguishable photons within the telecom O-band. Appl. Phys. Lett. 116, 231104 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Orchard, J. R. et al. Silicon-based single quantum dot emission within the telecoms C-band. ACS Photon. 4, 1740–1746 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Portalupi, S. L., Jetter, M. & Michler, P. InAs quantum dots grown on metamorphic buffers as non-classical gentle sources at telecom C-band: a evaluation. Semiconductor Sci. Technol. 34, 053001 (2019).

    CAS 

    Google Scholar
     

  • Nawrath, C. et al. Coherence and indistinguishability of extremely pure single photons from non-resonantly and resonantly excited telecom C-band quantum dots. Appl. Phys. Lett. 115, 023103 (2019).

    Article 

    Google Scholar
     

  • Zeuner, Ok. D. et al. On-demand technology of entangled photon pairs within the telecom C-band with InAs quantum dots. ACS Photon. 8, 2337–2344 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Chen, Z.-S. et al. Brilliant single-photon supply at 1.3 μm primarily based on InAs bilayer quantum dot in micropillar. Nanoscale Res. Lett. 12, 378 (2017).

    Article 

    Google Scholar
     

  • Takemoto, Ok., Sakuma, Y., Hirose, S., Usuki, T. & Yokoyama, N. Statement of exciton transition in 1.3–1.55 μm band from single InAs/InP quantum dots in mesa construction. Jpn J. Appl. Phys. 43, L349 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Sobiesierski, Z. et al. As/P alternate on InP (001) studied by reflectance anisotropy spectroscopy. Appl. Phys. Lett. 70, 1423–1425 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Anantathanasarn, S., Nötzel, R., van Veldhoven, P. J., Eijkemans, T. J. & Wolter, J. H. Wavelength-tunable (1.55‐μm area) InAs quantum dots in InGaAsP∕InP (100) grown by metal-organic vapor-phase epitaxy. J. Appl. Phys. 98, 013503 (2005).

    Article 

    Google Scholar
     

  • Leavitt, R. P. & Richardson, C. J. Ok. Pathway to attaining round InAs quantum dots straight on (100) InP and to tuning their emission wavelengths towards 1.55 μm. J. Vac. Sci. Technol. B 33, 051202 (2015).

    Article 

    Google Scholar
     

  • Gurioli, M., Wang, Z., Rastelli, A., Kuroda, T. & Sanguinetti, S. Droplet epitaxy of semiconductor nanostructures for quantum photonic gadgets. Nat. Mater. 18, 799–810 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Ha, N. et al. Single photon emission from droplet epitaxial quantum dots in the usual telecom window round a wavelength of 1.55 µm. Appl. Phys. Specific 13, 025002 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Skiba-Szymanska, J. et al. Common development scheme for quantum dots with low fine-structure splitting at varied emission wavelengths. Phys. Rev. Appl. 8, 014013 (2017).

    Article 

    Google Scholar
     

  • Liu, X. et al. Vanishing fine-structure splittings in telecommunication-wavelength quantum dots grown on (111)A surfaces by droplet epitaxy. Phys. Rev. B 90, 081301 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Müller, T. et al. A quantum light-emitting diode for the usual telecom window round 1,550 nm. Nat. Commun. 9, 862 (2018).

    Article 

    Google Scholar
     

  • Zhai, L. et al. Low-noise GaAs quantum dots for quantum photonics. Nat. Commun. 11, 8 (2020).

    Article 

    Google Scholar
     

  • Chellu, A., Hilska, J., Penttinen, J.-P. & Hakkarainen, T. Extremely uniform GaSb quantum dots with oblique–direct bandgap crossover at telecom vary. APL Mater. 9, 051116 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Cao, X. et al. Native droplet etching on InAlAs/InP surfaces with InAl droplets. AIP Adv. 12, 055302 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Singh, R. & Bester, G. Nanowire quantum dots as an excellent supply of entangled photon pairs. Phys. Rev. Lett. 103, 063601 (2009).

    Article 

    Google Scholar
     

  • Haffouz, S. et al. Brilliant single InAsP quantum dots at telecom wavelengths in position-controlled InP nanowires: the position of the photonic waveguide. Nano Lett. 18, 3047–3052 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, J. et al. Planarized spatially-regular arrays of spectrally uniform single quantum dots as on-chip single photon sources for quantum optical circuits. APL Photon. 5, 116106 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Strittmatter, A. et al. Lateral positioning of InGaAs quantum dots utilizing a buried stressor. Appl. Phys. Lett. 100, 093111 (2012).

    Article 

    Google Scholar
     

  • Große, J., Helversen, M. V., Koulas-Simos, A., Hermann, M. & Reitzenstein, S. Growth of site-controlled quantum dot arrays performing as scalable sources of indistinguishable photons. APL Photon. 5, 096107 (2020).

    Article 

    Google Scholar
     

  • Kim, J.-H., Cai, T., Richardson, C. J. Ok., Leavitt, R. P. & Waks, E. Two-photon interference from a vivid single-photon supply at telecom wavelengths. Optica 3, 577–584 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Kolatschek, S. et al. Brilliant Purcell enhanced single-photon supply within the telecom O-band primarily based on a quantum dot in a round Bragg grating. Nano Lett. 21, 7740–7745 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Holewa, P. et al. Scalable quantum photonic gadgets emitting indistinguishable photons within the telecom C-band. Preprint at https://arxiv.org/abs/2304.02515 (2023).

  • Nawrath, C. et al. Brilliant supply of Purcell-enhanced, triggered, single photons within the telecom C-band. Adv. Quantum Technol. 2023, 2300111 (2023).

    Article 

    Google Scholar
     

  • Lee, C.-M. et al. Brilliant telecom-wavelength single photons primarily based on a tapered nanobeam. Nano Lett. 21, 323–329 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Takemoto, Ok. et al. An optical horn construction for single-photon supply utilizing quantum dots at telecommunication wavelength. J. Appl. Phys. 101, 081720 (2007).

    Article 

    Google Scholar
     

  • Yang, J. Z. et al. Quantum dot-based broadband optical antenna for environment friendly extraction of single photons within the telecom O-band. Decide. Specific 28, 19457–19468 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Sartison, M. et al. Deterministic integration and optical characterization of telecom O-band quantum dots embedded into wet-chemically etched Gaussian-shaped microlenses. Appl. Phys. Lett. 113, 032103 (2018).

    Article 

    Google Scholar
     

  • Musiał, A. et al. InP-based single-photon sources working at telecom C-band with elevated extraction effectivity. Appl. Phys. Lett. 118, 221101 (2021).

    Article 

    Google Scholar
     

  • Schlehahn, A. et al. A stand-alone fiber-coupled single-photon supply. Sci. Rep. 8, 1340 (2018).

    Article 

    Google Scholar
     

  • Musiał, A. et al. Plug&Play fiber-coupled 73 kHz single-photon supply working within the telecom O-band. Adv. Quantum Technol. 3, 2000018 (2020).

    Article 

    Google Scholar
     

  • Yariv, A. & Yeh, P. Photonics: Optical Electronics in Trendy Communications (Oxford Univ. Press, 2007).

  • Lee, C.-M. et al. A fiber-integrated nanobeam single photon supply emitting at telecom wavelengths. Appl. Phys. Lett. 114, 171101 (2019).

    Article 

    Google Scholar
     

  • Northeast, D. B. et al. Optical fibre-based single photon supply utilizing InAsP quantum dot nanowires and gradient-index lens assortment. Sci. Rep. 11, 22878 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Ates, S. et al. Enhancing the efficiency of vivid quantum dot single photon sources utilizing temporal filtering through amplitude modulation. Sci. Rep. 3, 1397 (2013).

    Article 

    Google Scholar
     

  • Gröblacher, S., Hill, J. T., Safavi-Naeini, A. H., Chan, J. & Painter, O. Extremely environment friendly coupling from an optical fiber to a nanoscale silicon optomechanical cavity. Appl. Phys. Lett. 103, 181104 (2013).

    Article 

    Google Scholar
     

  • Gyger, S. et al. Metropolitan single-photon distribution at 1550 nm for random quantity technology. Appl. Phys. Lett. 121, 194003 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Xiang, Z.-H. et al. A tuneable telecom wavelength entangled gentle emitting diode deployed in an put in fibre community. Commun. Phys. 3, 121 (2020).

    Article 

    Google Scholar
     

  • Anderson, M. et al. Quantum teleportation utilizing extremely coherent emission from telecom C-band quantum dots. npj Quantum Inf. 6, 14 (2020).

    Article 

    Google Scholar
     

  • Takemoto, Ok. et al. Quantum key distribution over 120 km utilizing ultrahigh purity single-photon supply and superconducting single-photon detectors. Sci. Rep. 5, 14383 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Dusanowski, Ł. et al. Optical cost injection and coherent management of a quantum-dot spin-qubit emitting at telecom wavelengths. Nat. Commun. 13, 748 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Rickert, L., Kupko, T., Rodt, S., Reitzenstein, S. & Heindel, T. Optimized designs for telecom-wavelength quantum gentle sources primarily based on hybrid round Bragg gratings. Decide. Specific 27, 36824–36837 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Bremer, L. et al. Numerical optimization of single-mode fiber-coupled single-photon sources primarily based on semiconductor quantum dots. Decide. Specific 30, 15913–15928 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Barbiero, A. et al. Design examine for an environment friendly semiconductor quantum gentle supply working within the telecom C-band primarily based on an electrically-driven round Bragg grating. Decide. Specific 30, 10919–10928 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wells, L. et al. Coherent gentle scattering from a telecom C-band quantum dot. Preprint at https://arxiv.org/abs/2205.07997 (2022).

  • Wang, H. et al. Close to-transform-limited single photons from an environment friendly solid-state quantum emitter. Phys. Rev. Lett. 116, 213601 (2016).

    Article 

    Google Scholar
     

  • Lettner, T. et al. Pressure-controlled quantum dot effective construction for entangled photon technology at 1550 nm. Nano Lett. 21, 10501–10506 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Farrera, P., Heinze, G. & de Riedmatten, H. Entanglement between a photonic time-bin qubit and a collective atomic spin excitation. Phys. Rev. Lett. 120, 100501 (2018).

    Article 
    CAS 

    Google Scholar
     

  • You, X. et al. Quantum interference between impartial solid-state single-photon sources separated by 300 km fiber. Adv. Photon. 4, 066003 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Arenskötter, E. et al. Telecom quantum photonic interface for a 40Ca+ single-ion quantum reminiscence. npj Quantum Inf. 9, 34 (2023).

    Article 

    Google Scholar
     

  • Fejer, M. M. Nonlinear optical frequency conversion. Phys. Right now 47, 25–32 (1994).

    Article 
    CAS 

    Google Scholar
     

  • Da Lio, B. et al. A pure and indistinguishable single-photon supply at telecommunication wavelength. Adv. Quantum Technol. 5, 2200006 (2022).

    Article 

    Google Scholar
     

  • De Greve, Ok. et al. Quantum-dot spin–photon entanglement through frequency downconversion to telecom wavelength. Nature 491, 421–425 (2012).

    Article 

    Google Scholar
     

  • Weber, J. H. et al. Two-photon interference within the telecom C-band after frequency conversion of photons from distant quantum emitters. Nat. Nanotechnol. 14, 23–26 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Ikuta, R. et al. Polarization insensitive frequency conversion for an atom-photon entanglement distribution through a telecom community. Nat. Commun. 9, 1997 (2018).

    Article 

    Google Scholar
     

  • Agha, I., Davanço, M., Thurston, B. & Srinivasan, Ok. Low-noise chip-based frequency conversion by four-wave-mixing Bragg scattering in SiNx waveguides. Decide. Lett. 37, 2997–2999 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Li, Q., Davanço, M. & Srinivasan, Ok. Environment friendly and low-noise single-photon-level frequency conversion interfaces utilizing silicon nanophotonics. Nat. Photon. 10, 406–414 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Moody, G. et al. 2022 roadmap on built-in quantum photonics. J. Phys. Photon. 4, 012501 (2022).

    Article 

    Google Scholar
     

  • McGuinness, H. J., Raymer, M. G., McKinstrie, C. J. & Radic, S. Quantum frequency translation of single-photon states in a photonic crystal fiber. Phys. Rev. Lett. 105, 093604 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Singh, A. et al. Quantum frequency conversion of a quantum dot single-photon supply on a nanophotonic chip. Optica 6, 563–569 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Chen, J.-Y. et al. Photon conversion and interplay in a quasi-phase-matched microresonator. Phys. Rev. Appl. 16, 064004 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Ulsig, E. Z. et al. Environment friendly low threshold frequency conversion in AlGaAs-on-insulator waveguides. Entrance. Photon. 3, 904651 (2022).

    Article 

    Google Scholar
     

  • Kim, J.-H., Aghaeimeibodi, S., Carolan, J., Englund, D. & Waks, E. Hybrid integration strategies for on-chip quantum photonics. Optica 7, 291–308 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Elshaari, A. W., Pernice, W., Srinivasan, Ok., Benson, O. & Zwiller, V. Hybrid built-in quantum photonic circuits. Nat. Photon. 14, 285–298 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Kim, J.-H. et al. Hybrid integration of solid-state quantum emitters on a silicon photonic chip. Nano Lett. 17, 7394–7400 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Katsumi, R. et al. CMOS-compatible integration of telecom band InAs/InP quantum-dot single-photon sources on a Si chip utilizing switch printing. Appl. Phys. Specific 16, 012004 (2023).

    Article 

    Google Scholar
     

  • Aghaeimeibodi, S. et al. Integration of quantum dots with lithium niobate photonics. Appl. Phys. Lett. 113, 221102 (2018).

    Article 

    Google Scholar
     

  • Davanco, M. et al. Heterogeneous integration for on-chip quantum photonic circuits with single quantum dot gadgets. Nat. Commun. 8, 889 (2017).

    Article 

    Google Scholar
     

  • Xu, S.-W. et al. Brilliant single-photon sources within the telecom band by deterministically coupling single quantum dots to a hybrid round Bragg resonator. Photon. Res. 10, B1–B6 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Billah, M. R. et al. Hybrid integration of silicon photonics circuits and InP lasers by photonic wire bonding. Optica 5, 876–883 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Gehring, H. et al. Low-loss fiber-to-chip couplers with ultrawide optical bandwidth. APL Photon. 4, 010801 (2019).

    Article 

    Google Scholar
     

  • Liu, S. et al. Twin-resonance enhanced quantum light-matter interactions in deterministically coupled quantum-dot-micropillars. Gentle. Sci. Appl. 10, 158 (2021).

    Article 

    Google Scholar
     

  • Liu, S., Srinivasan, Ok. & Liu, J. Nanoscale positioning approaches for integrating single solid-state quantum emitters with photonic nanostructures. Laser Photon. Rev. 15, 2100223 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Liu, J. et al. Single self-assembled InAs/GaAs quantum dots in photonic nanostructures: the position of nanofabrication. Phys. Rev. Appl. 9, 064019 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Li, X. S. et al. Brilliant semiconductor single-photon sources pumped by heterogeneously built-in micropillar lasers with electrical injections. Gentle. Sci. Appl. 12, 65 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, X. et al. Epitaxial quantum dots: a semiconductor launchpad for photonic quantum applied sciences. Photon. Insights 1, R07 (2022).

    Article 

    Google Scholar
     

  • Wang, J. et al. Brilliant room temperature single photon supply at telecom vary in cubic silicon carbide. Nat. Commun. 9, 4106 (2018).

    Article 

    Google Scholar
     

  • Meunier, M. et al. Telecom single-photon emitters in GaN working at room temperature: embedment into bullseye antennas. Nanophotonics 12, 1405–1419 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Ourari, S. et al. Indistinguishable telecom band photons from a single Er ion within the strong state. Nature 620, 977–981 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Wei, Y. et al. Tailoring solid-state single-photon sources with stimulated emissions. Nat. Nanotechnol. 17, 470–476 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Schwartz, I. et al. Deterministic writing and management of the darkish exciton spin utilizing single quick optical pulses. Phys. Rev. X 5, 011009 (2015).

    CAS 

    Google Scholar
     

  • Gerardot, B. D. et al. Optical pumping of a single gap spin in a quantum dot. Nature 451, 441–444 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Berezovsky, J., Mikkelsen, M. H., Stoltz, N. G., Coldren, L. A. & Awschalom, D. D. Picosecond coherent optical manipulation of a single electron spin in a quantum dot. Science 320, 349–352 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Tiurev, Ok. et al. Excessive-fidelity multiphoton-entangled cluster state with solid-state quantum emitters in photonic nanostructures. Phys. Rev. A 105, L030601 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Schwartz, I. et al. Deterministic technology of a cluster state of entangled photons. Science 354, 434–437 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Coste, N. et al. Excessive-rate entanglement between a semiconductor spin and indistinguishable photons. Nat. Photon. 17, 582–587 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Schall, J. et al. Brilliant electrically controllable quantum-dot-molecule gadgets fabricated by in situ electron-beam lithography. Adv. Quantum Technol. 4, 2100002 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Boyer de la Giroday, A. et al. Exciton-spin reminiscence with a semiconductor quantum dot molecule. Phys. Rev. Lett. 106, 216802 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Economou, S. E., Lindner, N. & Rudolph, T. Optically generated 2-dimensional photonic cluster state from coupled quantum dots. Phys. Rev. Lett. 105, 093601 (2010).

    Article 

    Google Scholar
     

  • Gangloff, D. A. et al. Quantum interface of an electron and a nuclear ensemble. Science 364, 62–66 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Tang, J.-S. et al. Storage of a number of single-photon pulses emitted from a quantum dot in a solid-state quantum reminiscence. Nat. Commun. 6, 8652 (2015).

    Article 
    CAS 

    Google Scholar
     



  • Supply hyperlink

    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    - Advertisment -
    Google search engine

    Most Popular

    Recent Comments