Thursday, December 7, 2023
HomeNanotechnologyReversible optical knowledge storage under the diffraction restrict

Reversible optical knowledge storage under the diffraction restrict


  • Degen, C. L., Reinhard, F. & Cappellaro, P. Quantum sensing. Rev. Mod. Phys. 89, 035002 (2017).

    Article 

    Google Scholar
     

  • Awschalom, D. D., Hanson, R., Wrachtrup, J. & Zhou, B. B. Quantum applied sciences with optically interfaced solid-state spins. Nat. Photon. 12, 516–527 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Aslam, N., Waldherr, G., Neumann, P., Jelezko, F. & Wrachtrup, J. Photograph-induced ionization dynamics of the nitrogen emptiness defect in diamond investigated by single-shot cost state detection. New J. Phys. 15, 013064 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Lozovoi, A. et al. Optical activation and detection of cost transport between particular person color centres in diamond. Nat. Electron. 4, 717–724 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Mizuochi, N. et al. Electrically pushed single-photon supply at room temperature in diamond. Nat. Photon. 6, 299–303 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Lozovoi, A., Vizkelethy, G., Bielejec, E. & Meriles, C. A. Imaging darkish cost emitters in diamond by way of carrier-to-photon conversion. Sci. Adv. 8, eabl9402 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Shields, B. J., Unterreithmeier, Q. P., De Leon, N. P., Park, H. & Lukin, M. D. Environment friendly readout of a single spin state in diamond by way of spin-to-charge conversion. Phys. Rev. Lett. 114, 136402 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Hopper, D. A., Lauigan, J. D., Huang, T.-Y. & Bassett, L. C. Actual-time cost initialization of diamond nitrogen-vacancy facilities for enhanced spin readout. Phys. Rev. Appl. 13, 024016 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Jayakumar, H., Dhomkar, S., Henshaw, J. & Meriles, C. A. Spin readout by way of spin-to-charge conversion in bulk diamond nitrogen-vacancy ensembles. Appl. Phys. Lett. 113, 122404 (2018).

    Article 

    Google Scholar
     

  • Zhang, Q. et al. Excessive-fidelity single-shot readout of single electron spin in diamond with spin-to-charge conversion. Nat. Commun. 12, 1529 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Irber, D. M. et al. Strong all-optical single-shot readout of nitrogen-vacancy facilities in diamond. Nat. Commun. 12, 532 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Dhomkar, S., Henshaw, J., Jayakumar, H. & Meriles, C. A. Lengthy-term knowledge storage in diamond. Sci. Adv. 2, e1600911 (2016).

    Article 

    Google Scholar
     

  • Dhomkar, S., Jayakumar, H., Zangara, P. R. & Meriles, C. A. Cost dynamics in near-surface, variable-density ensembles of nitrogen-vacancy facilities in diamond. Nano Lett. 18, 4046–4052 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Wolfowicz, G. et al. Optical cost state management of spin defects in 4H-SiC. Nat. Commun. 8, 1876 (2017).

    Article 

    Google Scholar
     

  • Rittweger, E., Han, Okay. Y., Irvine, S. E., Eggeling, C. & Hell, S. W. STED microscopy reveals crystal color centres with nanometric decision. Nat. Photon. 3, 144–147 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Huang, B., Wang, W., Bates, M. & Zhuang, X. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319, 810–813 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Pfender, M., Aslam, N., Waldherr, G., Neumann, P. & Wrachtrup, J. Single-spin stochastic optical reconstruction microscopy. Proc. Natl Acad. Sci. USA 111, 14669–14674 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Rittweger, E., Wildanger, D. & Hell, S. W. Far-field fluorescence nanoscopy of diamond coloration facilities by floor state depletion. Eur. Phys. Lett. 86, 14001 (2009).

    Article 

    Google Scholar
     

  • Han, Okay. Y., Kim, S. Okay., Eggeling, C. & Hell, S. W. Metastable darkish states allow floor state depletion microscopy of nitrogen emptiness facilities in diamond with diffraction-unlimited decision. Nano Lett. 10, 3199–3203 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Chen, X. et al. Subdiffraction optical manipulation of the cost state of nitrogen emptiness heart in diamond. Mild. Sci. Appl. 4, e230 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Lamon, S., Wu, Y., Zhang, Q., Liu, X. & Gu, M. Nanoscale optical writing by way of upconversion resonance power switch. Sci. Adv. 7, eabe2209 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Harke, B. et al. Polymerization inhibition by triplet state absorption for nanoscale lithography. Adv. Mater. 25, 904–909 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Gan, Z., Cao, Y., Evans, R. A. & Gu, M. Three-dimensional deep sub-diffraction optical beam lithography with 9 nm function measurement. Nat. Commun. 4, 2061 (2013).

    Article 

    Google Scholar
     

  • Li, L., Gattass, R. R., Gershgoren, E., Hwang, H. & Fourkas, J. T. Attaining λ/20 decision by one-color initiation and deactivation of polymerization. Science 324, 910–913 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Wollhofen, R., Katzmann, J., Hrelescu, C., Jacak, J. & Klar, T. A. 120 nm decision and 55 nm construction measurement in STED-lithography. Choose. Categorical 21, 10831–10840 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Fischer, J., von Freymann, G. & Wegener, M. The supplies problem in diffraction-unlimited direct-laser-writing optical lithography. Adv. Mater. 22, 3578–3582 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Tamarat, P. H. et al. Spin-flip and spin-conserving optical transitions of the nitrogen-vacancy centre in diamond. New J. Phys. 10, 045004 (2008).

    Article 

    Google Scholar
     

  • Manson, N. B., Harrison, J. P. & Sellars, M. J. Nitrogen-vacancy heart in diamond: mannequin of the digital construction and related dynamics. Phys. Rev. B 74, 104303 (2006).

    Article 

    Google Scholar
     

  • Maze, J. R. et al. Properties of nitrogen-vacancy facilities in diamond: the group theoretic strategy. New J. Phys. 13, 025025 (2011).

    Article 

    Google Scholar
     

  • Doherty, M. W. et al. The nitrogen-vacancy color centre in diamond. Phys. Rep. 528, 1–45 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Sipahigil, A. et al. Indistinguishable photons from separated silicon-vacancy facilities in diamond. Phys. Rev. Lett. 113, 113602 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Bersin, E. et al. Particular person management and readout of qubits in a sub-diffraction quantity. npj Quant. Inf. 5, 38 (2019).

    Article 

    Google Scholar
     

  • Fu, Okay.-M. C. et al. Remark of the dynamic Jahn-Teller impact within the excited states of nitrogen-vacancy facilities in diamond. Phys. Rev. Lett. 103, 256404 (2009).

    Article 

    Google Scholar
     

  • Baier, S. et al. Orbital and spin dynamics of single neutrally-charged nitrogen-vacancy facilities in diamond. Phys. Rev. Lett. 125, 193601 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Edmonds, A. M. et al. Characterization of CVD diamond with excessive concentrations of nitrogen for magnetic-field sensing functions. Mater. Quant. Technol. 1, 025001 (2021).

    Article 

    Google Scholar
     

  • Oberg, L. M. et al. Spin coherent quantum transport of electrons between defects in diamond. Nanophotonincs 8, 1975–1984 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Doherty, M. W. et al. In direction of a room-temperature spin quantum bus in diamond by way of optical spin injection, transport and detection. Phys. Rev. X 6, 041035 (2016).


    Google Scholar
     

  • McCullian, B. A., Cheung, H. F. H., Chen, H. Y. & Fuchs, G. D. Quantifying the spectral diffusion of N-V facilities by symmetry. Phys. Rev. Appl. 18, 064011 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, Z.-H. et al. Optically detected magnetic resonance in impartial silicon emptiness facilities in diamond by way of sure exciton states. Phys. Rev. Lett. 125, 237402 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Kazimierczuk, T., Fröhlich, D., Scheel, S., Stolz, H. & Bayer, M. Large Rydberg excitons within the copper oxide Cu2O. Nature 514, 343–347 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Monge, R. et al. Spin dynamics of a solid-state qubit in proximity to a superconductor. Nano Lett. 23, 422–428 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Balasubramanian, G. et al. Nanoscale imaging magnetometry with diamond spins underneath ambient situations. Nature 455, 648–651 (2008).

    Article 
    CAS 

    Google Scholar
     



  • Supply hyperlink

    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    - Advertisment -
    Google search engine

    Most Popular

    Recent Comments