Degen, C. L., Reinhard, F. & Cappellaro, P. Quantum sensing. Rev. Mod. Phys. 89, 035002 (2017).
Awschalom, D. D., Hanson, R., Wrachtrup, J. & Zhou, B. B. Quantum applied sciences with optically interfaced solid-state spins. Nat. Photon. 12, 516–527 (2018).
Aslam, N., Waldherr, G., Neumann, P., Jelezko, F. & Wrachtrup, J. Photograph-induced ionization dynamics of the nitrogen emptiness defect in diamond investigated by single-shot cost state detection. New J. Phys. 15, 013064 (2013).
Lozovoi, A. et al. Optical activation and detection of cost transport between particular person color centres in diamond. Nat. Electron. 4, 717–724 (2021).
Mizuochi, N. et al. Electrically pushed single-photon supply at room temperature in diamond. Nat. Photon. 6, 299–303 (2012).
Lozovoi, A., Vizkelethy, G., Bielejec, E. & Meriles, C. A. Imaging darkish cost emitters in diamond by way of carrier-to-photon conversion. Sci. Adv. 8, eabl9402 (2022).
Shields, B. J., Unterreithmeier, Q. P., De Leon, N. P., Park, H. & Lukin, M. D. Environment friendly readout of a single spin state in diamond by way of spin-to-charge conversion. Phys. Rev. Lett. 114, 136402 (2015).
Hopper, D. A., Lauigan, J. D., Huang, T.-Y. & Bassett, L. C. Actual-time cost initialization of diamond nitrogen-vacancy facilities for enhanced spin readout. Phys. Rev. Appl. 13, 024016 (2020).
Jayakumar, H., Dhomkar, S., Henshaw, J. & Meriles, C. A. Spin readout by way of spin-to-charge conversion in bulk diamond nitrogen-vacancy ensembles. Appl. Phys. Lett. 113, 122404 (2018).
Zhang, Q. et al. Excessive-fidelity single-shot readout of single electron spin in diamond with spin-to-charge conversion. Nat. Commun. 12, 1529 (2021).
Irber, D. M. et al. Strong all-optical single-shot readout of nitrogen-vacancy facilities in diamond. Nat. Commun. 12, 532 (2021).
Dhomkar, S., Henshaw, J., Jayakumar, H. & Meriles, C. A. Lengthy-term knowledge storage in diamond. Sci. Adv. 2, e1600911 (2016).
Dhomkar, S., Jayakumar, H., Zangara, P. R. & Meriles, C. A. Cost dynamics in near-surface, variable-density ensembles of nitrogen-vacancy facilities in diamond. Nano Lett. 18, 4046–4052 (2018).
Wolfowicz, G. et al. Optical cost state management of spin defects in 4H-SiC. Nat. Commun. 8, 1876 (2017).
Rittweger, E., Han, Okay. Y., Irvine, S. E., Eggeling, C. & Hell, S. W. STED microscopy reveals crystal color centres with nanometric decision. Nat. Photon. 3, 144–147 (2009).
Huang, B., Wang, W., Bates, M. & Zhuang, X. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319, 810–813 (2008).
Pfender, M., Aslam, N., Waldherr, G., Neumann, P. & Wrachtrup, J. Single-spin stochastic optical reconstruction microscopy. Proc. Natl Acad. Sci. USA 111, 14669–14674 (2014).
Rittweger, E., Wildanger, D. & Hell, S. W. Far-field fluorescence nanoscopy of diamond coloration facilities by floor state depletion. Eur. Phys. Lett. 86, 14001 (2009).
Han, Okay. Y., Kim, S. Okay., Eggeling, C. & Hell, S. W. Metastable darkish states allow floor state depletion microscopy of nitrogen emptiness facilities in diamond with diffraction-unlimited decision. Nano Lett. 10, 3199–3203 (2010).
Chen, X. et al. Subdiffraction optical manipulation of the cost state of nitrogen emptiness heart in diamond. Mild. Sci. Appl. 4, e230 (2015).
Lamon, S., Wu, Y., Zhang, Q., Liu, X. & Gu, M. Nanoscale optical writing by way of upconversion resonance power switch. Sci. Adv. 7, eabe2209 (2021).
Harke, B. et al. Polymerization inhibition by triplet state absorption for nanoscale lithography. Adv. Mater. 25, 904–909 (2013).
Gan, Z., Cao, Y., Evans, R. A. & Gu, M. Three-dimensional deep sub-diffraction optical beam lithography with 9 nm function measurement. Nat. Commun. 4, 2061 (2013).
Li, L., Gattass, R. R., Gershgoren, E., Hwang, H. & Fourkas, J. T. Attaining λ/20 decision by one-color initiation and deactivation of polymerization. Science 324, 910–913 (2009).
Wollhofen, R., Katzmann, J., Hrelescu, C., Jacak, J. & Klar, T. A. 120 nm decision and 55 nm construction measurement in STED-lithography. Choose. Categorical 21, 10831–10840 (2013).
Fischer, J., von Freymann, G. & Wegener, M. The supplies problem in diffraction-unlimited direct-laser-writing optical lithography. Adv. Mater. 22, 3578–3582 (2010).
Tamarat, P. H. et al. Spin-flip and spin-conserving optical transitions of the nitrogen-vacancy centre in diamond. New J. Phys. 10, 045004 (2008).
Manson, N. B., Harrison, J. P. & Sellars, M. J. Nitrogen-vacancy heart in diamond: mannequin of the digital construction and related dynamics. Phys. Rev. B 74, 104303 (2006).
Maze, J. R. et al. Properties of nitrogen-vacancy facilities in diamond: the group theoretic strategy. New J. Phys. 13, 025025 (2011).
Doherty, M. W. et al. The nitrogen-vacancy color centre in diamond. Phys. Rep. 528, 1–45 (2013).
Sipahigil, A. et al. Indistinguishable photons from separated silicon-vacancy facilities in diamond. Phys. Rev. Lett. 113, 113602 (2014).
Bersin, E. et al. Particular person management and readout of qubits in a sub-diffraction quantity. npj Quant. Inf. 5, 38 (2019).
Fu, Okay.-M. C. et al. Remark of the dynamic Jahn-Teller impact within the excited states of nitrogen-vacancy facilities in diamond. Phys. Rev. Lett. 103, 256404 (2009).
Baier, S. et al. Orbital and spin dynamics of single neutrally-charged nitrogen-vacancy facilities in diamond. Phys. Rev. Lett. 125, 193601 (2020).
Edmonds, A. M. et al. Characterization of CVD diamond with excessive concentrations of nitrogen for magnetic-field sensing functions. Mater. Quant. Technol. 1, 025001 (2021).
Oberg, L. M. et al. Spin coherent quantum transport of electrons between defects in diamond. Nanophotonincs 8, 1975–1984 (2019).
Doherty, M. W. et al. In direction of a room-temperature spin quantum bus in diamond by way of optical spin injection, transport and detection. Phys. Rev. X 6, 041035 (2016).
McCullian, B. A., Cheung, H. F. H., Chen, H. Y. & Fuchs, G. D. Quantifying the spectral diffusion of N-V facilities by symmetry. Phys. Rev. Appl. 18, 064011 (2022).
Zhang, Z.-H. et al. Optically detected magnetic resonance in impartial silicon emptiness facilities in diamond by way of sure exciton states. Phys. Rev. Lett. 125, 237402 (2020).
Kazimierczuk, T., Fröhlich, D., Scheel, S., Stolz, H. & Bayer, M. Large Rydberg excitons within the copper oxide Cu2O. Nature 514, 343–347 (2014).
Monge, R. et al. Spin dynamics of a solid-state qubit in proximity to a superconductor. Nano Lett. 23, 422–428 (2023).
Balasubramanian, G. et al. Nanoscale imaging magnetometry with diamond spins underneath ambient situations. Nature 455, 648–651 (2008).