Thursday, December 7, 2023
HomeNanotechnologyAll-optical free-space routing of upconverted mild by metasurfaces through nonlinear interferometry

All-optical free-space routing of upconverted mild by metasurfaces through nonlinear interferometry


  • Yuen, H. P. & Chan, V. W. S. Noise in homodyne and heterodyne detection. Decide. Lett. 8, 177–179 (1983).

    Article 
    CAS 

    Google Scholar
     

  • Massonnet, D. et al. The displacement area of the Landers earthquake mapped by radar interferometry. Nature 364, 138–142 (1993).

    Article 

    Google Scholar
     

  • Poulton, C. V. et al. Coherent solid-state LIDAR with silicon photonic optical phased arrays. Decide. Lett. 42, 4091–4094 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Spollard, J. T., Roberts, L. E., Sambridge, C. S., McKenzie, Ok. & Shaddock, D. A. Mitigation of part noise and Doppler-induced frequency offsets in coherent random amplitude modulated continuous-wave LiDAR. Decide. Categorical 29, 9060–9083 (2021).

    Article 

    Google Scholar
     

  • Lin, V. S. Y., Motesharei, Ok., Dancil, Ok. P. S., Sailor, M. J. & Ghadiri, M. R. A porous silicon-based optical interferometric biosensor. Science 278, 840–843 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Allsop, T., Reeves, R., Webb, D. J., Bennion, I. & Neal, R. A excessive sensitivity refractometer primarily based upon a protracted interval grating Mach–Zehnder interferometer. Rev. Sci. Instrum. 73, 1702–1705 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Lee, B. H. et al. Interferometric fiber optic sensors. Sensors 12, 2467–2486 (2012).

    Article 

    Google Scholar
     

  • Bongs, Ok. et al. Taking atom interferometric quantum sensors from the laboratory to real-world purposes. Nat. Rev. Phys. 1, 731–739 (2019).

    Article 

    Google Scholar
     

  • Celebrano, M., Kukura, P., Renn, A. & Sandoghdar, V. Single-molecule imaging by optical absorption. Nat. Photon. 5, 95–98 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Gao, Y., Goodman, A. J., Shen, P.-C., Kong, J. & Tisdale, W. A. Section-modulated degenerate parametric amplification microscopy. Nano Lett. 18, 5001–5006 (2018).

    Article 

    Google Scholar
     

  • Rivard, M. et al. Imaging the bipolarity of myosin filaments with interferometric second harmonic technology microscopy. Biomed. Decide. Categorical 4, 2078–2086 (2013).

    Article 

    Google Scholar
     

  • Younger, G. et al. Quantitative mass imaging of single organic macromolecules. Science 360, 423–427 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Crespi, A. et al. Three-dimensional Mach–Zehnder interferometer in a microfluidic chip for spatially-resolved label-free detection. Lab Chip 10, 1167–1173 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Sturm, C. et al. All-optical part modulation in a cavity-polariton Mach–Zehnder interferometer. Nat. Commun. 5, 3278 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Burla, M. et al. 500 GHz plasmonic Mach–Zehnder modulator enabling sub-THz microwave photonics. APL Photonics 4, 056106 (2019).

    Article 

    Google Scholar
     

  • Amin, R. et al. Sub-wavelength GHz-fast broadband ITO Mach–Zehnder modulator on silicon photonics. Optica 7, 333–335 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Almeida, V., Barrios, C., Panepucci, R. & Lipson, M. All-optical management of sunshine on a silicon chip. Nature 431, 1081–1084 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Nozaki, Ok. et al. Sub-femtojoule all-optical switching utilizing a photonic-crystal nanocavity. Nat. Photon. 4, 477–483 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Guo, Q. et al. Femtojoule femtosecond all-optical switching in lithium niobate nanophotonics. Nat. Photon. 16, 625–631 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Gigli, C., Li, Q., Chavel, P., Leo, G., Brongersma, M. L. & Lalanne, P. Basic limitations of Huygens’ metasurfaces for optical beam shaping. Laser Photonics Rev. 15, 20000448 (2021).

    Article 

    Google Scholar
     

  • Chen, W. T., Zhu, A. Y. & Capasso, F. Flat optics with dispersion-engineered metasurfaces. Nat. Rev. Mater. 5, 604–620 (2020).

    Article 

    Google Scholar
     

  • Neshev, D. & Aharonovich, I. Optical metasurfaces: new technology constructing blocks for multi-functional optics. Gentle Sci. Appl. 7, 58 (2018).

    Article 

    Google Scholar
     

  • Li, G., Zhang, S. & Zentgraf, T. Nonlinear photonic metasurfaces. Nat. Rev. Mater. 2, 17010 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Krasnok, A., Tymchenko, M. & Alù, A. Nonlinear metasurfaces: a paradigm shift in nonlinear optics. Mater. Immediately 21, 8–21 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Bonacina, L., Brevet, P.-F., Finazzi, M. & Celebrano, M. Harmonic technology on the nanoscale. J. Appl. Phys. 127, 230901 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Vabishchevich, P. & Kivshar, Y. Nonlinear photonics with metasurfaces. Photon. Res. 11, B50–B64 (2023).

    Article 

    Google Scholar
     

  • Sautter, J. et al. Energetic tuning of all-dielectric metasurfaces. ACS Nano 9, 4308–4315 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Nemati, A., Wang, Q., Hong, M. & Teng, J. Tunable and reconfigurable metasurfaces and metadevices. Opto-Electron. Adv. 1, 180009 (2018).

    Article 

    Google Scholar
     

  • Shirmanesh, G. Ok., Sokhoyan, R., Wu, P. C. & Atwater, H. A. Electro-optically tunable multifunctional metasurfaces. ACS Nano 14, 6912–6920 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Grinblat, G. Nonlinear dielectric nanoantennas and metasurfaces: frequency conversion and wavefront management. ACS Photonics 8, 3406–3432 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Fedotova, A. et al. Lithium niobate meta-optics. ACS Photonics 9, 3745–3763 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Camacho-Morales, R. et al. Infrared upconversion imaging in nonlinear metasurfaces. Adv. Photonics 3, 036002 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zheng, Z. et al. Third-harmonic technology and imaging with resonant Si membrane metasurface. Opto-Electron Adv. 6, 220174 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Keren-Zur, S., Tal, M., Fleischer, S., Mittleman, D. M. & Ellenbogen, T. Era of spatiotemporally tailor-made terahertz wavepackets by nonlinear metasurfaces. Nat. Commun. 10, 1778 (2017).

    Article 

    Google Scholar
     

  • Xomalis, A. et al. Detecting mid-infrared mild by molecular frequency upconversion in dual-wavelength nanoantennas. Science 374, 1268–1271 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Chen, W. et al. Steady-wave frequency upconversion with a molecular optomechanical nanocavity. Science 374, 1264–1267 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Salamin, Y. et al. Compact and ultra-efficient broadband plasmonic terahertz area detector. Nat. Commun. 10, 5550 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Santiago-Cruz, T. et al. Resonant metasurfaces for producing complicated quantum states. Science 377, 991–995 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Mesch, M., Metzger, B., Hentschel, M. & Giessen, H. Nonlinear plasmonic sensing. Nano Lett. 16, 3155–3159 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Ghirardini, L. et al. Plasmon-enhanced second harmonic sensing. J. Phys. Chem. C 122, 11475–11481 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Gao, Y. et al. Nonlinear holographic all-dielectric metasurfaces. Nano Lett. 18, 8054–8061 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Gigli, C. et al. Tensorial part management in nonlinear meta-optics. Optica 8, 269–276 (2021).

    Article 

    Google Scholar
     

  • Reineke, B. et al. Silicon metasurfaces for third harmonic geometric part manipulation and multiplexed holography. Nano Lett. 19, 6585–6591 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Shaltout, A. M., Shalaev, V. M. & Brongersma, M. L. Spatiotemporal mild management with energetic metasurfaces. Science 364, eaat3100 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Yang, J., Gurung, S., Bej, S., Ni, P. & Lee, H. W. H. Energetic optical metasurfaces: complete evaluate on physics, mechanisms, and potential purposes. Rep. Prog. Phys. 85, 036101 (2022).

    Article 

    Google Scholar
     

  • Benea-Chelmus, I. C. et al. Gigahertz free-space electro-optic modulators primarily based on Mie resonances. Nat. Commun. 13, 3170 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Ren, M. et al. Nanostructured plasmonic medium for terahertz bandwidth all-optical switching. Adv. Mater. 23, 5540–5544 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Shcherbakov, M. R. et al. Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces. Nat. Commun. 8, 17 (2017).

    Article 

    Google Scholar
     

  • Dhama, R. et al. All-optical switching primarily based on plasmon-induced enhancement of index of refraction. Nat. Commun. 13, 3114 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Grinblat, G. et al. Environment friendly ultrafast all-optical modulation in a nonlinear crystalline gallium phosphide nanodisk on the anapole excitation. Sci. Adv. 6, eabb3123 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Pogna, E. A. A. et al. Ultrafast, all optically reconfigurable, nonlinear nanoantenna. ACS Nano 15, 11150–11157 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Shan, J. Y. et al. Large modulation of optical nonlinearity by Floquet engineering. Nature 600, 235–239 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Klimmer, S. et al. All-optical polarization and amplitude modulation of second-harmonic technology in atomically skinny semiconductors. Nat. Photon. 15, 837–842 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zilli, A. et al. Frequency tripling through sum-frequency technology on the nanoscale. ACS Photonics 8, 1175–1182 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Gili, V. F. et al. Monolithic AlGaAs second-harmonic nanoantennas. Decide. Categorical 24, 15965–15971 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Di Francescantonio, A. et al. Coherent management of the nonlinear emission of single plasmonic nanoantennas by dual-beam pumping. Adv. Decide. Mater. 10, 2200757 (2022).

    Article 

    Google Scholar
     

  • Liu, Z. et al. Excessive-Q quasibound states within the continuum for nonlinear metasurfaces. Phys. Rev. Lett. 123, 253901 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Vogwell, J., Rego, L., Smirnova, O. & Ayuso, D. Ultrafast management over chiral sum-frequency technology. Sci. Adv. 9, eadj1429 (2023).

    Article 

    Google Scholar
     

  • Høgstedt, L., Repair, A., Wirth, M., Pedersen, C. & Tidemand-Lichtenberg, P. Upconversion-based LiDAR measurements of atmospheric CO2. Decide. Categorical 24, 5152–5161 (2016).

    Article 

    Google Scholar
     

  • Yazdanfar, S., Laiho, L. H. & So, P. T. C. Interferometric second harmonic technology microscopy. Decide. Categorical 12, 2739–2745 (2004).

    Article 

    Google Scholar
     

  • Gehrsitz, S. et al. The refractive index of AlxGa1−xAs beneath the band hole: correct dedication and empirical modeling. J. Appl. Phys. 87, 7825–7837 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Papatryfonos, Ok. et al. Refractive indices of MBE-grown AlxGa(1–x)As ternary alloys within the clear wavelength area. AIP Adv. 11, 025327 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Y., Zilli, A., Sztranyovszky, Z., Langbein, W. & Borri, P. Quantitative optical microspectroscopy, electron microscopy, and modelling of particular person silver nanocubes reveal floor compositional adjustments on the nanoscale. Nanoscale Adv. 2, 2485–2496 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Yang, J., Hugonin, J.-P. & Lalanne, P. Close to-to-far area transformations for radiative and guided waves. ACS Photonics 3, 395–402 (2016).

    Article 
    CAS 

    Google Scholar
     



  • Supply hyperlink

    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    - Advertisment -
    Google search engine

    Most Popular

    Recent Comments